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Abstract
This paper studies the stability criterion and controller design for time-delay switched
systems with input saturation. The main contributions of this paper are as follows:
(1) Based on constructing the Lyapunov–Krasovskii functional (LKF) with the triple
integral term and making full use of the delay lower bound information, the sufficient
conditions for the exponential stability of the system are given. (2) A state feedback
controller is designed for the input-saturated system. (3) The symmetric delay rate
problem is considered to accurately define the derivative of LKF, which reduces the
conservatism of the system. By reducing conservatism, that is, the time-delay upper
bound is raised, allowing for a wider range of time-delay signals. Finally, the effec-
tiveness of the proposed method is verified by the numerical examples.

Keywords Input saturation · Time-delay switched system · Exponential stability ·
Average dwell time

1 Introduction

In scientific and engineering fields, such asmechanical rotation, flight control systems,
and high-tech fields, time delay often occurs, which in most cases causes the degra-
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dation of the system performance and even destabilizes the system. In recent decades,
the time-delay system stability has been extensively studied and has attracted a lot of
attentions from the researchers [1, 4, 20, 31]. Additionally, switched system is one of
the current research hotspots. In Cai et al. [2], the model-based event-triggered control
for uncertain discrete-time switched systems composed of stable and unstable subsys-
tems was studied. In Zhang et al. [32], a low-cost adaptive pre-designed time tracking
control strategy was proposed for nonlinear switched systems with input quantization
and unknown inter-class hysteresis delay. In Swapnil and Nikita [16], the dynamics of
a bimodal planar linear switched system with Hurwitz stable and unstable subsystems
was studied. In the current study, the switched non-time-delay systems or time-delay
non-switched systems are relatively simple, while the switched systems with time
delay are more complicated [21]. It is very important to find the maximum bound of
time delay to ensure the asymptotic stability of the system. The study on the time-delay
switched systems has attracted great interest [3, 8, 9, 11, 29, 33].

On theother hand, due to the physical limitations of the engineering equipment in the
actual system, the input saturation occurs frequently. Therefore, it is great theoretical
and practical importance to design the controller to make the system stable when the
input saturation occurs [22]. In recent decades, there have been many research results
on the switched systems with input saturation [12, 23, 24]. In Shang and Jingcheng
[17], the adaptive event-triggered robust optimal control method for discrete-time
switched systems with input saturation and external disturbances was studied. In Wu
and Zhang [25], a non-fragile event-triggered control method for positive switched
systems with/without input saturation was proposed. In Jiang et al. [7], an adaptive
neural network control scheme for a class of randomly switched systems with input
saturation was studied. In Wang et al. [26], the exponential stability of the switched
systems with input saturation and parameter uncertainty was studied. In Marc and
Sophie [13], the anti-windup control for the discrete-time switched systems with input
saturation was studied.

Due to the inherent conservativeness of the Lyapunov–Krasovskii functional (LKF)
method, the researchers have been trying to find ways to reduce the conservativeness
of the stability criterion. In Gu [5], an approximation to the full LKF was achieved
by decomposing the integration interval and restricting arbitrary matrix functions to
sectional-continuous functions. In Peet and Papachristodoulou [14], the stability anal-
ysis was transformed into a sum-of-squares problem by parametrizing arbitrary matrix
functions into higher-order polynomials and using polynomial relaxation techniques.
In Seuret and Gouaisbaut [18], time-delay states were projected onto Legendre poly-
nomials to achieve exact bounding of the cross terms. In Han [6] and Yue et al. [30],
by decomposing the time-delay variation interval, the conservativeness of the corre-
sponding linearmatrix inequality (LMI) conditions can be reduced. The above stability
analysis methods use the time-delay variation range and the upper bound on the rate
of delay change. By using these two kinds of information and introducing the triple
integral term into the design of LKF, the solution space will also be enlarged, which
can further reduce the conservatism of the stability analysis.

In this paper, the stability criterion and controller design for the time-delay switched
systems with input saturation is investigated based on an improved LKF. Based on
constructing LKF with triple integral term and making full use of delay lower bound
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information, the sufficient conditions for exponential stability of the system are given.
A state feedback controller is designed for the input-saturated switched system. The
symmetric delay rate problem is considered to accurately define the derivative of LKF,
which reduces the conservatism of the system. The inverse convex method is also
introduced, which can directly deal with the integration of inversely weighted convex
combinations to effectively reduce the number of decision variables and obtain a less
conservative stability criterion. Finally, the effectiveness of the proposed method is
verified by the numerical examples .

NotationsWe have used some standard symbols in this paper.Rm×n represents the
m ×n dimensional real matrix, andRn represents the n-dimensional Euclidean space.
Let Q = {1, 2, ..., 2m}. MT and M−1 show the transpose and inverse of the matrix
M , respectively. In represents the n-dimensional identity matrix. M > 0 and M < 0
represent the positive definite and negative definite symmetric matrices, respectively.
ẋ(t) is the derivative of the function x(t) with respect to time t . λmax(·) and λmin(·)
denote the matrix minimum and maximum eigenvalues, respectively, and ∗ denotes
the symmetric terms in a symmetric matrix.

2 Problem Formulation

Consider the following time-delay switched system with input saturation:

{
ẋ(t) = Aσ x(t) + Cσ x(t − d(t)) + Bσ sat(u(t))

x(θ) = ϕ(θ), θ ∈ [−h2, 0] (1)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m is the system input, and ϕ(θ) is a
continuous initial function. σ(k) : [0, ∞) → M = {1, 2, . . . , M} denotes the
switched signal, M denotes the modal number. And

sat(u(t)) = [sat(u1(t)), sat(u1(t)), · · · , sat(um(t))]T

with −1 ≤ sat(ui (t)) ≤ 1. Aσ , Bσ and Cσ are constant matrices with appropriate
dimensions. The time-varying delay d(t) satisfies

0 ≤ h1 ≤ d(t) ≤ h2, −dmax < ḋ(t) ≤ dmax < 1

where h1, h2 and dmax are the positive constants.

Lemma 1 [19] (Jensen’s integral inequality) Let x be a differentiable derivative on
[α, β] → R

n. For a positive definite matrix R ∈ R
m×n, the following inequalities

hold
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(β − α)

∫ β

α
xT(s)Rx(s)ds ≥

(∫ β

α
x(s)ds

)T

R

(∫ β

α
x(s)ds

)

(β − α)2

2

∫ β

α

∫ β

θ
xT(s)Rx(s)dsdθ ≥

(∫ β

α

∫ β

θ
x(s)dsdθ

)T

R

(∫ β

α

∫ β

θ
x(s)dsdθ

)

where α and β are the positive constants.

Lemma 2 [15] Let f1, f2, . . . , fN : Rm �→ R have the positive values in an open
subset D of Rm, and then, the fi mutually convex combination on D satisfies

min
αi >0,

∑
i

αi =1

∑
i

1

αi
fi (t) =

∑
i

fi (t) + max
gi, j (t)

∑
i 	= j

gi, j (t)

then {
gi, j : Rm �→ R. gi, j (t)

�= g j,i (t).

[
fi (t) gi, j (t)

gi, j (t) f j (t)

]
≥ 0

}

Remark 1 Lemma 2 is the inverse convex method, which can directly deal with the
integration of inversely weighted convex combinations to effectively reduce the num-
ber of decision variables.

Lemma 3 [34] There are 2m diagonal matrices Di ∈ R
m×m with elements 1 or 0,

j ∈ Q, and D−
j = I − D j . The scalars η j satisfy 0 ≤ η j ≤ 1 and

∑2m

i=1 η j = 1, and
it can be concluded that

2m∑
j=1

η j (D j + D−
j ) = I , j ∈ Q

And a bounded set is defined as

L(H) = {x(t) ∈ R
n : |hT

s x(t)| ≤ 1, s ∈ {1, 2, ..., m}}

where hT
s is the s-th row of H ∈ R

m×n. For x(t) ∈ R
n, K ∈ R

m×n, if x(t) ∈ L(H),
then

sat(K x(t)) ∈ co{D j K x(t) + D−
j H x(t), j ∈ Q}

where co{·} denotes the convex hull.

Definition 1 [27] If there exist positive constants c and λ such that for any initial
condition x(0), the solution of the system satisfies

‖x(t)‖ ≤ ce−λ(t−t0) ‖x(0)‖ , ∀t ≥ t0
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and then the system is said to be exponentially stable with the exponential decay rate
λ.

Problem 1 Consider system (1) with u = 0, a novel LKF is designed for the time-
delay switched system. A less conservative stability criterion is obtained; that is, the
time-delay upper bound is raised.

Problem 2 Consider system (1), a novel LKF is designed for the time-delay switched
system with input saturation. A less conservative stability criterion is obtained; that is,
the time-delay upper bound is raised. A state feedback controller is designed to ensure
the exponential stability of the closed-loop system.

3 Main Results

Firstly, the stability of system (1) with u = 0 is discussed and sufficient conditions
for the exponential stability of the system are given.

Theorem 1 For given constants h1 > 0, h2 > 0, α > 0, μ > 1, if there exist
matrices Pi > 0, R ji > 0, D ji > 0, Q ji > 0, S ji > 0, Zi > 0 of appropriate
dimensions satisfying


i =

⎡
⎢⎢⎢⎢⎣

�11 �12 �13 �14 �15
∗ �22 �23 �24 �25
∗ ∗ �33 �34 �35
∗ ∗ ∗ �44 �45
∗ ∗ ∗ ∗ �55

⎤
⎥⎥⎥⎥⎦ < 0 (2)

[
R1i S1i

∗ R1i

]
> 0, ( j = 1, 2) (3)

Pi ≤ μPj , Q1i ≤ μQ1 j , Q2i ≤ μQ2 j , R1i ≤ μR1 j , R2i ≤ μR2 j ,

D1i ≤ μD1 j , D2i ≤ μD2 j , Zi ≤ μZ j
(4)

And the average dwell time τa satisfies

τa > τa
∗ = lnμ

α

where

�11 = 2αPi + Pi Ai + AT
i Pi + Q1i + Q2i + AT

i Ni Ai + h22Zi − e−2αh1 R1i ,

�12 = Pi Ci + e−2αh1 R1i − e−2αh1 S1i + AT
i Ni Ci , �13 = e−2αh1 S1i , �14 = 0,

�15 = h2Zi , �22 = CT
i Ni Ci + 2e−2αh1 S1i − 2e−2αh1 R1i + 2e−2αh2 S2i − 2e−2αh2 R2i

−(1 − dmax)e
−2αh2 D1i + (1 + dmax)e

−2αh2 D2i , �23 = −e−2αh1 S1i + e−2αh1 R1i ,

�24 = −e−2αh2 S2i + e−2αh2 R2i , �25 = 0, �33 = −e−2αh1 Q1i − e−2αh1 R1i

−e−2αh2 R2i + e−2αh1 D1i , �34 = e−2αh2 S2i , �35 = 0,

�44 = −e−2αh2 R2i − e−2αh2 Q2i − e−2αh2 D2i , �45 = 0, �55 = −Zi ,
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Ni = h21R1i + h212R2i + h42
4

Zi , a = min λmin(Pi ), λ = 1

2
(α − lnμ

τa
),

b = max λmax(Pi ) + h1 max λmax(Q1i ) + h2 max λmax(Q2i ) + h1 max λmax(D1i ) +

h2 max λmax(D2i ) + h21
2

max λmax(R1i ) + h22
2

max λmax(R2i ), h12 = h2 − h1.

Then, the system (1) with u = 0 is exponentially stable.

Proof We choose the following LKF

Vσ(t)(t) = V1σ(t)(t) + V2σ(t)(t) + V3σ(t)(t) + V4σ(t)(t) + V5σ(t)(t) (5)

where

V1σ(t)(t) = xT(t)Pσ(t)x(t) (6)

V2σ(t)(t) = ∫ t
t−h1

xT(s)e2α(s−t) Q1σ(t)x(s)ds + ∫ t
t−h2

xT(s)e2α(s−t) Q2σ(t)x(s)ds (7)

V3σ(t)(t) = ∫ t−h1
t−d(t) xT(s)e2α(s−t) D1σ(t)x(s)ds + ∫ t−d(t)

t−h2
xT(s)e2α(s−t) D2σ(t)x(s)ds (8)

V4σ(t)(t) = h1
∫ 0
−h1

∫ t
t+θ ẋT(s)e2α(s−t) R1σ(t) ẋ(s)dsdθ

+h12
∫ −h1−h2

∫ t
t+θ ẋT(s)e2α(s−t) R2σ(t) ẋ(s)dsdθ

(9)

and

V5σ(t)(t) = h22
2

∫ 0
−h2

∫ 0
θ

∫ t
t+λ

ẋT(s)e2α(s−t)Zσ(t) ẋ(s)dsdλdθ (10)

The derivative of (5)–(10) is

V̇i (t) = V̇1i (t) + V̇2i (t) + V̇3i (t) + V̇4i (t) + V̇5i (t) (11)

where

V̇1i (t) = 2xT(t)Pi ẋ(t) (12)

V̇2i (t) = −2αV2i (t) + xT(t)Q1i x(t) − xT(t − h1)e
−2αh1 Q1i x(t − h1)

+xT(t)Q2i x(t) − xT(t − h2)e
−2αh2 Q2i x(t − h2)

(13)

V̇3i (t) = −2αV3i (t) − (1 − ḋ(t))xT(t − d(t))e−2αd(t)D1i x(t − d(t))
+xT(t − h1)e

−2αh1D1i x(t − h1) − xT(t − h2)e
−2αh2D2i x(t − h2)

+(1 − ḋ(t))xT(t − d(t))e−2αd(t)D2i x(t − d(t))
(14)

V̇4i (t) = −2αV4i (t) + h21 ẋT(t)R1i ẋ(t) − h1
∫

ẋT(t)R1i ẋ(t)
−e−2αh1 ẋT(t − h1)R1i ẋ(t − h1)dt + h212 ẋT(t)R2i ẋ(t)
−h12

∫
ẋT(t − h1)R2i ẋ(t − h1) − e−2αh2 ẋT(t − h2)R2i ẋ(t − h2)dt

(15)

and
V̇5i (t) = −2αV5i (t) + h42

4 ẋT(t)Zi ẋ(t) − h22
2

∫ 0
−h2

∫ t
t+θ ẋT(s)e2α(s−t) Zi ẋ(s)dsdθ (16)
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Then, it can be derived

V̇i (t) ≤ 2xT(t)Pi ẋ(t)
−2αV2i (t) + xT(t)Q1i x(t) − xT(t − h1)e−2αh1 Q1i x(t − h1)

+xT(t)Q2i x(t) − xT(t − h2)e−2αh2 Q2i x(t − h2)

−2αV3i (t) + xT(t − h1)e−2αh1D1i x(t − h1)

−(1 − dmax)xT(t − d(t))e−2αh2D1i x(t − d(t))
−xT(t − h2)e−2αh2D2i x(t − h2)

+(1 + dmax)xT(t − d(t))e−2αh2D2i x(t − d(t))
−2αV4i (t) + h2

1 ẋT(t)R1i ẋ(t) − h1
∫ t

t−h1
ẋT(s)e−2αh1 R1i ẋ(s)ds

+h2
12 ẋT(t)R2i ẋ(t) − h12

∫ t−h1
t−h2

ẋT(s)e−2αh2 R2i ẋ(s)ds

−2αV5i (t) + h42
4 ẋT(t)Zi ẋ(t) − h22

2

∫ 0
−h2

∫ t
t+θ

ẋT(s)Zi ẋ(s)dsdθ

(17)

To make the stability criterion less conservative, Lemmas 1 and 2 are used to deal
with the integral term,

−h1
∫ t

t−h1
ẋT(s)e−2αh1 R1i ẋ(s)ds

= −h1
∫ t

t−d(t) ẋT(s)e−2αh1 R1i ẋ(s)ds − h1
∫ t−d(t)

t−h1
ẋT(s)e−2αh1 R1i ẋ(s)ds

≤ −e−2αh1
(

h1
d(t) (x(t) − x(t − d(t)))TR1i (x(t) − x(t − d(t)))

+ h1
h1−d(t) (x(t − d(t)) − x(t − h1))

TR1i (x(t − d(t)) − x(t − h1))
)

= −e−2αh1

[
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]T [ h1
d(t) R1i 0

0 h1
h1−d(t) R1i

][
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]

≤ −e−2αh1

[
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]T [
R1i S1i
∗ R1i

] [
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]

In the same way,

−h12
∫ t−h1

t−h2
ẋT(s)e−2αh2 R2i ẋ(s)ds

≤ −e−2αh2

[
x(t − h1) − x(t − d(t))
x(t − d(t)) − x(t − h2)

]T [
R2i S2i

∗ R2i

] [
x(t − h1) − x(t − d(t))
x(t − d(t)) − x(t − h2)

]

For the double integral, using Lemma 1, we can obtain

− h22
2

∫ 0
−h2

∫ t
t+θ

ẋT(s)Zi ẋ(s)dsdθ ≤ − ∫ 0
−h2

∫ t
t+θ

ẋT(s)dsdθ Zi
∫ 0
−h2

∫ t
t+θ

ẋT(s)dsdθ

≤ −(h2x(t) − ∫ t
t−h2

x(s)ds)TZi (h2x(t) − ∫ t
t−h2

x(s)ds)

By the above derivation, it can be concluded that

V̇i (t) + 2αVi (t) ≤ 2xT(t)Pi ẋ(t) + 2αxT(t)Pi x(t)

+ xT(t)Q1i x(t) − xT(t − h1)e
−2αh1 Q1i x(t − h1)

+ xT(t)Q2i x(t) − xT(t − h2)e
−2αh2 Q2i x(t − h2)

+ xT(t − h1)e
−2αh1D1i x(t − h1)
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− (1 − dmax)xT(t − d(t))e−2αh2D1i x(t − d(t))

− xT(t − h2)e
−2αh2D2i x(t − h2)

+ (1 + dmax)xT(t − d(t))e−2αh2D2i x(t − d(t))

− e−2αh1

[
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]T [
R1i S1i

∗ R1i

] [
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]

− e−2αh2

[
x(t − h1) − x(t − d(t))
x(t − d(t)) − x(t − h2)

]T [
R2i S2i

∗ R2i

] [
x(t − h1) − x(t − d(t))
x(t − d(t)) − x(t − h2)

]

+ ẋT(t)(
h4
2

4
Zi + h2

1R1i + h2
12R2i )ẋ(t)

− (h2x(t) −
∫ t

t−h2
x(s)ds)TZi (h2x(t) −

∫ t

t−h2
x(s)ds)

Then, it can be derived

V̇i (t) + 2αVi (t) ≤ ξT
iξ (18)

where

ξT = (x(t), x(t − d(t)), x(t − h1), x(t − h2),

∫ t

t−h2
x(s)ds)

When 
i < 0, we have V̇i (t) + 2αVi (t) < 0 which means

Vσ(t)(x(t)) ≤ Vσ(t)(x(tk))e
−2α(t−tk ), t ∈ [tk, tk+1) (19)

where tk denotes the switched time, t0 < t1 < t2 < · · · tk < tk+1 < · · · .
According to condition (4), we can obtain

Vσ(tk )(x(tk)) ≤ μVσ(tk− )(x(tk−))

where tk− denotes the left limit of tk .
Let k = Nσ(t0,t) ≤ t − t0/Tα , we have

V (x(t)) ≤ e−2α(t−tk )μVσ(tk−)(x(tk−)) ≤ . . . ≤ e−2α(t−t0)μk Vσ(t0)(x(t0))
≤ e−(2α−lnμ/Tα)(t−t0)Vσ(t0)(x(t0))

According to Definition 1, we can obtain

‖x(t)‖ ≤
√

a

b
e−λ(t−t0) ‖x(0)‖ (20)

Therefore, the system (1) with u = 0 is exponentially stable. �
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Design the state feedback controller u(t) = Kσ x(t), where Kσ denotes the gain of
the controller. According to Lemma 3, it follows that

sat(u) = sat(Kσ x) =
2m∑
j=1

η j (D j Kσ + D−
j Hσ )x(t)

Then, the following closed-loop system can be obtained

⎧⎪⎨
⎪⎩

ẋ(t) = Aσ x(t) + Bσ

2m∑
j=1

η j (D j Kσ + D−
j Hσ )x(t) + Cσ x(t − d(t))

x(θ) = ϕ(θ), θ ∈ [−h2, 0]
(21)

Now, we give the sufficient conditions for the exponential stability of the time-delay
switched system (21) as follows

Theorem 2 For given constants h1 > 0, h2 > 0, α > 0, μ > 1, if there exist
matrices Pi > 0, R ji > 0, R̃2i > 0, D ji > 0, Q ji > 0, S ji > 0, Zi > 0 of
appropriate dimensions satisfying


̄i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄11 �̄12 �̄13 �̄14 �̄15 Xi ÃT
i Xi ÃT

i Xi ÃT
i∗ �̄22 �̄23 �̄24 �̄25 Xi Ci

T Xi Ci
T Xi Ci

T

∗ ∗ �̄33 �̄34 �̄35 0 0 0
∗ ∗ ∗ �̄44 �̄45 0 0 0
∗ ∗ ∗ ∗ �̄55 0 0 0
∗ ∗ ∗ ∗ ∗ −R̂1i 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R̂2i 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ẑi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (22)

[
R ji S ji

∗ R ji

]
> 0, ( j = 1, 2) (23)[

R̃ ji Xi

∗ R̄ ji

]
> 0, ( j = 1, 2) (24)

[
Z̃i Xi

∗ Z̄i

]
> 0 (25)

Pi ≤ μPj , Q1i ≤ μQ1 j , Q2i ≤ μQ2 j , R1i ≤ μR1 j , R2i ≤ μR2 j ,

D1i ≤ μD1 j , D2i ≤ μD2 j , Zi ≤ μZ j
(26)

And the average dwell time τa satisfies

τa > τa
∗ = lnμ

α

where
�̄11 = 2αXi + Ai Xi + Xi AT

i + Q̄1i + Q̄2i + Bi Yi + YT
i BT

i + h22 Z̄i − e−2αh1 R̄1i ,

�̄12 = Ci Xi + e−2αh1 R̄1i − e−2αh1 S̄1i , �̄13 = e−2αh1 S̄1i , �̄14 = 0, �̄15 = h2 Z̄i ,
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�̄22 = 2e−2αh1 S̄1i − 2e−2αh1 R̄1i + 2e−2αh2 S̄2i − 2e−2αh2 R̄2i − (1 − dmax)e
−2αh2 D̄1i

+(1 + dmax)e
−2αh2 D̄2i , �̄23 = −e−2αh1 S̄1i + e−2αh1 R̄1i , �̄24 = −e−2αh2 S̄2i

+e−2αh2 R̄2i , �̄25 = 0, �̄33 = −e−2αh1 Q̄1i − e−2αh1 R̄1i − e−2αh2 R̄2i + e−2αh1 D̄1i ,

�̄34 = e−2αh2 S̄2i , �̄35 = 0, �̄44 = −e−2αh2 R̄2i − e−2αh2 Q̄2i − e−2αh2 D̄2i , �̄45 = 0,

�̄55 = −Z̄i , �i =
2m∑
j=1

η j (D j Ki + D−
j Hi ), Xi = Pi

−1, Yi = �i Xi

Q̄ ji = Xi Q ji Xi , R̄ j i = Xi R ji Xi , Z̄i = Xi Zi Xi , S̄ j i = Xi S ji Xi , D̄ ji = Xi D ji Xi

R̂1i = h−2
1 R̃1i , R̂2i = h−2

12 R̃2i , Ẑi = 4 ∗ h−4
2 Z̃i .

b = max λmax(Pi ) + h1 max λmax(Q1i ) + h2 max λmax(Q2i ) + h1 max λmax(D1i )

+h2 max λmax(D2i ) + h21
2

max λmax(R1i ) + h22
2

max λmax(R2i )

a = min λmin(Pi ), λ = 1

2
(α − lnμ

τa
).

Then, the closed-loop system (21) is exponentially stable.

Proof We choose the following LKF

Vσ(t)(t) = V1σ(t)(t) + V2σ(t)(t) + V3σ(t)(t) + V4σ(t)(t) + V5σ(t)(t) (27)

where

V1σ(t)(t) = xT(t)Pσ(t)x(t) (28)

V2σ(t)(t) = ∫ t
t−h1

xT(s)e2α(s−t) Q1σ(t)x(s)ds + ∫ t
t−h2

xT(s)e2α(s−t) Q2σ(t)x(s)ds (29)

V3σ(t)(t) = ∫ t−h1
t−d(t) xT(s)e2α(s−t) D1σ(t)x(s)ds + ∫ t−d(t)

t−h2
xT(s)e2α(s−t) D2σ(t)x(s)ds (30)

V4σ(t)(t) = h1
∫ 0
−h1

∫ t
t+θ ẋT(s)e2α(s−t) R1σ(t) ẋ(s)dsdθ

+h12
∫ −h1−h2

∫ t
t+θ ẋT(s)e2α(s−t) R2σ(t) ẋ(s)dsdθ

(31)

and

V5σ(t)(t) = h22
2

∫ 0
−h2

∫ 0
θ

∫ t
t+λ

ẋT(s)e2α(s−t)Zσ(t) ẋ(s)dsdλdθ (32)

The derivative of (27)–(32) is

V̇i (t) = V̇1i (t) + V̇2i (t) + V̇3i (t) + V̇4i (t) + V̇5i (t) (33)

where

V̇1i (t) = 2xT(t)Pi ẋ(t) (34)

V̇2i (t) = −2αV2i (t) + xT(t)Q1i x(t) − xT(t − h1)e
−2αh1 Q1i x(t − h1)

+xT(t)Q2i x(t) − xT(t − h2)e
−2αh2 Q2i x(t − h2)

(35)

V̇3i (t) = −2αV3i (t) − (1 − ḋ(t))xT(t − d(t))e−2αd(t)D1i x(t − d(t))
+xT(t − h1)e

−2αh1D1i x(t − h1) − xT(t − h2)e
−2αh2D2i x(t − h2)

+(1 − ḋ(t))xT(t − d(t))e−2αd(t)D2i x(t − d(t))
(36)
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V̇4i (t) = −2αV4i (t) + h21 ẋT(t)R1i ẋ(t) − h1
∫

ẋT(t)R1i ẋ(t)
−e−2αh1 ẋT(t − h1)R1i ẋ(t − h1)dt + h212 ẋT(t)R2i ẋ(t)
−h12

∫
ẋT(t − h1)R2i ẋ(t − h1) − e−2αh2 ẋT(t − h2)R2i ẋ(t − h2)dt

(37)

and

V̇5i (t) = −2αV5i (t) + h42
4 ẋT(t)Zi ẋ(t) − h22

2

∫ 0
−h2

∫ t
t+θ

ẋT(s)e2α(s−t)Zi ẋ(s)dsdθ

(38)

Then, it can be derived

V̇i (t) ≤ 2xT(t)Pi ẋ(t)
−2αV2i (t) + xT(t)Q1i x(t) − xT(t − h1)e−2αh1 Q1i x(t − h1)

+xT(t)Q2i x(t) − xT(t − h2)e−2αh2 Q2i x(t − h2)

−2αV3i (t) + xT(t − h1)e−2αh1D1i x(t − h1)

−(1 − dmax)xT(t − d(t))e−2αh2D1i x(t − d(t))
−xT(t − h2)e−2αh2D2i x(t − h2)

+(1 + dmax)xT(t − d(t))e−2αh2D2i x(t − d(t))
−2αV4i (t) + h2

1 ẋT(t)R1i ẋ(t) − h1
∫ t

t−h1
ẋT(s)e−2αh1 R1i ẋ(s)ds

+h2
12 ẋT(t)R2i ẋ(t) − h12

∫ t−h1
t−h2

ẋT(s)e−2αh2 R2i ẋ(s)ds

−2αV5i (t) + h42
4 ẋT(t)Zi ẋ(t) − h22

2

∫ 0
−h2

∫ t
t+θ

ẋT(s)Zi ẋ(s)dsdθ

(39)

To make the stability criterion less conservative, Lemmas 1 and 2 are used to deal
with the integral term,

−h1
∫ t

t−h1
ẋT(s)e−2αh1 R1i ẋ(s)ds

= −h1
∫ t

t−d(t) ẋT(s)e−2αh1 R1i ẋ(s)ds − h1
∫ t−d(t)

t−h1
ẋT(s)e−2αh1 R1i ẋ(s)ds

≤ −e−2αh1
(

h1
d(t) (x(t) − x(t − d(t)))TR1i (x(t) − x(t − d(t)))

+ h1
h1−d(t) (x(t − d(t)) − x(t − h1))

TR1i (x(t − d(t)) − x(t − h1))
)

= −e−2αh1

[
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]T [ h1
d(t) R1i 0

0 h1
h1−d(t) R1i

][
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]

≤ −e−2αh1

[
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]T [
R1i S1i
∗ R1i

] [
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]

In the same way, we have

−h12
∫ t−h1

t−h2
ẋT(s)e−2αh2 R2i ẋ(s)ds

≤ −e−2αh2

[
x(t − h1) − x(t − d(t))
x(t − d(t)) − x(t − h2)

]T [
R2i S2i

∗ R2i

] [
x(t − h1) − x(t − d(t))
x(t − d(t)) − x(t − h2)

]

For the double integral, using Lemma 1, we can obtain

− h22
2

∫ 0
−h2

∫ t
t+θ

ẋT(s)Zi ẋ(s)dsdθ ≤ − ∫ 0
−h2

∫ t
t+θ

ẋT(s)dsdθ Zi
∫ 0
−h2

∫ t
t+θ

ẋT(s)dsdθ

≤ −(h2x(t) − ∫ t
t−h2

x(s)ds)TZi (h2x(t) − ∫ t
t−h2

x(s)ds)
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By the above derivation, it can be concluded that

V̇i (t) + 2αVi (t) ≤ 2xT(t)Pi ẋ(t) + 2αxT(t)Pi x(t)
+xT(t)Q1i x(t) − xT(t − h1)e−2αh1 Q1i x(t − h1)

+xT(t)Q2i x(t) − xT(t − h2)e−2αh2 Q2i x(t − h2)

+xT(t − h1)e−2αh1D1i x(t − h1)

−(1 − dmax)xT(t − d(t))e−2αh2D1i x(t − d(t))
−xT(t − h2)e−2αh2D2i x(t − h2)

+(1 + dmax)xT(t − d(t))e−2αh2D2i x(t − d(t))

−e−2αh1

[
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]T [
R1i S1i

∗ R1i

] [
x(t) − x(t − d(t))

x(t − d(t)) − x(t − h1)

]

−e−2αh2

[
x(t − h1) − x(t − d(t))
x(t − d(t)) − x(t − h2)

]T [
R2i S2i

∗ R2i

] [
x(t − h1) − x(t − d(t))
x(t − d(t)) − x(t − h2)

]
+ẋT(t)(

h42
4 Zi + h2

1R1i + h2
12R2i )ẋ(t)

−(h2x(t) − ∫ t
t−h2

x(s)ds)TZi (h2x(t) − ∫ t
t−h2

x(s)ds)

Then, it can be derived

V̇i (t) + 2αVi (t) ≤ ξT
′
iξ


′
i =

⎡
⎢⎢⎢⎢⎣

�′
11 �′

12 �13 �14 �15
∗ �′

22 �23 �24 �25
∗ ∗ �33 �34 �35
∗ ∗ ∗ �44 �45
∗ ∗ ∗ ∗ �55

⎤
⎥⎥⎥⎥⎦ < 0

(40)

where

�′
11 = 2αPi + Pi Ãi + ÃT

i Pi + Q1i + Q2i + ÃT
i Ni Ãi + h2

2Zi − e−2αh1 R1i ,

�′
12 = Pi Ci + e−2αh1 R1i − e−2αh1 S1i + ÃT

i Ni Ci ,

�′
22 = CT

i Ni Ci + 2e−2αh1 S1i − 2e−2αh1 R1i + 2e−2αh2 S2i − 2e−2αh2 R2i ,

�i =
2m∑
j=1

η j (D j Ki + D−
j Hi ), Ãi = Ai + Bi�i ,

Ni = h2
1R1i + h2

12R2i + h4
2

4
Zi ,

ξT = (x(t), x(t − d(t)), x(t − h1), x(t − h2),

∫ t

t−h2
x(s)ds).
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Using the Schur complement lemma, 
′
i < 0 equals


′
i =

⎡
⎢⎢⎢⎢⎣

�̂11 �̂12 �13 �14 �15

∗ �̂22 �23 �24 �25
∗ ∗ �33 �34 �35
∗ ∗ ∗ �44 �45
∗ ∗ ∗ ∗ �55

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

ÃT
i Ni Ãi ÃT

i Ni Ci 0 0 0
∗ CT

i Ni Ci 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

�̂11 �̂12 �13 �14 �15

∗ �̂22 �23 �24 �25
∗ ∗ �33 �34 �35
∗ ∗ ∗ �44 �45
∗ ∗ ∗ ∗ �55

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

ÃT
i Pi ÃT

i Pi ÃT
i Pi

CT
i Pi CT

i Pi CT
i Pi

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

×
⎡
⎣ H1 0 0

∗ H12 0
∗ ∗ H2

⎤
⎦

−1 ⎡
⎣ Pi Ãi Pi Ci 0 0 0

Pi Ãi Pi Ci 0 0 0
Pi Ãi Pi Ci 0 0 0

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂11 �̂12 �13 �14 �15 ÃT
i Pi ÃT

i Pi ÃT
i Pi

∗ �̂22 �23 �24 �25 CT
i Pi CT

i Pi CT
i Pi

∗ ∗ �33 �34 �35 0 0 0
∗ ∗ ∗ �44 �45 0 0 0
∗ ∗ ∗ ∗ �55 0 0 0
∗ ∗ ∗ ∗ ∗ H1 0 0
∗ ∗ ∗ ∗ ∗ ∗ H12 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ H2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (41)

where

�̂11 = 2αPi + Pi Ai + AT
i Pi + Q1i + Q2i + Pi Bi �i + �T

i BT
i Pi + h2

2Zi − e−2αh1 R1i ,

�̂12 = Pi Ci + e−2αh1 R1i − e−2αh1 S1i , �13 = e−2αh1 S1i , �14 = 0, �15 = h2Zi ,

�̂22 = 2e−2αh1 S1i − 2e−2αh1 R1i + 2e−2αh2 S2i − 2e−2αh2 R2i − (1 − dmax)e−2αh2 D1i

+(1 + dmax)e−2αh2 D2i , H12 = −h−2
12 (Pi

−1R2i Pi
−1)−1,

H1 = − h−2
1 (Pi

−1R1i Pi
−1)−1, H2 = −4 ∗ h−4

2 (Pi
−1Zi P−1

i )
−1.

For convenience, let

Xi = Pi
−1, Yi = �i Xi , Q̄ ji = Xi Q ji Xi , R̄ ji = Xi R ji Xi ,

Z̄i = Xi Zi Xi , S̄ j i = Xi S ji Xi , D̄ ji = Xi D ji Xi

Then, left multiplying and right multiplying inequality (41) by
diag{Xi , Xi , Xi , Xi , Xi , Xi , Xi , Xi }, we can obtain
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄11 �̄12 �̄13 �̄14 �̄15 Xi ÃT
i Xi ÃT

i Xi ÃT
i∗ �̄22 �̄23 �̄24 �̄25 Xi Ci

T Xi Ci
T Xi Ci

T

∗ ∗ �̄33 �̄34 �̄35 0 0 0
∗ ∗ ∗ �̄44 �̄45 0 0 0
∗ ∗ ∗ ∗ �̄55 0 0 0
∗ ∗ ∗ ∗ ∗ Xi H1Xi 0 0
∗ ∗ ∗ ∗ ∗ ∗ Xi H12Xi 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Xi H2Xi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (42)

Consider (24)–(25), the inequality (22) is equivalent to inequality (42). When 
̄i <

0, we have V̇i (t) + 2αVi (t) < 0 which means

Vσ(t)(x(t)) ≤ Vσ(t)(x(tk))e
−2α(t−tk ), t ∈ [tk, tk+1) (43)

where tk denotes the switched time, t0 < t1 < t2 < · · · tk < tk+1 < · · · .
According to condition (26), we can obtain

Vσ(tk )(x(tk)) ≤ μVσ(tk− )(x(tk−))

where tk− denotes the left limit of tk .
Let k = Nσ(t0, t) ≤ t − t0/Tα , we have

V (x(t)) ≤ e−2α(t−tk )μVσ(tk−)(x(tk−)) ≤ . . . ≤ e−2α(t−t0)μk Vσ(t0)(x(t0))
≤ e−(2α−lnμ/Tα)(t−t0)Vσ(t0)(x(t0))

According to Definition 1, we can obtain

‖x(t)‖ ≤
√

a

b
e−λ(t−t0) ‖x(0)‖ (44)

Therefore, the above closed-loop system (21) is exponentially stable. �

Remark 2 Comparing with the existed results, our methods focused on utilizing time-
delay information. In the design of LKF, it takes into account both the lower bound
information and the rate of change of the time delay, aiming to reduce conservatism.
By reducing conservatism, that is, the time-delay upper bound is raised, allowing for
a wider range of time-delay signals.
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Table 1 The h2 for different
dmax and h1 = 0

dmax 0.1 0.5 0.9

h2 in Wang et al. [28] 2.947 1.310 1.209

h2 in Liu et al. [10] 3.454 1.919 1.217

h2 in our method 3.870 2.300 1.990

4 Numerical Simulation

Consider system (1) with the following parameters

A1 =
[

0 1
17.2941 0

]
, A2 =

[
0 1

0.2396 0

]
, B1 =

[
0

−0.1765

]
, B2 =

[
0

−0.0052

]
,

C1 =
[
0 0.8
0 0.21

]
, C2 =

[
0 0.8
0 0.18

]
, h1 = 0, α = 0.5.

Choose dmax = 0.5 and apply Theorem 2, we can calculate

P1 =
[
0.3359 0.1852
0.1852 0.8593

]
, P2 =

[
0.3359 0.1852
0.1852 0.8589

]
,

μ = 6.9178, τa > τa
∗ = 3.868, λ = 0.00823.

Then, we can obtain

‖x(t)‖ ≤ 1.829e−0.00823(t−t0) ‖x(0)‖

It can be seen from Table 1 that the larger value of dmax is, the larger the upper
bound of the time-delay increases by introducing the triple integral term.

The initial value is x0 = [
2 −2

]T. The simulation results are as follows. The
switched signal σ(t) of the system is shown in Fig. 1. The time-delay signal of the
system is shown in Fig. 2. Figure3 shows the system state with dmax = 0.5, and we
can see that the closed-loop system is stable. Figures4 and 5 show the system state

Fig. 1 Switched signal
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Fig. 2 Time-delay signal

Fig. 3 System state with dmax = 0.5 and h2 = 2.300

Fig. 4 System state with dmax = 0.1 and h2 = 3.870

Fig. 5 System state with dmax = 0.9 and h2 = 1.990
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Fig. 6 Control input

with dmax = 0.1 and dmax = 0.9, and we can see that the closed-loop system is
stable. Figure6 represents the control input, and we can see that the control input is
not saturated.

5 Conclusion

In this paper, the stability criterion and controller design for the time-delay switched
systems with input saturation are investigated based on an improved LKF. Based on
constructingLKFwith triple integral termandmaking full use of the delay lower bound
information, the sufficient conditions for the exponential stability of the system are
given. A state feedback controller is designed for the input-saturated switched system.
The symmetric delay rate problem is considered to accurately define the derivative
of LKF, which reduces the conservatism of the system. Finally, the effectiveness of
the method is verified by the numerical examples. In future work, we will study the
stability analysis for switched system with random saturation and actuator failure.
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