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Abstract
A novel multi-combined-step-size normalized subband adaptive filtering algorithm is
proposed. Different from the traditional combined-step-size method, by employing a
variablemixing parameter on each subband, our designed algorithm is able to combine
a large step size with a small one more effectively for each subband. The subband
mixing parameters are derived from the variance of the noise-free a priori subband
error signals. In this design, a noniterative shrinkage strategy is also utilized to estimate
the noise-free a priori subband error signals. Moreover, the mean-square and steady-
state performances of the proposed algorithm are studied. Simulation results illustrate
that the proposed algorithm outperforms other algorithms mentioned in this paper in
terms of tracking capability, convergence speed and steady-state error.

Keywords Normalized subband adaptive filter · Combined-step-size · Colored input
signal · Noniterative shrinkage

1 Introduction

Adaptive filtering is an extremely vital technology, which is employed in a variety of
fields, including echo cancellation, speech linear prediction and system identification
[3, 5, 6, 21]. In the realization, the normalized least mean square (NLMS) algorithm
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has a wide range of applications due to the advantages of simple calculation and easy
implementation [14, 21]. However, it converges slowly once the colored input signals
are encountered [13]. To better handle such signals, Lee and Gan [10] proposed a
normalized subband adaptive filtering (NSAF) algorithm, whose computational com-
plexity is comparable to that of NLMS. During implementation, the colored input and
desired signals are broken down into multiple uncorrelated subbands [11]. However,
the original NSAF using a fixed step size cannot neutralize the contradiction between
fast convergence speed and low steady-state error.

To solve the problem, one approach is to replace the NSAF’s fixed step size with
a variable step size (VSS) [1, 8, 17, 29]. A set-membership NSAF (SM-NSAF)
[1] has been proposed, but its convergence rate is greatly affected by the error-
bound parameter. The variable step size matrix NSAF (VSSM-NSAF) algorithm [17],
which outperforms SM-NSAF in terms of convergence rate, steady-state error and
tracking capability, has also been designed. Unfortunately, the steady-state error of
VSSM-NSAF is still relatively large. Moreover, Yu minimized the mean-square of the
posteriori subband error to provide an individual step size for each subband, proposing
the variable step size NSAF (VSS-NSAF) algorithm [29]. Recently, a step size con-
verter NSAF (SSC-NSAF) algorithm [8] has been proposed, which selects the most
appropriate step size for the next iteration by comparing the mean-square deviations
(MSDs) for given different step sizes. Nevertheless, these VSS algorithms presented
in [1, 17, 29] cannot predict how fast convergence will occur or how low steady-state
error will be, so they cannot be adjusted properly to meet practical requirements.

Another method is to utilize the convex combination way of two adaptive filters,
one of which uses a large step size to improve convergence speed and the other which
employs a small step size to reduce steady-state error [2, 15, 16, 28]. Although these
convex combination algorithms can counteract the contradiction between rapid con-
vergence speed and small steady-state error to a certain extent, the computational
complexity is greatly increased. Further, in the convergence region between the two
adaptive filters, the method of weight transfer [16] or weight feedback [28] is used
to accelerate the convergence speed. Applying the concept of convex combination, a
combined-step-size (CSS) NSAF (CSS-NSAF) algorithm has been presented in [23],
in which a large and a small step sizes are also combined. The mixing parameter in
the algorithm is indirectly obtained by minimizing the sum of squares of subband
errors via an improved sigmoid function. Compared with traditional convex combi-
nation algorithms, the CSS-NSAF only needs to update a single filter, thus reducing
the computational complexity significantly. However, the difference value between a
large step size and a small one affects the step size setting of the mixing parameter.
Consequently, when designing the algorithm, there is certain restriction on the dif-
ference value between the large step size and the small one, which prevents further
improvement of the convergence speed or reduction of the steady-state error.

In this paper, we propose a novel multi-combined-step-size NSAF (MCSS-NSAF)
algorithm, which designs the subband mixing parameters based on the variance of the
noise-free a priori subband error signals. As a consequence, our algorithm allocates an
individual combined-step-size for each subband considering the difference between
each subband error, where the noniterative shrinkage strategy [4, 30] is utilized to
estimate the noise-free a priori subband error signal. Compared with the CSS-NSAF,
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it is worth noting that the subband mixing parameter is not iteratively updated, thus it
is not affected by the difference value between the large step size and the small one.
Additionally,we analyze themean-square and steady-state performances of theMCSS-
NSAF algorithm, and verify that the theoretical values about mean-square deviation
(MSD) are in largely accord with its simulation outcomes. At last, the performances
of the MCSS-NSAF algorithm, such as steady-state error, convergence speed and
tracking capability, are tested through system identification experiments.

The remainder of the paper is structured as follows. The system model and NSAF-
related algorithms are concisely reviewed in Sect. 2. In Sect. 3, the MCSS-NSAF
algorithm is derived. Section4 includes the performance analysis. Simulations are
shown in Sect. 5, and Sect. 6 draws conclusions about the whole paper.

Notation Scalars are represented in normal font. Boldface lowercase letters denote
vectors, and boldface capital letters indicate matrices. Furthermore, (·)T represents
transposition, E {·} is the mathematical expectation, and a vector’s Euclidean norm is
indicated by ‖·‖.

2 Background

Take into account the desired signal d(m) at time m which derives from the unknown
finite impulse response (FIR) system

d(m) = uT (m)wo + v(m) (1)

where wo = [wo,0, wo,1, ..., wo,L−1]T denotes the tap-weight vector of the unknown
system, and L is its length. u(m) = [u(m), u(m − 1), ..., u(m − L + 1)]T indicates
the input signal vector. Moreover, v(m) represents the system noise with zero-mean
and variance σ 2

v , which is independent of u(m).

2.1 Original NSAF

Figure 1 displays the framework graph of the NSAF algorithm, where N represents
the number of subbands. The analysis filters {Hi (z), i = 0, 1, . . . , N − 1} decompose
the signal d(m) and u(m) into multiple subband forms di (m) and ui (m), respectively.
What is more, yi (m) for i = 0, 1, . . . , N − 1 denote the subband output signals of
the adaptive filter, and yi (m) and di (m) are critically sampled to obtain yi,D(t) and
di,D(t), respectively. Note that m and t separately stand for the initial and sampled
sequences.

Since the sampled output signal yi,D(t) = uTi (t)w(t), the i th subband error signal
ei,D(t) is

ei,D(t) = di,D(t) − uTi (t)w(t) (2)

where

ui (t) = [ui (t N ), ui (t N − 1), ..., ui (t N − L + 1)]T (3)
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Fig. 1 Framework graph of the NSAF algorithm

and w(t) indicates the estimated value of the unknown vector wo at t th iteration.
As introduced in [10], the update formula of the estimated tap-weight vector is

w(t + 1) = w(t) + μ

N−1∑

i=0

ui (t)ei,D(t)

uTi (t)ui (t)
(4)

where μ denotes the fixed step size which must guarantee 0 < μ < 2 for large L [31].

2.2 CSS-NSAF

In the CSS-NSAF [23], the tap-weight vector update formula is

w(t + 1) = w(t) + μ(t)
N−1∑

i=0

ui (t)ei,D(t)

uTi (t)ui (t)
(5)

where

μ(t) = λ(t)μ1 + (1 − λ(t))μ2. (6)

Here μ(t) is the combined-step-size, obtained by combining a large step size μ1 and
a small step size μ2 with a variable mixing parameter λ(t) (0 ≤ λ(t) ≤ 1).
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The CSS-NSAF algorithm performs the quick convergence speed of μ1 when
λ(t) = 1 and obtains the small steady-state error of μ2 when λ(t) = 0. By intro-
ducing an auxiliary variable β(t) into an improved sigmoid function [7], the value of
λ(t) can be restricted to [0, 1] as follows

λ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if β(t) < − ln
(
G+1
G−1

)

1 if β(t) > ln
(
G+1
G−1

)

G

1 + e−β(t)
− G − 1

2
otherwise

(7)

where G(G > 1) denotes a positive constant. It can be seen that λ(t) can get 0 and

1, if β(t) equals − ln
(
G+1
G−1

)
and ln

(
G+1
G−1

)
, separately. Then, minimizing the sum of

squares of subband errors, i.e.,
∑N−1

i=0 e2i,D(t), obtains the update of β(t) as below

β(t) = β(t − 1) + μβ (μ1 − μ2) [λ(t − 1)(1 − λ(t − 1)) + τ ]

×
N−1∑

i=0

ei,D(t)uTi (t)
N−1∑

i=0

ui (t − 1)ei,D(t − 1)

uTi (t − 1)ui (t − 1)
(8)

where μβ is also a step size and τ indicates a tiny positive constant preventing the
update process of β(t) from stalling when λ(t) = 0 or 1.

3 ProposedMCSS-NSAF Algorithm

The paper focuses on the differences between each subband error ei,D(t) of the NSAF
algorithm. Therefore, we modify the variable mixing parameter λ(t) into the subband
form {λi (t) ∈ [0, 1], i = 0, 1, . . . , N − 1}, and can get a new tap-weight vector update
formula

w(t + 1) = w(t) +
N−1∑

i=0

μi (t)
ui (t)ei,D(t)

uTi (t)ui (t)
(9)

with

μi (t) = λi (t)μ1 + (1 − λi (t))μ2 (10)

where μ1 and μ2 have the same meaning as in the CSS-NSAF algorithm.
Before introducing the update of individual subband mixing parameter λi (t), we

define the noise-free a priori subband error

ei,p(t) = uTi (t)[wo − w(t)]. (11)
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Thence, (2) can be modified as

ei,D(t) = ei,p(t) + vi,D(t) (12)

where vi,D(t) denotes the i th subband systemnoise, andσ 2
vi,D

is its variance, calculated

by σ 2
vi,D

= σ 2
v /N [26, 27]. In this paper, σ 2

v is assumed to be given, as it can be readily
evaluated online according to Ni and Li [17], Shin et al. [24], Seo and Park [22].

In order to ensure rapid convergence speed in transient state stage and low steady-
state error in steady-state stage, the subband mixing parameter λi (t) ought to be 1 at
transient state and 0 at steady-state, respectively. Therefore, for updating the subband
mixing parameters λi (t) for i = 0, 1, . . . , N − 1, the following method [32] is used

λi (t) = σ 2
ei,p (t)

σ 2
ei,p (t) + σ 2

vi,D

(13)

where σ 2
ei,p (t) is the variance of the noise-free a priori subband error.

At the starting state, a large noise-free a priori subband error leads to σ 2
ei,p (t) �

σ 2
vi,D

. Nevertheless, there maintains σ 2
ei,p (t) � σ 2

vi,D
at the steady state. Hence, from

(13), we have λi (t) → 1 at the starting state and λi (t) → 0 at the steady state.
In practical applications,σ 2

ei,p (t) can be estimated by the following iterativemethod,
i.e.,

σ 2
ei,p (t) = θσ 2

ei,p (t − 1) + (1 − θ)e2i,p(t) (14)

where θ (0 � θ < 1) denotes the forgetting parameter, which is determined by
θ = 1 − N/(κL), κ ≥ 1 [29].

Here, employ the noniterative shrinkage strategy [4, 30] to estimate ei,p(t) from
ei,D(t)

êi,p(t) = sign(ei,D(t))max(|ei,D(t)| − Ci , 0) (15)

where the sign function is indicated by sign(·), and Ci denotes the threshold value,

calculated through Ci =
√
Qσ 2

vi,D
. Q is an adjustment parameter. Its influence on the

proposed algorithm will be further discussed in simulations in Sect. 5. In short, the
MCSS-NSAF algorithm is summarized in the Algorithm 1.

4 Performance Analysis

First of all, the error of the tap-weight vector is defined as we(t) = wo − w(t).
Subtracting (9) from wo, the following formula is obtained

we(t + 1) = we(t) −
N−1∑

i=0

[λi (t)μ1 + (1 − λi (t))μ2]ui (t)ei,D(t)

uTi (t)ui (t)
. (16)
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Algorithm 1MCSS-NSAF
1: Initialization: w(0) = 0, σ 2

ei,p (0) = 0

2: Parameters: μ1: large step size, μ2: small step size

Ci =
√
Qσ 2

vi,D
, with Q = 3 − 5

θ = 1 − N/(κL), with κ ≥ 1
3: for i ← 0 to N − 1 do

ei,D(t) = di,D(t) − uTi (t)w(t)
êi,p(t) = sign

(
ei,D(t)

)
max

(|ei,D(t)| − Ci , 0
)

σ 2
ei,p (t) = θσ 2

ei,p (t − 1) + (1 − θ)ê2i,p(t)

λi (t) =
σ 2
ei,p (t)

σ 2
ei,p (t) + σ 2

vi,D
μi (t) = λi (t)μ1 + (1 − λi (t))μ2

4: end for

5: w(t + 1) = w(t) + ∑N−1
i=0 μi (t)

ui (t)ei,D(t)

uTi (t)ui (t)

To better analyze the performance of the proposed MCSS-NSAF, a relevant
assumption about the subband mixing parameter λi (t) is introduced [19].

Assumption 1 The subband mixing parameter λi (t) is independent of subband input
signal ui (t), subband error signal ei,D(t) and subband system noise vi,D(t).

When selecting 0 � θ < 1, λi (t) generally changes relatively slowly compared
with ui (t) and ei,D(t). Therefore, the assumption is reasonable. In the following anal-
ysis, λi (t) will be directly replaced by the expected value, in which λi (t) fluctuates
around its average value. This approximation is used in [9, 32] as well.

For calculating E {λi (t)}, an approximate method is used

E {λi (t)} ≈
E

{
e2i,p(t)

}

E
{
e2i,p(t)

}
+ σ 2

vi,D

, i = 0, 1, . . . , N − 1. (17)

4.1 Mean-square Performance Analysis

In this part, the convergence performance of the MCSS-NSAF algorithm is analyzed
utilizing MSD defined by

D(t) = E
{
‖we(t)‖2

}
. (18)

For (16), by pre-multiplying wT
e (t + 1), taking the expectation of both sides, and

then introducing (11), we get

D(t + 1) = D(t) − 2μ1

N−1∑

i=0

E {λi (t)} E
{
ei,p(t)ei,D(t)

uTi (t)ui (t)

}
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− 2μ2

N−1∑

i=0

E {(1 − λi (t))} E
{
ei,p(t)ei,D(t)

uTi (t)ui (t)

}

+μ2
1

N−1∑

i=0

E
{
[λi (t)]2

}
E

{
e2i,D(t)

uTi (t)ui (t)

}

+ 2μ1μ2

N−1∑

i=0

E {[λi (t)(1 − λi (t))]} E
{

e2i,D(t)

uTi (t)ui (t)

}

+μ2
2

N−1∑

i=0

E
{
[1 − λi (t)]2

}
E

{
e2i,D(t)

uTi (t)ui (t)

}
. (19)

From one iteration to the next, the fluctuation of ‖ui (t)‖2 can be presumed to be
negligible as long as the adaptive filter order is sufficiently high [12, 21, 29]. So (19)
can be rewritten as

D(t + 1) = D(t) − 2μ1

N−1∑

i=0

E {λi (t)} E
{
ei,p(t)ei,D(t)

}

E
{
uTi (t)ui (t)

}

− 2μ2

N−1∑

i=0

E {(1 − λi (t))} E
{
ei,p(t)ei,D(t)

}

E
{
uTi (t)ui (t)

}

+ μ2
1

N−1∑

i=0

E
{
[λi (t)]2

} E
{
e2i,D(t)

}

E
{
uTi (t)ui (t)

}

+ 2μ1μ2

N−1∑

i=0

E {[λi (t)(1 − λi (t))]}
E

{
e2i,D(t)

}

E
{
uTi (t)ui (t)

}

+ μ2
2

N−1∑

i=0

E
{
[1 − λi (t)]2

} E
{
e2i,D(t)

}

E
{
uTi (t)ui (t)

} . (20)

Since ei,p(t) � vi,D(t) at initialization, λi (t) is close to one in (13). Moreover,
applying (12) and (17) into (20), and utilizing a general assumption that ei,p(t) and
vi,D(t) are independent of each other [27], we can obtain

D(t + 1) − D(t) = −μ1(2 − μ1)

N−1∑

i=0

(E
{
e2i,p(t)

}
)2

(E
{
e2i,p(t)

}
+ σ 2

vi,D
)E

{
uTi (t)ui (t)

} ≤ 0.

(21)

It is obvious that D(t) is nonincremental when 0 � μ1 < 2, meaning that the
MCSS-NSAF algorithm converges as t increases at the initial state.
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On the other side, when λi (t) tends to zero at the steady state, (20) will be

D(t + 1) − D(t) = −2μ2

N−1∑

i=0

E
{
e2i,p(t)

}

E
{
uTi (t)ui (t)

} + μ2
2

N−1∑

i=0

E
{
e2i,p(t)

}
+ σ 2

vi,D

E
{
uTi (t)ui (t)

} .

(22)

Hence, based on (22), the MCSS-NSAF algorithm converges at the steady state, when
the step size meets the following condition

0 < μ2 ≤
2

∑N−1
i=0

E
{
e2i,p(t)

}

E
{
uTi (t)ui (t)

}

∑N−1
i=0

E
{
e2i,p(t)

}
+ σ 2

vi,D

E
{
uTi (t)ui (t)

}

< 2. (23)

All in all, according to (20)–(23), we learn that the proposed MCSS-NSAF algo-
rithm is provided with the merit of quick convergence speed as μ1 at the initialization
and the advantage of low steady state error as μ2 at the steady-state.

When it is neither in the initialization nor steady state, substituting (10) and (12)
into (20) can get

D(t + 1) − D(t) = −
N−1∑

i=0

μi (t)
2E

{
e2i,p(t)

}
− μi (t)

[
E

{
e2i,p(t)

}
+ σ 2

vi,D

]

E
{
uTi (t)ui (t)

} .

(24)

Based on (17), Eq. (24) is revised as

D(t + 1) − D(t)

= −
N−1∑

i=0

μ1E
{
e2i,p(t)

}
+ μ2σ

2
vi,D

E
{
e2i,p(t)

}
+ σ 2

vi,D

×
(2 − μ1)E

{
e2i,p(t)

}
− μ2σ

2
vi,D

E
{
uTi (t)ui (t)

} .

(25)

From (25), D(t + 1) is not greater than D(t) to guarantee convergence, when the
following condition is fulfilled

E
{
e2i,p(t)

}
≥ μ2

2 − μ1
σ 2

vi,D
, i = 0, 1, . . . , N − 1. (26)

Equation (26) indicates that the proposed algorithm can converge theoretically as long
as the settings of the large and the small step size meet the above condition.
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4.2 Steady-state Performance Analysis

When the MCSS-NSAF runs in the steady-state stage, its MSD D(t) inclines to a
limited constant value. Thus, from (24) we have

2
N−1∑

i=0

μi (∞)
E

{
e2i,p(∞)

}

E
{
uTi (∞)ui (∞)

} =
N−1∑

i=0

μ2
i (∞)

E
{
e2i,p(∞)

}
+ σ 2

vi,D

E
{
uTi (∞)ui (∞)

} . (27)

Further assume that the subband signals are uncorrelated [12, 17]. Accordingly, on
both sides of (27), the i th term of the summations corresponds to each other, obtaining

2μi (∞)
E

{
e2i,p(∞)

}

E
{
uTi (∞)ui (∞)

} = μ2
i (∞)

E
{
e2i,p(∞)

}
+ σ 2

vi,D

E
{
uTi (∞)ui (∞)

} , i = 0, 1, . . . , N − 1.

(28)

From (28), by removing the common terms, we further obtain

2E
{
e2i,p(∞)

}
= μi (∞)

[
E

{
e2i,p(∞)

}
+ σ 2

vi,D

]
, i = 0, 1, . . . , N − 1. (29)

Substituting (10) and (13) into (29), we can get

2E
{
e2i,p(∞)

}
≈ μ1E

{
e2i,p(∞)

}
+ μ2σ

2
vi,D

, i = 0, 1, . . . , N − 1. (30)

Simplifying (30) acquires

E
{
e2i,p(∞)

}
≈ μ2

2 − μ1
σ 2

vi,D
, i = 0, 1, . . . , N − 1. (31)

For loss-free analysis filter groups, the variance of the output signal equals the sum
of the variances of output signals from each subband [20]. Consequently, from (31),
the excess mean-square error (EMSE) about the MCSS-NSAF is

EMSE(∞) =
N−1∑

i=0

E
{
e2i,p(∞)

}
≈ μ2

2 − μ1
σ 2

v . (32)

Equation (32) indicates that the MCSS-NSAF using both smaller μ1 and μ2 can get
a lower EMSE. However, since μ1 affects the convergence rate of the algorithm, it
cannot be set too small. Generally, it is recommended to be set to 1.
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Table 1 Summary of the computational complexity

Algorithms Multiplications Additions Comparisons

NSAF 3L + 2NK + 2 3L + 2NK − N − 2 0

VSSM-NSAF 6L + 2NK + 11 5L + 2NK − N + 2 1

VSS-NSAF 3L + 2NK + 7 3L + 2NK − N + 1 1

SSC-NSAF 3L + 2NK + 9S + 4 3L + 2NK + (N + 1)(S − 1) S2 + 1

CSS-NSAF 3L + 2NK + 9 3L + 2NK − N + 5 2

MCSS-NSAF 3L + 2NK + 9 3L + 2NK − N + 3 1

4.3 Computational Complexity

Table 1 summarizes the computational complexity of the NSAF [10], VSSM-NSAF
[17], VSS-NSAF [29], SSC-NSAF [8], CSS-NSAF [23] and the proposed MCSS-
NSAF algorithms, i.e., the number of multiplications, additions and comparisons for
each iteration, where K denotes the length of the analysis filter and S stands for the
number of step size used in the SSC-NSAF algorithm. As can be seen from Table 1,
under the assumption that σ 2

v is known, the number of multiplications of the MCSS-
NSAF algorithm is comparable to that of the traditional CSS-NSAF, and the number of
additions and comparisons are slightly lower than that of the CSS-NSAF algorithm.
In addition, compared with the SSC-NSAF and the VSSM-NSAF algorithms, the
computational complexity of the MCSS-NSAF algorithm is lower.

5 Simulations

To verify the performance of the MCSS-NSAF, computer simulations on system iden-
tification are implemented in this section. Figure2 illustrates the optimal weight vector
wo with the length of L = 512. All algorithms are assessed utilizing the normalized
MSD (NMSD), 10 log10 [‖we(t)‖22 / ‖wo‖22]. A white Gaussian signal with zero-mean
that passes through a model system �(z) = 1/(1 − 0.9z−1) randomly produces the
colored input signal u(m) [18, 24]. The background noise is obtained by adding the
white Gaussian noise to the system output signal, and its signal-to-noise ratio (SNR) is
set to 20dB or 30dB [25]. Moreover, all simulation results are collected by averaging
50 independent runs to ensure experimental accuracy.

5.1 Parameter Settings

Firstly, before algorithm simulations, some parameter settings need to be determined.
As shown in Fig. 3, different numbers of subbands have different effects on the perfor-
mance of theMCSS-NSAF. It is clear that increasing the number of subbands improves
the convergence speed. The explanation for this phenomenon is that the subband input
signal gets closer to the white signal as the number of subbands increases. However,
this regularity is no longer be evident once N exceeds a threshold, which is 4 in this
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Fig. 2 Impulse response of the acoustic echo path with L = 512

Fig. 3 NMSD curves of the MCSS-NSAF for different N

case. In addition, the computational complexity also increases as N increases. Thus, to
balance the contradiction between convergence speed and computational complexity,
the paper adopts N = 4 in the subsequent simulations.

In the MCSS-NSAF, estimating the noise-free a priori subband error ei,p(t), i.e.,
(15), requires a proper setting of the parameter Q. Figure4 depicts the impact of Q on
the performance of the MCSS-NSAF. It can be seen that the steady-state performance
of the proposed MCSS-NSAF improves with the increase of Q. However, a large
Q slows down the convergence speed. Hence, it is necessary to set a suitable Q. To
obtain an excellent balance between the convergence speed and the steady-state error,
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Fig. 4 NMSD curves of the MCSS-NSAF for different Q

we suggest that the appropriate range of Q is 3 ≤ Q ≤ 5 based on the experiment
results.

5.2 Verification of Analysis

Next, to verify themean-square performance analysis, in Fig. 5,we compare simulation
results and the theoretical values forMSDwith different step size values based on (20).
In Fig. 5a, the large step sizeμ1 = 1.00 and the small step sizeμ2 = 0.002 are adopted.
As a comparison, the large step sizeμ1 = 0.80 is utilized in Fig. 5b.We useμ1 = 1.00,
μ2 = 0.02 in Fig. 5c, whereas in Fig. 5d, we employ μ1 = 0.80, μ2 = 0.02. From
these graphs, it is evident that simulation results are essentially consistent with the
theoretical values. Also, the experimental results are in accord with the expected
phenomenon: the convergence speed depends on μ1, while μ2 affects the steady-state
error.

5.3 Comparison of Algorithms

Finally, the proposed MCSS-NSAF algorithm is compared with the original NSAF
[10], VSSM-NSAF [17], VSS-NSAF [29], SSC-NSAF [8] and CSS-NSAF [23] with
SNR = 20dB and 30dB, respectively, and the results are shown in Fig. 6 and Fig. 7. To
verify the algorithm’s adaptability to system changes, the optimal tap-weight vector
is multiplied by -1 to obtain −wo at the 1.5 × 105th sample for testing the tracking
ability of these algorithms. For experimental fairness, all the algorithms are run under
the scenario of N = 4, and all parameters involved are derived from the corresponding
references.
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Fig. 5 Comparison between simulation results and the theoretical values for MSD with different step size
values based on (20). a μ1 = 1.00, μ2 = 0.002; b μ1 = 0.80, μ2 = 0.002; c μ1 = 1.00, μ2 = 0.02; d
μ1 = 0.80, μ2 = 0.02

FromFig. 6, it can be seen that the algorithmswith improved step sizes, whether it is
VSS (e.g., VSSM-NSAF, VSS-NSAF and SSC-NSAF) or CSS (e.g., CSS-NSAF and
MCSS-NSAF), demonstrate better performance than the original NSAF for steady-
state error and convergence speed. However, with respect to the VSSM-NSAF, the
VSS-NSAF and the SSC-NSAF, theMCSS-NSAF has the lower steady-state error and
the faster tracking capability. Since the parameter μβ of the CSS-NSAF is affected
by the difference value between μ1 and μ2, the CSS-NSAF with two different small
step sizes, μ2 = 0.02 and 0.002, are tested. As can be observed, the MCSS-NSAF
also outperforms the CSS-NSAF in terms of tracking ability, convergence speed and
steady-state error.

The comparisons of these NSAF-related algorithms at SNR = 30dB are shown in
Fig. 7. It can be observed that the MCSS-NSAF is still superior to the comparative
algorithms in tracking capability, convergence speed and steady-state error. Further-
more, by comparing Fig. 7 with Fig. 6, one can see that the steady-state error of these
algorithms decreases with increasing SNR.
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Fig. 6 NMSD learning curves of NSAF [10], VSSM-NSAF [17], VSS-NSAF [29], SSC-NSAF [8], CSS-
NSAF [23] and the proposed MCSS-NSAF with SNR=20dB. NSAF: μ1 = 1.00 and μ2 = 0.002; VSSM-
NSAF: κ = 6; VSS-NSAF: κ = 1, λ = 4; SSC-NSAF: κ = 5, q = 2, k = 2, S = 3; CSS-NSAF:μβ = 20;
the proposed MCSS-NSAF: κ = 6, Q = 4

Fig. 7 NMSD learning curves of NSAF [10], VSSM-NSAF [17], VSS-NSAF [29], SSC-NSAF [8], CSS-
NSAF [23] and the proposed MCSS-NSAF with SNR=30dB. NSAF: μ1 = 1.00 and μ2 = 0.002; VSSM-
NSAF: κ = 6; VSS-NSAF: κ = 1, λ = 4; SSC-NSAF: κ = 5, q = 2, k = 2, S = 3; CSS-NSAF:
μβ = 100; the proposed MCSS-NSAF: κ = 6, Q = 4



1972 Circuits, Systems, and Signal Processing (2024) 43:1957–1973

6 Conclusion

In this study, we devise the MCSS-NSAF that designs an individual combined-step-
size for each subband. The multi-combined-step-size is obtained by combining a large
step size and a small one through a subband mixing parameter, which can be designed
in view of the variance of the noise-free a priori subband error signal. In addition,
by using a noniterative shrinkage strategy, the noise-free a priori subband error is
recovered from the noisy subband error. Compared with the original NSAF, VSSM-
NSAF, VSS-NSAF and CSS-NSAF, the MCSS-NSAF algorithm not only has quicker
convergence speed and tracking capability, but also presents lower steady-state error.
To further improve the performance of theMCSS-NSAF algorithm,wewill investigate
the effect of the sub-sampling period on the proposed algorithm in future research.
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