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Abstract
Image processing is an important area to bring out the best in an image for human
interpretation. This process has been widely used in various fields such as machine
vision, remote sensing image analysis, medical diagnosis, image restoration, image
pattern recognition, and video processing. During the acquisition and transmission
of digital images, several random signals, known as noise, can affect image quality.
To reduce or to remove efficiently the noise in the acquired or transmitted images,
various image denoising techniques can be applied. The performance of denoising
methods increases progressively when the noise parameters are taken into account as
input parameters. Traditional denoising approaches adopt some assumptions to model
noise, such noise is known as purely additive or multiplicative, pixel-independent, and
channel-invariant. Usually, these assumptions limit the denoising effect due to inaccu-
rate estimation of noise parameters in these algorithmmodels. However, the real noise
model is signal-dependent and even device-dependent. In this paper, a new denois-
ingmethod called signal-dependant noise-reducing anisotropic diffusion is developed,
which is a version of the speckle reducing anisotropic diffusion (SRAD) filter. It differs
from the standard SRAD filter approach by the insertion of a suitable noise parame-
ters estimation framework. The new filter is designed to handle a variety of images
corrupted by several common types of signal-dependent noises that are produced by
charge-coupled device sensors. As well as it offers great potential for denoising with
preserving textures and fine details. Extensive experiments demonstrate a significant
increase in the image denoising performance in terms of SNR and RMSE. Qualitative
(visual) results underline the efficacy of the proposed algorithm for filtering mixed
signal-dependent noise.
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1 Introduction

The signal fromCMOS/CCD image sensors is often contaminated by noise, which can
appear during the image acquisition process, as well as from various environmental
and mechanical factors of the imaging instrument. The amount of noise in the cap-
tured image is presented as a random variation of brightness or color information and
may hide or alter important details in the image. As a consequence, the noise-affected
images become much more difficult to interpret and analyze. To fulfill the need for
noise-free images in a variety of practical contexts, the image denoising process is gen-
erally used to clear out as much as possible the noise [13]. Therefore, it is very difficult
to remove it from images without prior knowledge of its model. Indeed, according to
recentworks in the literature, themost performant existing image denoising algorithms
are those that rely heavily on the accurate estimation of noise parameters [1, 3, 41,
104]. That means that noise parameters are taken as inputs in these denoising models.
For early and traditional denoising methods, the noise model is supposed as known
beforehand as additive or multiplicative, its parameter is represented by a constant
value of the variance on thewhole of the image, which is also invariant according to the
color components [17, 98]. Unfortunately, these assumptions simplify the effect of the
denoising algorithms, because they give usually not convincing denoising results. As
a consequence, in some cases, the practical use of the filter becomes severely limited.
However, the real noise model (or noise level) is spatially variant, spatially correlated,
signal-dependent, and even device-dependent. Since an accurate noise-level estimator
is an important premise in the denoising process to obtain high-quality images. Gener-
ally, it is possible to estimate the noise model by detecting several images of the same
scene and then, for each pixel, compute its standard deviation and mean intensity.
Hence, estimated noise model is obtained by plotting each standard deviation against
its mean value on the graph. The lower envelope that comes just below the cloud of
points is the curve of the noise model. This technique is tedious and time-consuming
[59]. Thus, it is preferable to estimate it from one image. During the past decades,
several works on noise estimation from a single image contaminated by CCD/CMOS
noise are elaborated in the literature [31, 57, 77]. The common noise estimation for
signal-dependent from one image consists of firstly extracting, from the noisy image,
the homogeneous areas [5, 11, 55, 72, 93, 107, 115]. Then, for each area, local means
and standard deviations are computed and plotted as a scatter plot on a graph. To
estimate the curve of the noise model, a global parametric model is adjusted to spe-
cific points of the cloud and describes the dependence of the standard deviation of the
noise with the mean of the signal [76]. However, most of these methods assume that
the processed image contains a sufficient amount of homogeneous areas, which is not
necessarily always true for natural image processing. Recently, new noise estimation
algorithms have been developed in [56, 63, 76] with state-of-the-art performance. The
authors [63, 76] argue that these methods can effectively estimate the noise of images
without flat areas. Noise parameter estimation algorithms are used for many well-
known denoising algorithms includingWiener filtering [101], nonlocal means (NLM)
[18, 106], BM3D [24], sparse representation-based denoising [28], matching method
[103], Kalman filter [77], robust Kalman filter [84–86], and deep learning denoising
methods [38, 112]. In a similar context, the main idea of this work is to integrate the



2186 Circuits, Systems, and Signal Processing (2024) 43:2184–2223

SDN estimation of [63, 89] into the SRAD filter to achieve high accuracy in noise
removal. SRAD filter is a variant of Perona–Malik (P–M) anisotropic diffusion tech-
nique [12, 91, 105] and a most popular especially in the extraction of multiplicative
(or speckle) noise in synthetic aperture radar (SAR) images [50]. Also, it enhances,
in particular, images with flat areas [27, 108]. Due to the significant role played by
SRAD in image filtering, several strategies and ideas have been proposed to improve
it in order to suppress spurious image features, including noise and disturbing artifacts
and to adapt it to numerous image processing techniques and modality images. Here
are some recent approaches to improve flexibility and performance of conventional
SRAD method: In [22], a speckle noise reduction algorithm is proposed to denoise
SAR imageswith speckle noise. This study is first used traditional SRADfilter and then
followed by the application of logarithmic transformation to convert the speckle noise
to additive. After that, in order to further remove the additive noise, discrete wavelet
transform (DWT) is used to convert obtained image into one approximate sub-band
image and six detailed sub-band images, and finally, a weighted guided image filter
(WGIF) is applied as post-treatment for removing much of the noise. This method
showed good effectiveness in removing speckle noise while preserving edge infor-
mation. In [45], a modified SRAD model is developed using gradient domain-guided
image filtering (GDGIF) to remove speckle noise in synthetic aperture radar (SAR)
images. In [111], an improved P–Mfilter for speckle noise based on the PDE of SRAD
is developed to enhance SAR images, which used different edge detection operators
to obtain a more effective diffusion function for removing speckle noise close to the
edges. In [49], a denoising framework based on an SRAD filter is proposed to denoise
images corrupted by speckle noise. The process consists of a succession of several
steps: Firstly, the image is treated by the traditional SRAD filter, then logarithmic and
wavelet transformations are applied over the filter output. Four sub-band images are
obtained where three ones are processed by soft thresholding whereas the fourth is by
a guided filter, followed by the application of inverse wavelet transform (IWT) over
the combined output results. Finally, exponential transformation is applied to obtain
the final denoised image. In [45], Hyunho et al. have proposed an algorithm to reduce
speckle noise in synthetic aperture radar (SAR) images using traditional SRAD fil-
ter and gradient domain-guided image filtering (GDGIF). GDGIF is an edge-aware
weighting applied adaptively to images obtained after SRAD to further reduce speckle
noise. Most of the above-mentioned denoising algorithms, including SRAD, simply
consider the noise level as known and are approximated as purely additive or multi-
plicative noise. However, these assumptions simplify the effect of the filter, as they
generally lead to unsatisfactory denoising results, especially for images corrupted by
general type of noise and including intricate details and rich textured regions. Particu-
larly, the SRAD assumes that the type of noise is known in advance as multiplicative,
uncolored, and constant (or uniform) for each pixel in the image. In addition, it esti-
mates the noise model over a manually selected homogeneous region. The hypothesis
of using uniform noise variance on the whole image leads to over-smooth images or
leave some noise unfiltered. Also, the manual selection of a homogeneous region in
the image is not always obvious, especially in the case of images containing complex
textures. The noise model assumed by SRAD is not realistic in practice, because the
noise of a real digital camera sensor is typically not pure white multiplicative. Such
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noise can be modeled as color-dependent, a mixture of additive and multiplicative
signal-dependent components. Therefore, it is important to model the noise as realis-
tically as possible to achieve better denoising results. Given the mentioned problems
above and the status of SRAD algorithm, the present paper suggests a new denois-
ing system designed for more general signal-dependent noise based on references of
Acton [6, 108].

The proposed algorithm, named SDN-reducing anisotropic diffusion (SDN-RAD),
is based on an SRAD filter and an SDN noise estimator to enhance the CCD image
sensor. The proposed filter out most of the noises, and at the same time, maintains
boundaries and most principal details such as textures. The most important highlights
of the proposed work can be summarized as follows:

• General signal-dependent noise (SDN) is adopted by our system
• Iterative select patch-based framework to estimate the parameters of the SDN is
used, which is based on principal component analysis (PCA) and a texture strength
metric to select the weak textured patches.

• The outputs of the select patch-based framework (SDN estimator) are used as input
parameters for the SRAD filter to deal with a variety of images captured by the
CCD camera.

SDN-RAD algorithm is effective for the removal of general mixed noise present
in images captured by CCD/CMOS sensors, which varies with pixel intensity in an
image and color components (i.e., signal-dependent noise). Furthermore, it smooths
out homogeneous areas and maintains the contours and textured features in the image.
First, a more accurate noise model is automatically estimated for the signal-dependent
noise image, resulting in improved parameter estimation. Second, the model is com-
bined with the classical SRAD filter to further enhance the image denoising effect.
Therefore, an effective and remarkable improvement in the ability to suppress mixed
noise for images containing most principal details such as textures and those with flat
regions. The present document is structured as follows: After reviewing the litera-
ture related to the topic of the proposed work in Sect. 2, a brief review of the SRAD
and DPAD filters is developed in Sect. 3.1. The SDN-reducing anisotropic diffusion
(SDN-RAD) method and its proposed noise model are developed in Sect. 3.2. The
estimation steps of SDN parameters are explained in Sect. 3.3. Section 4 presents both
the results of the noise model estimation and denoising process. Section 5 provides
concluding remarks on the proposed work.

2 RelatedWork

A careful examination of the literature allows us to explore different denoising works
since their existence. These methods can generally be roughly classified as classical
denoising methods, wavelet-based methods, partial differential equation (PDE)-based
methods, and deep learning-based approaches, which are cited in more detail in the
rest of this section focusing on their advantages and drawbacks.

Classical denoisingmethods processed the imagepixels directly,whichmeans that it
is looking for removing noise by calculating the gray level intensity of each pixel based
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on the correlationbetweenpixels of patches in theobserved image.Traditional classical
denoising approaches include mean filtering, median filtering, Gaussian filtering, and
bilateral filtering [10, 17, 21, 26, 97]. These filters can be further classified into two
types: linear and nonlinear filters. Linear filters were destined to remove noise in the
spatial domain, but they cannot save image textures. Examples of linear filters include
mean filtering [30, 39] andWiener filters [75, 99] that have been adopted especially for
additivewhiteGaussian noise. However, they can over-smooth imageswith high noise,
easily blur sharp edges and may lead to loss details. To overcome these disadvantages,
nonlinear filters have further been employed for image denoising and edge-preserving
such as median filtering and bilateral filtering [73, 90, 97]. Median filter, weighted
median filtering [42] and adaptive total variation median filter [47], has been used to
attenuate the effects of a salt and pepper type noise. The limitations of such filters that
are in the presence of a lot of noise in the data they tend to destroy the image edges
and create false edge pixels, and they cannot suppress several other types of noise like
speckle noise in ultrasound images [53]. In [65], an adaptive median filter is proposed,
where a dynamic adjustment of the size window of the filter and depending on the
detected defects in the image is included in the traditional median filter. This method is
destined to remove speckle noise or in the case of noise when spots are larger than one
pixel. The major inconvenience of this method is that it is computationally expensive,
which can make it slower for high-resolution images with large dimensions, and it
is not suitable for other types of noises commonly seen in captured images such as
additive noise, Poisson noise, etc. Likewise, a traditional bilateral filter [97] is a non-
iterative scheme for edge-preserving and smoothing, which used a weighted average
of each pixel in the image within a local neighborhood. The weights vary according
to the spatial distance between the pixels and the difference in pixel intensity values.
This filter is a fast tool to reduce noise while preserving image details, and it treats
images with varying contrast and non-uniform lighting. However, it can cause some
limitations, such as sensitivity to parameter selection, and the possibility of introducing
color changes or artifacts in the processed image. As a consequence, many extensions
of bilateral filter have been developed over the years to enhance image quality for
different imagingmodalities, including photographic images [25, 96, 110], point cloud
images [81], computed tomography (CT) images to minimize radiation dose in while
maintaining data integrity [102], satellite imaginary for real-time application [72],
and infrared images [32]. Nonlocal means (NLM) algorithm is also a popular filter-
based classical method [18, 48, 107, 113]. It uses characteristics of several similar
patches in the image based on Euclidean distance to reduce image noise. Afterward,
a lot of improvements in NLM algorithm denoising methods are mainly applied for
feature extraction, compressed sensing, and image denoising [40, 44]. On the other
side, different denoising methods based on nonlocal mean operator are developed [54,
82]. Among them, Himanshu algorithm [82] is image adaptive-guided image filtering
using a modified cuckoo search algorithm to obtain optimal kernel size and smoothing
degree. This method has a good effect for removing the Gaussian noise. Total variation
(TV) regularization methods are proposed and are widely used in denoising images
with speckles. The basic idea of these techniques is tominimize the sumof the absolute
differences between neighboring pixel values of an image. TV regularization allows to
denoise an image using piecewise smooth solutions with sharp edges, which permits
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an effective reduction of noise while preserving important features. However, the areas
with significant backscatter in SAR images limit the effectiveness ofTV regularization.
In [87], an example of TV regularization method is proposed, where it is based on
hybrid variation model (Fisher–Tippett (FT) distribution-p-norm) first- and second-
order hybrid TVs (called HTpVs) to remove the speckle noise after removing the
backscatter. In [80], authors have proposed a speckle suppression technique using
at first a logarithmic transformation to the noisy images, then by mapping of local
blocks based on gray theory is used to regroup similar blocks of reference patches
into approximate low-rank matrices, and finally, weighted nuclear norm minimization
(WNNM) method is employed to denoise image.

Several wavelet-basedmethods have been presented over the past several years. The
main idea of the basic wavelets denoising technique is to decompose signals into dif-
ferent frequency components. Since noise is often concentrated in the high-frequency
components and features are usually in the low-frequency components. Therefore,
this method is very effective in maintaining important details while suppressing noise.
Moreover, it is commonly easy to implement, which means that it can treat large
images in a reasonable amount of time. As well, it can be used in different contexts
because it can be applied to a wide range of signals, such as images, signal data,
and time-series data and adapted to different types of noise. Wavelet denoising algo-
rithms are computationally intensive because the decomposition and reconstruction
stages needed in wavelet transforms consume significant computational resources.
Also, they assume a noise model like AWGN. This assumption does not allow for
accurate modeling of noise characteristics in all scenarios. Consequently, these meth-
ods may not perform optimally when confronted with mixed and spatially correlated
noise. In [15], a wavelet denoising approach using an unsupervised learning model
is developed, which aims at exploiting the merits of the wavelet transforms such as
sparsity, similarity with the human visual system, multi-resolution structure, and to
adapt an unsupervised dictionary learning algorithm, in order to create a dictionary
destined to a noise reducing. Chang et al. developed an adaptive data-driven threshold
for the image denoising process using wavelet soft thresholding [20]. The threshold
is given in a Bayesian framework, and the prior used on the wavelet coefficients is the
generalized Gaussian distribution (GGD) which is widely used in image processing
applications. In [9], a wavelet denoising algorithm-based noise model is developed.
The authors proved that the grating-based X-ray interferometry technique, which is
traditional mammography positively complemented by phase contrast and scattering
X-ray imaging, can provide images superior to conventional mammography. This
technology can produce the obtained images, absorption, differential phase contrast
(DPC), and scattering signals of the sample. The noise level associated with the DPC
and scattering signals is significant. Since noise models for three signals have been
investigated, and the noise variance has been computed and translated from the spatial
to the wavelet domain.

For several decades, partial differential equation (PDE)-based denoising methods
have been studied and improved [14, 70]. A variety of PDE-based denoising tech-
niques have been suggested to treat only Gaussian additive or multiplicative noises
[36]. In particular, these techniques have received much attention because of their
ability to preserve and even enhance edges in the processed image. The most popular
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and applied filter in this category is Perona–Malik diffusion [74], which is a method
aiming at filtering image corrupted with additive Gaussian noise without losing signif-
icant details of the original image, such as edges, lines, corners, or other fin structures
that are useful for the interpretation of the image. Perona–Malik model is based on a
diffusion process, where the diffusion function varies spatially in such a way that the
smoothing degree increases close to edges and other most prominent structures in the
image, but decreases in homogeneous regions. Motivated by the efficiency of the Per-
ona–Malik technique in the suppression of additive noise, researchers are addressed
to reduce multiplicative speckle noise. For instance, Yu and Acton [108] developed
a speckle reducing anisotropic diffusion (SRAD) filter, which is an improved version
of the diffusion method adapted for images damaged by speckle noise such as ultra-
sonic and radar imaging. SRAD exploited the instantaneous coefficient of variation in
adaptive filtering as in Lee and Frost filters [35, 54] for removing multiplicative noise
in imagery. Afterward, Aja-Fernández et al. derived another version of the anisotropic
diffusion filter that is based on SRAD filter and called it details preserving anisotropic
diffusion (DPAD) [6]. DPAD uses another diffusion function (taken from Kuan’s fil-
ter) based on the estimation of the signal and noise statistics. For the same purpose,
Karl et al. extended the simple anisotropic diffusion process to a matrix diffusion [51],
allowing different levels of smoothing along different directions such as the contours
and the principal curvature directions of 3D structures. For images containing tubu-
lar structures such as blood vessels, they have chosen the gradient and the principal
curvature directions as a basis for the diffusion matrix.

Over the years, PDE-based denoising methods continue to be an active area of
research, so some of previous methods have been refined and new algorithms have
been developed. For instance, in [66], authors have proposed diffusion-driven method
for reducing noise using two diffusion functions that properly guided the diffusion
process across regions in the image.

Nair et al. have integrated a low arithmetic complexity image smoothing model
for anisotropic diffusion smoothing of images [69]. An operating approach based on
the anisotropic diffusion method is proposed in [37] to deal satellite remote sensing
images.

Recently, deep learning-based approaches have achieved good performance
improvement in image denoise processing [58, 61, 94]. The reason for the great suc-
cess of a convolutional neural network (CNN) in the area of noise removal can be
attributed to understanding complex patterns in data and its strong modeling ability
but that does not mean these types of methods do not have drawbacks. CNNs require
significant volumes of labeled training data to produce accurate denoising results.
Collecting and processing a large dataset comprising both clean and noisy image pairs
can be time-consuming, costly or, in some cases, impractical. Insufficient or incorrect
training data can limit performance or make generalization to different noise types or
levels more difficult.

Most of the aforementioned denoising algorithms simply consider the noise level
as known and purely AWGN or multiplicative noise. That is, the performances of
the image denoising technique are limited due to the poor estimate of the noise and
thus the output denoised image loses most of the critical details. Signal-dependent
noise, used to refer model of noise, is a function of how standard deviation varies with
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respect to intensitymean value in the observed image. In addition, for image containing
high-frequency components such noise, textures, edges, and corners, it is difficult to
distinguish them from noise during the denoising process. However, the denoising
task often relies on the knowledge of the noise distribution and its parameters.

3 Anisotropic Diffusion Scheme for Signal-Dependent Noise Filtering

3.1 Overview on SRAD and DPAD Filters

Yu and Acton [108] proposed speckle reducing anisotropic diffusion filter (SRAD),
which is an anisotropic diffusion equation to denoise, especially, images corrupted
by multiplicative noise (speckle noise). In fact, SRAD is obtained by combining
anisotropic diffusion with the Lee filter [54] and is expressed as the following:

{
∂ In(i, j;t+∇t)

∂t = div[c(q(i, j; t)).∇ In(i, j; t)]
In(i, j; t = 0) = I0

(1)

where ∂ is the first-order partial derivative, In is the processed image,∇ is the gradient
operator, (i, j) are the space position of the pixel in the image, t is the iteration number,
∇t is the step time, I0 is the noisy image at t = 0, div is refer to divergence operator,
and c(.) is the diffusion coefficient, and there are two functions to express it:

c(q(i, j; t))SRAD = 1

1 + [
q2(i, j; t) − q20 (t)

]
/
[
q20 (t)

(
1 + q20 (i, j; t)

)] (2)

c(q(i, j; t))SRAD = exp
{
−
[
q2(i, j; t) − q20 (t)

]
/
[
q20 (t)

(
1 + q20 (t)

)]}
(3)

According to Eqs. (2) and (3), q0 is the instantaneous speckle scale function or
coefficient of variation of noise, which controls the degree of smoothing applied to
the image by the SRAD filter. The computation of q0 will be discussed later in this
section. q is the instantaneous coefficient of variation, where its expression can be
written as follows:

q(i, j; t)SRAD =
√√√√ (1/2)(|∇ In(i, j; t)|/In(i, j; t))2 − (

1/42
)[∣∣∇2 In(i, j; t)

∣∣/In(i, j; t)]2[
1 + (1/4)

(∣∣∇2 In(i, j; t)
∣∣/In(i, j; t))]2

(4)

where | • | is the magnitude.
SRADfilter uses Jacobi iterationmethod to solve numerically the partial differential

equation (PDE) given inEq. (1). Specific solution steps are formulated byYuandActon
in [108]. The PDE of the SRAD filter can be approximated as follows:

In(i, j; t + �t) = In(i, j; t + �t) + �t

|ηs |d(i, j; t) (5)
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where |ηs | = 4 is the four direct neighborhoods and

d(i, j; t) = 1

h2
[c(i + 1, j; t)(In(i + 1, j; t) − In(i, j; t))

+ c(i − 1, j; t)(In(i − 1, j; t) − In(i, j; t))
+ c(i, j + 1; t)(In(i, j + 1; t) − In(i, j; t))
+c(i, j − 1; t)(In(i, j − 1; t) − In(i, j; t))] (6)

Heret and �t denote, respectively, the number of iterations and step of the time.
h is the spatial step size and was chosen equal to 1. c(i + 1, j; t) is the coefficient
of variation in the east of the central pixel at timet . This method not only shows
effectiveness in removing speckle noise from a corrupted image at different levels, but
also retains and refines the boundary information in the observed image. Similar to
SRAD, Aja-Fernandez et al. proposed another version of anisotropic diffusion filter
by combining conventional anisotropic diffusion with Kuan filter [52]. They called
their filter as detail preserving anisotropic diffusion (DPAD) [6]. DPAD is similar to
SRAD with a few modifications. For example, it computes the local coefficient of
variation of the image of each pixel in the image as follows:

q(i, j; t)DPAD =

√√√√√ 1|ηp|−1

∑
p∈ηP

(
Ip − In(i, j; t)

)2
)

In(i, j; t)2
=
√
Var(In(i, j; t))

In(i, j; t)2
(7)

where
∣∣ηp

∣∣ is chosen as a window of 5 × 5 neighbor of the current pixel In(i, j; t),
p is the neighbor pixel, Ip is the intensity of p, In(i, j; t)2, and Var(In(i, j; t)) are,
respectively, the square of local mean value of current pixel and its local variance.
Furthermore, the diffusion coefficient function adopted byDPAD iswritten as follows:

c(q(i, j; t))DPAD =
1 + 1

q(i, j;t)2
1 + 1

q0(t)2
(8)

In smoothing prediction rate c(.), it is necessary to accuracy estimate the noise level q0,
there are several manners which have been proposed by Yu and Acton. In the first one,
they manually selected an homogeneous region in the image, and then, they computed
from it, iteratively, the mean and variance values of noise. These values represent the
noise characteristics (or noise parameters) andwill be used in computation of the noise
coefficient of variation, whose expression is given by:

q0(t)SRAD =
√

σ 2
n

n2
(9)

where n is the multiplicative noise in the observed homogeneous region, σ 2
n and n

are the noise characteristics that are, respectively, the variance and mean value. In
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the second one, they estimated q0(t) automatically and without homogeneous region
selection. First of all, they stated that q0(t) can be expressed by [108]:

q0(t)SRAD = q0(0).exp(−ρt) (10)

where exp(.) is the exponential function, ρ is a constant less than 1, and q0(0) is the
initial noise level in the observed image. q0(0) is assumed equal to 1 for ultrasound
images, 1/

√
N for N-look SAR images. However, Eq. (10) is analytical form of a

linear approximation of the speckle noise estimation, so predicted noise statistics are
far from being realistic. In a parallel context, Yu and Acton tried to improve the filter
by applying another noise estimator [109], where the expression is as follows:

q0(t)
SRAD
MAD =

(
Cst√
2

)
MAD(∇log(In(i, j; t))) (11)

Here log(.) is the logarithmic function,Cst = 1.4826 andMAD(x) = {|x − med|x ||},
refers to the median absolute deviation, with x is a vector, and med is median value
of|x |. Aja-Fernández et al. in their paper [6] estimate q0(t) in the same way of com-
puting q(i, j; t)DPAD, not on the whole of image, but within a selected homogenous
area, or even they have taken the minimum, or the average, or the median of all
q(i, j; t)DPAD values computed on the whole image.
Although the above adopted methods of noise estimation have been very simple to
implement and they achieved reasonably performance in image denoising, they suf-
fered from several drawbacks. During the past decade, in several reference methods
[23, 55, 59, 60], some experiments have taken place in order to have a better overview
of several noise estimator performances. For instance, the manual selection of homo-
geneous region by user is possible but it is nontrivial for a computer, also the selected
region may contain information, leading to an overestimation of noise, the amount of
noise removed is uniform throughout the image, whether at the edges, or in a homo-
geneous or textured region. In addition, the minimum is biased toward zero due to
the presence of aberrant values. That is why, the minimum operator is considered as
a lower bound for q0. The average operator, on the other side, tends to overestimate
q0(t) and is considered as an upper bound. The median operator, however, behaves
very closely to q0MAD using a 5× 5 neighborhood and indicates less variability about
the real value.

3.2 SDN-Reducing Anisotropic DiffusionMethod

SRAD and DPAD filters proposed the noise model with some assumptions, such
noise is a purely signal-independent multiplicative white noise (SIMWN). Generally,
authors used the simplification in order to make more easier the implementation of
filter but obtained results will always be unsatisfactory. However, noise is not realis-
tic in practice and is more complicate to estimate. The noise produced in images by
a real digital camera is usually non-white, not purely multiplicative, and should be
modeled as signal-dependent noise (SDN). Indeed, the assumption of using a uniform
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noise variance (a single parameter) over the whole image leads denoising algorithms
to over-blur the image or to leave part of the noise unfiltered. In the proposed work,
such noise can be a mixture of additive and signal-dependent multiplicative compo-
nents. Only three parameters are sufficient to completely describe the suggested noise
model. These parameters are explained in relation to the hardware characteristics of
the sensor and the image acquisition process. As a consequence, a noise estimation
step becomes complicated, and the challenge is to estimate it, accurately and without
manual intervention, from a single noisy image.

In the following sub-sections, first, it is provided an overview on different kinds
of noise alterations during the image acquisition and processing chain. Next, it is
described the technique for the estimation of noise parameters from a single SDN
corrupted image. Finally, a new coefficient of variation of noise q0(i, j; t)SDN is
developed.

3.2.1 Digital Image Sensors

The two main technologies of camera sensors are charge-coupled device (CCD) and
a complementary metal–oxide–semiconductor (CMOS) sensors (Figs. 1 and 2). In
CCD sensor, an amount of charge is generated at each sensing element (or photo
diode and is referred to a "pixel") and is transported from pixel to pixel and is con-
verted into analog voltage at the output node. Then, an analog to digital converter
(ADC) is used to convert the analog value of each pixel to a digital value. Unlike

Fig. 1 CCD camera sensor

Fig. 2 CMOS camera sensor
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CCD sensors, CMOS sensors work by converting charge to voltage inside each sens-
ing element which is coupled with individual amplifier to amplify the electric signal
from the sensing element. Not only that, but each column of array has its own ADC
and each pixel’s value is converted into a digital value. Some of the main advantages
are that CMOS sensors have lower power consumption than their CCD counterparts,
they are much less expensive to manufacture than CCDs, and they provide faster
readout than CCDs. They are, therefore, suitable for fast image acquisition. Addi-
tionally, CMOS sensors can be done with semiconductors materials besides silicon
such as gallium arsenide, indium gallium arsenide, and silicon germanium [83]. These
materials allow for CMOS devices to be sensitive to wavelengths outside the visible
spectrum. All these are great benefits, especially when it comes to design consumer
electronic devices where battery life and cost are quite important like digital cameras
or cell phones. Based on these differences, it is clear that CCDs are generally used in
cameras that offer high-quality images with high-resolution and excellent sensitivity
to light. CMOS sensors are traditionally known for their lower image quality, lower
resolution, and lower sensitivity to light. CCD sensors are widely used in the current
times and have become popular in the fields of consumer and automotive electronics,
space exploration, telemedicine, video surveillance, fluorescence detection, etc. Their
main disadvantage is that all those integrated extra amplifiers and ADCs generate a lot
of noise. Noise is a random signal, which is always presents in digital images during
the image processing pipeline of the sensor. Therefore, noise has been studied for
decades in image processing due to its effect in different applications such as image
denoising. To achieve optimal performance in this application, it is essential to identify
the characteristics of noise in advance. In some literature review, noise models can
be divided into two categories: signal-independent noise (SIN) and signal-dependent
noise (SDN). The basic used model for SIN is approximated as additive white Gaus-
sian noise (AWGN) [55, 92]. However, this model is not pertinent due to the dominant
presence of Poisson/multiplicative noise that alters a natural image acquired by an
imaging system. While SIN models assume that the noise level is stationary in the
whole natural image, independently of the intensity of the original pixel, SDNmodels
consider that the noise level depends proportionally on the original pixel value [71].

3.3 CCD Camera Sources Noise

As mentioned in the previous sub-section, the CCD camera converts the photons (or
the irradiance) which arrive in the image sensor, in electrons, in electrical voltage,
and finally in bits. The real CCD camera noise model was developed from existing
studies on the various sources of camera noise [16, 29, 95, 100]. Before addressing
the noise modeling, a general overview of the nature of the different transformations
and the main sources of error in a typical color CCD camera is provided below [46,
68]. Noise in raw images can come from different sources which is divided into two
broad types: shot noise and digital noise. The first type is actually related to the
nature of the light and optical artifacts, while the second is caused by the internal
electronics of the camera sensor. As noise reduces perceived image quality, several
models have been developed to model noise at various steps of image acquisition
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process in order to reduce or remove it later. Shot noise includes in particular the
dark shot noise and photon shot noise. The word "Dark Shot Noise" is employed to
describe accumulation of electrons generated by the heat in the sensor. It depends
upon the temperature and therefore can be reduced by cooling down the sensor. The
photon shot noise also known as Poisson multiplicative noise, and it is linked with
the quantum properties of light. Photon noise results from the fact that light arrives in
photons on the individual sensing elements which are subject to random fluctuations,
i.e., even with a constant light source the exact number of photons, being absorbed by
the sensing element, may vary from unit time to unit time and from sensing element
to sensing element. The signal intensity, i.e., the number of photons captured by the
sensing element, during a given exposure time is stochastic and can be described
by zero-mean Poisson distribution with a variance that depends on the number of
generated photoelectrons and the number of dark electrons [43]. The effect of photon
shot noise decreases with exposure time.

Digital noise refers to sensor electronic limitations which is randomness caused by
imperfections and variations in the sensing elements and electronic circuitry which
ultimately transform the photons into a digital signal. This type of noise contains
fixed pattern noise (FPN) [64, 67, 79], photon response non-uniformity (PRNU), and
quantification noise. Both noises PRNU and FPN, also known as pattern noise (PN),
are a component that remains practically the same if several photos of the same scene
are taken. FPN is caused by dark currents and depends on exposure and temperature
[64]. The dark current consists of thermally generated electrons that discharge the
pixel as if a photon had hit it. Even, it can be detected in obscurity. FPN is generated
at different locations in the sensor, and it is related to irregularities in the fundamental
crystal structure of the silicon [4]. PRNU refers to the non-uniform pixel response
across the sensor’s surface. The dominant part of PN is PRNU which is an intrinsic
property of all digital camera sensors. It is mainly due to the inhomogeneity of the
silicon wafers, which implies little variations between individual sensor pixels in their
ability to convert light into electrons [34]. When taking a long exposure time, the
image sensor heats up and PRNU becomes more visible. Therefore, it does not exist
in the absence of a signal, because it depends on the signal. After that, the charge
is collected at each pixel, it is then moved to the output amplifier to be read. The
amplifier amplifies sequentially the charge accumulated at each pixel into ameasurable
voltage value. To create a numerical image that can be saved on a computer, voltage
measurements are quantized both spatially and in magnitude by the analogic–numeric
converter (ADC). The quantization process can be accompanied by a quantization
noise. Following that the obtained raw image is processed by some typical post-
acquisition processes, such as demosaicing, white balancing, and gamma correction.
During the demosaicing process, false colors, known as "demosaicing noise," can be
introduced in the output image. Demosaicing is an algorithm for reconstructing a full
color image from the incomplete color samples output of RGB color filter array (CFA)
implemented in image sensors. Indeed, each color channel of generated output image
has different characteristics of noise properties.
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3.4 General Signal-Dependent Noise Model

Captured image by a typical CCD camera can be modeled by taking into account of
different types of noises observed during its acquisition process. Usually, the digital
image model is composed of two mutually independent parts, a multiplicative signal-
dependent component that includes the photon shot noise, dark current, etc., and a
signal-independent component for stationary disturbances such as PN noise, read-out
noise, and thermal noise. In this work, let us propose the generic signal-dependent
noise model of the form:

In(i, j) = I (i, j) + ηw(I , (i, j)) + ηG(i, j) (13)

with In(i, j) is the intensity pixel (i, j) in the noisy image, I (i, j) is the intensity at
(i, j) pixel in the noise free image (is unknown), (i, j) are the indices of pixels in
the raw image, i = 1, . . . , M, j = 1, . . . , N , M × N is the image resolution, and
ηG is stationary noise throughout the image and is assumed as white and zero-mean
Gaussian distribution with constant standard deviation σG . As pixel intensities are
generally non-stationary in the image, ηw is modeled as a signal-dependent noise with
a varying variance that depends on the value of the pixel intensity I , which will be
non-stationary too, and it is spatially auto-correlated [33] and may can be written
as ηw(I , (i, j)) = I (i, j)γ .ω(i, j). The term ω(i, j) defines multiplicative noise
component obeying Gaussian distribution with zero-mean and relative variance σ 2

ω,
and γ is the exponential parameter belonging to [0, 1] [98]. The standard deviation of
the proposed noisy signal is a function, namely σIn , of the expectation of the model
(13), i.e., std[In(i, j)] = σ In (E[In(i, j)]). Consequently, the overall variance is given
by following affine form:

σ 2
In (i, j) = σ 2

I (i, j) + E

[
I (i, j)2γ

]
.σ 2

ω(i, j) + σ 2
G(i, j) (14)

If the variance is computed on homogeneous sequence of pixels, thus σ 2
I (i, j) = 0.

Since, the variance of noise, also knownas noise level function (NLF), can be expressed
as follows:

σ 2
In (i, j) = E

[
I (i, j)2γ

]
.σ 2

ω(i, j) + σ 2
G(i, j) (15)

Let’s the symbol τ tn is used exclusively to denote the function of the noise vari-
ance σ 2

In
. A Taylor series approximation [98] of the function I 2γ is used to evaluate

E
[
I (i, j)2γ

] :
E
[
I 2γ (i, j)

] � E[I (i, j)]2γ and E[I (i, j)]2γ � I (i, j). Hence, coming again to
a model of Eq. (15) with a form

τ tn
(
I ; γ, σω, σG

) = I 2γ .σ 2
ω + σ 2

G (16)

This noise model is proposed to account for several different acquisition systems.
Since, by changing the values of three noise parameters (γ, σω, σG), τ tn can modelize
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Fig. 3 Neighbors of pixel I (i, j)
in the 8- and 4-neighborhoods

various types of noise such as multiplicative speckle noise, Poisson noise, film-grain
noise, and others [5]. Therefore, the noise coefficient of variation in the traditional
SRAD/DPAD filter adjusted for signal-dependant noise takes the new following form:

q0(I , i, j; t)SDN =
√√√√τ tn

(
I ; γ, σω, σηG

)
In(i, j; t)2

(17)

q0(.)SDN can vary from pixel to pixel in the image, also across different color compo-
nents due to the demosaicing process. The 3× 3 neighborhood shown in Fig. 3a is used
to compute the new noise coefficient of variation in order to discriminate accurately
the textured regions and the edges from noise. The proposed algorithm is similar to
the SRAD filter, but with a few distinctions. Such as, Eq. (17) is used to compute the
new noise coefficient of variation for each pixel instead of a single value for the whole
image, the SDN instantaneous coefficient of variation is calculated using Eq. (4), the
new diffusion function c(.) is given following Eq. (2), and the proposed PDE can be
approximated by the 4 direct neighbors (i, e.|ηSDN| = 4) (Fig. 3b).

3.5 Estimation of SDN Parameters

The current sub-section describes a procedure of the estimation of the three parameters
of the proposed noise model. For images with homogeneous simple structures, to
estimate the noise level for practical use, many early researchers, in the field of SDN
estimation, have taken the smallest standard deviation of the most homogeneous sub-
blocks in the observed image as the overall noise level. However, the assumption of
constant noise variance across the whole image leads to an over-smoothing of the
image or some noise is unfiltered, especially in the case of textured images; for that
reason, proposed algorithm is oriented to accurately estimate the real noise level,
for the variety of input images, especially for those with rich textures [63]. A block
diagram, in Fig. 4, illustrates the structure of the proposed algorithm, where blocks
are explained below:

a. The input noisy image is clipped into blocks of size K × K
b. A pair of local parameters (local mean and variance) are calculated for each block.



Circuits, Systems, and Signal Processing (2024) 43:2184–2223 2199

• Local variance of each block is estimated as a power of noisy block along to the
minimum variance direction Xmin.

• Local mean is the mean of the intensities in each block

c. Once local means and variances of all blocks in the observed image are calculated,
the SDN parameters of the NLF are estimated by ML-Estimator.
However, the initial estimated NLF, denoted by (τn0), is an overestimate of the
noise level because it may contain signal. In order to optimize the estimated noise
model, an integrated framework based on the texture strength for optimal weak
textured patches selection is applied. To provide further explanation, a series of
steps are illustrated below:

d. For each block, a texture strength metric is calculated using local parameters
e. A threshold th on the texture strengths is calculated to discriminate the weak

textured blocks
f. The variances of selectedweak textured blocks are used tomake iterative estimates

the new parameters of NLF in the same manner as previously mentioned (step c).

In the rest of the section, all these steps are formulated, below with more details,
in mathematical terms.

Firstly, block or patch-based approach [2] is used where the input noisy image is
divided into blocks of size K ×K and is defined by their center pixel I kn (k is the indice
of patch). The noise-free pixel values of patches are estimated by their mean values,
and the patches are supposed flat with zero-mean noise. For each block Bk , a k pair of

Fig. 4 Different steps of the noise estimation procedure (NEP) applied on each channel: red, green, and blue
and each iteration
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local parameters (i.e., the local mean and local variance) are calculated respectively
as outlined below:

Ĩk = 1

K 2

∑
i, jεBk

In(i, j) (18)

σ̃ 2
k = ‖XT

min.Y
k
n ‖2 (19)

where Ĩk is the approximate local mean or the noise-free signal of k′block, σ̃ 2
k , is the

estimated noise variance of each patch, which is also defined as a power of noisy patch
along to the vector Xmin(or the minimum variance direction. Xmin is computed using
the principal component analysis (PCA), i.e., it is the eigenvector associated to the
minimum eigenvalue of the following covariance matrix of all patches of noisy image:

�In = 1

M × N

M×N∑
k=1

Y k
n .Y k

n
T

(20)

The letter ‘T ’ indicates the transpose operator. Y k
n is the vector of the observed

pixel values into k-th noisy patch{In(i, j)}k . Y k refers to the set of pixel values in
k-th noise-free patch {I(i, j)}k .

Once local means and variances of all sub-blocks in the observed image are calcu-
lated, the SDN parameters of NLF are estimated by the maximum likelihood estimator
(ML-Estimator). The likelihood of NLF is derived as follows:

L =
S∏

k=1

1√
2πτ tn

(
Ĩk; γ, σ 2

ω, σ 2
ηG

)exp
⎧⎨
⎩− σ̃ 2

k

2τ tn
(
Ĩk; γ, σ 2

ω, σ 2
ηG

)
⎫⎬
⎭ (21)

Here S indicates the number of selected patches, Ĩk and σ̃ 2
k are, respectively, mean

value and variance of selected patch. The cost function F to be minimized can be
derived from negative log-likelihood function as follows:

F
(
γ, σ 2

ω, σ 2
ηG

)
=

S∑
k=1

log
(
τ tn

(
Ĩk; γ, σ 2

ω, σ 2
ηG

))
+ σ̃ 2

k

2τ tn
(
Ĩk; γ, σ 2

ω, σ 2
ηG

) (22)

To minimize the cost function with respect to γ, σ 2
ω, and σ 2

G, the gradient-descent
technique is applied, including the three parameters are initialized to zero in the algo-
rithm. However, the obtained estimated NLF (τn0) is an overestimate of the noise
level because sub-blocks may contain information, and it is a real problem especially
for images with a rich texture or images with fine details. To avoid overestimating the
noise level for images with textures, a weak textured patches selection algorithm based
on the texture strength is used [62]. The proposed algorithm selects suitable patches
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to evaluate the homogeneity of image patches. For each sub-block in observed image,
a texture strength metric is calculated using the following formula:

Ts = tr(G.GT ) (23)

where tr(.) is the trace of a matrix, and G is expressed as follows:

G =
[
HYk

NVY k
N

]
(24)

H , V , are, respectively, the matrices of the horizontal and vertical first derivative
operators for the image patch. Therefore, to extract weak textured patches, a threshold
for the texture strength is calculated in the algorithm. The threshold th has been
expressed as

th = τn
0.�−1

(
β,

K 2

2
,

2

K 2 tr
(
HT H + V T V

))
(25)

Here �−1(β, ϑ, ζ)) represents the inverse gamma cumulative distribution function
with ϑ is the shape parameter, ζ is the scale parameter, and β is the confidence level
which is equal to 0.99. τn0 is the noise variance of patches in the observed image, K 2

represents the number of pixels in the patch. Asmentioned in Eq. (25), the threshold th
requires the noise level τn0 as a variable.Once the texturedpatches image is thresholded
with th, the variances of selected weak textured patches are used to estimate the
parameters of NLF using the same expressions (21) and (22). This latest process is
iterated until obtaining the unchanged estimated NLF, which is the final and required
τn . In the same manner, the variances of selected week textured patches are given by
expression (19).

4 Numerical Results

The numerical experiments were performed with MATLAB 2015a on an Intel Core
i7–7500CPU 2.90 GHz with 8.00 GB memory.

In the current section, several experiments are effected on test images from BSD
dataset because it is known as the most popular and complete dataset available for our
aims [8]. Therefore, it has been used in several publications and has the advantage of
providing several human-labeled segmentations for each image. The BSD68 dataset
consists of 68 images from the separate test set of the BSD dataset. Some images
from this database are presented in Fig. 5. Before applying our algorithm, a synthetic
signal-dependent noise was added to the chosen test image according to Eq. (16). In
our experiments, to generate synthetic noise, the three parameters of NLF for noise
model are set and expressed as a three wise combination of γ ∈ [0, 1], σω = [0.5, 1.5]
and σG = [5, 20] for 8-bit images. Figure 6 is displayed an example of synthetic noisy
image corrupted by following parameters γ = 0.5, σω = 1.5, σηG = 15.

Before performing the denoising process, it is necessary to estimate for each itera-
tion the noisemodel. The goal of noise estimation is to accurately estimate the function
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Fig. 5 Some test images from BSD68 dataset

Fig. 6 a ’65019.jpg’ original image. b Noisy image with γ = 0.5, σω = 1.5, σηG = 15 and c noisy
sub-image

Fig. 7 a Noised green channel of ’65019.jpg’ test image and b selected weak textured patches in noised
green image

τn (i.e., the three parameters γ, σω, and σG) of the observation model (16) from a noisy
image. The proposed noise estimator is divided into three main steps: local estimation
of mean/standard deviation pairs, select week textured regions, and global parametric
model fitting to the selected local estimates.

First experiments are started with homogeneous images. An example is shown in
Fig. 7,where, Fig. 7a corresponding to the green channel of original image ’65019.jpg,’
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and Fig. 7b shows its obtained image after applying theweak textured patches selection
process. In this last image, black regions correspond to pixels having the most high
texture strength, while the others regions are lightly textured. As we have already
explained, the noise in an image is colored through the demosaicing step in the image
acquisition process (see Fig. 8). So three RGB noise components will be estimated for
noise. Therefore, the proposed noise estimator algorithm will provide three curves of
NLFs for red, green, and blue channels.

The three curves of noise model of image in Fig. 6 are shown in Fig. 9, and their
estimated parameters of γ, σω, σG are illustrated through Table 1. In accordance with
Fig. 9, the three NLF curves overlap considerably with the real noise models (blue
curves) with a small distinction. Also, the test values of three parameters exhibit
perfect congruence with their corresponding real values. Considering these outcomes,
it is clear that the noise estimation process accurately estimates the noise parameters of

Fig. 8 Color image. From top to bottom and from left to right: original sub-image, noisy sub-image, and
color noise in sub-image; red, green, and blue channels of color sub-image; red, green, and blue channels
of color image noise
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Fig. 9 Model noise of image ’65019.jpg’: noised with γ = 0.5, σω = 1.5, σηG = 15; RMSE = Red:
(17.03) Green: (18.47) Blue: (8.60)

Table 1 Parameters of model
noise of image ’65019.jpg’:
noised with
γ = 0.5, σω = 1.5, σG = 15;

Setting parameters σG = 15 σω = 1.5 γ = 0.5

Red 15.3384 1.2236 0.5305

Green 15.3414 1.2540 0.5250

Blue 15.1240 1.3159 0.5276

mixed noise. Figure 10 shows another result of the same image but corrupted by other
parameters of synthetic noise where γ = 0.5, σω = 1.5, σG = 5. Table 2 presents the
estimated parameters for the three-color channels.

Afterwards, the test image, refers to ’27059.jpg’ fromBSDdataset, is chosen to deal
image containing textured regions (Fig. 11—left). This image is damaged by following
synthetic noise parameters: γ = 0.5, σω = 1.5, σG = 15 (see Fig. 11—right). Their
corresponding results of noise estimator are presented in Fig. 12 and Table 3. The two
estimated red and green NLF curves are correctly superimposed on the real curves,
while the blue curve shows a few differences from the real curve, and their three
estimated noise parameters are displayed in Table 3.

To ensure the algorithm’s applicability across various images, we have chosen Lena
image that is one of themostwidely used standard test images for image denoising. It is
considered as a good test image because it contains flat regions, a nice mixt of details,
textures, and shading. Firstly, original Lena test image (Fig. 13) is corrupted by a
signal-dependent noise with the following parameters:γ = 0.5, σω = 1.5, σG = 15).
Then, SDN noise estimation algorithm is applied on it with the size of the patch fixed
to7 × 7. The estimated three curves of NLF are shown at last line of Fig. 14, where
obtained NLF of green channel gives the best-fit curve with the true NLF. The second
line of Fig. 14 illustrates the red, green, and blue images for week textured selection



Circuits, Systems, and Signal Processing (2024) 43:2184–2223 2205

Fig. 10 Model noise of image ’65019.jpg’: noised with γ = 0.5, σω = 1.5, σG = 5; RMSE=Red: (12.85)
Green: (13.98) Blue: (10.96)

Table 2 Parameters of model
noise of image ’65019.jpg’:
noised with
γ = 0.5, σω = 1.5, σG = 5;

Setting parameters σG = 5 σω = 1.5 γ = 0.5

Red 5.6698 1.3531 0.5133

Green 5.4749 1.4061 0.5061

Blue 5.0391 1.4508 0.5026

Fig. 11 Test image ’27059.jpg’ from BSD300 dataset from standard BSD68 dataset: right: origi-
nal free noise image and left: Image corrupted with synthetic noise with following parameters:(
γ = 0.5, σω = 1.5, σG = 15

)
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Fig. 12 Noise level estimation on ’27059.jpg’ image, the proposedmethod estimates the noise level correctly
for red, green, and blue channels

Table 3 Parameters of model
noise of image ’27059.jpg’:
noised with
γ = 0.5, σω = 1.5, σηG = 15;

Setting parameters σG = 15 σω = 1.5 γ = 0.5

Red 15.4253 1.2584 0.5302

Green 15.2613 1.2784 0.5275

Blue 14.7601 2.2425 0.4182

Fig. 13 Lena test image; from left to right: original Lena image, noised image, and noised sub-image
(γ = 0.5, σω = 1.5, σG = 15),

pixels of RGB noised image (first line of Fig. 14). The selection of pixels with a
high variance value in the green channel is better than that of the other two, since
the grayscale image provides a clear view of the contours and textured areas in the
image. Therefore, the results obtained by modeling the noise parameters are better
than those obtained for the red and blue components. The green NLF curve is closer
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Fig. 14 Noise level estimation on noisy Lena image (γ = 0.5, σω = 1.5, σG = 15), for red, green, and
blue channels. From top to bottom and from left to right: red, green, and blue channels of noisy Lena image.
Red, green, and blue images for week textured selection pixels and the three estimated NLFs: RMSE =
Red: (10.19) Green: ( 7.43) Blue: (32.31)
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Table 4 Estimated parameters of
noise model of noised Lena
image for different values of the
parameters (σG , σωandγ )

Setting parameters σG = 15 σω = 1.5 γ = 0.5

Red 16.7613 0.7998 0.6017

Green 15.0041 1.4187 0.5120

Blue 12.5955 3.5204 0.3460

σG = 5 σω = 1.5 γ = 0.5

Red 4.8241 1.6551 0.4808

Green 5.3551 1.4510 0.5031

Blue 6.4515 1.3645 0.5207

σG = 0.5 σω = 0.5 γ = 1

Red 0.6887 0.8175 0.9054

Green 0.2073 0.7069 0.9277

Blue 0.4095 0.8204 0.8965

to the real curve than the other curves, and the estimated noise parameters are better
than those of the red and blue channels. To examine the efficiency of the algorithm
of noise estimation, different modelizations were carried out for different levels of
noise on the original image. The obtained results are arranged in Table 4. The table
reports true and estimated noise parameters for Lena images corrupted with three
combinations of values of the parameters which are: σG = 15, σω = 1.5, γ = 0.5;
σG = 5, σω = 1.5, γ = 0.5 and σG = 0.5, σω = 0.5, γ = 1. The experimental
results are close to the real values, in particular for the green channel. Throughout all
these tests and results, it has already been shown that the noise variance varies as a
function of intensity in the image.

Once the efficiency of the noise estimation algorithm has been verified for different
images and different types of noise, let us now proceed to the denoising of these images
based on the obtained noise parameters, which will serve as inputs for the proposed
denoisingmethod. Indeed, in this part of section, the proposedfilter is evaluated in com-
parison with SRAD and DPADmethods. The SRAD andDPAD codes can be obtained
from Mathworks website at (https://fr.mathworks.com/matlabcentral/fileexchange/
36906-detail-preserving-anosotropic-diffusion-for-speckle-filtering-dpad) [7]. The
input parameters of SDN-RAD are the original image with synthetic noise, the step
time �t , the kernel size for computing instantaneous noise coefficient of variation
is equal to3 × 3, the number of iteration i ter and automatic and instantaneous noise
parameters:σG , σωandγ . Experiments are carried out to show the performance of noise
reduction and the capability of structure preserving. Drawing from several references
on image processing, two measurement indexes are often used to assess the effect of
denoising algorithms, which are the root-mean-square error (RMSE) and the signal-
to-noise ratio (SNR). RMSE stands for root-mean-square error [19, 31, 56, 78, 88,
114]. It is a commonly used metric to measure the differences between the processed
image and its original image. The lower the value of RMSE, the lower the error and

https://fr.mathworks.com/matlabcentral/fileexchange/36906-detail-preserving-anosotropic-diffusion-for-speckle-filtering-dpad
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Fig. 15 From left to right: original noise free image and noise free ROI; noisy image (γ = 0.5, σω =
0.5, σηG = 10); and noisy ROI

it designates a better filtered image. RMSE is calculated as follows:

RMSE =
√√√√ 1

M × N

M∑
i=1

N∑
j=1

[
Ip(i, j) − I (i, j)

]2

Here M and N are, respectively, the width and the height of the image, Ip is the
enhanced image, and I is the free noise/original image. (i, j) are the pixel locations.
SNR is a well-known quantitative measure in image processing and is widely used
for evaluating the quality of denoising algorithms, image compression techniques, and
image acquisition systems. It provides the ratio of the desired image information to the
undesired noise that may corrupt the image quality, which allows to offer an objective
evaluation for easy interpretation and comparison of denoising techniques (i.e., SNR
quantifies the power of the noise present in the image). A higher SNR value indicates
a better the image quality.

SNR is defined by the ratio between the variance of the noise free image and the
variance of processed image where formula is expressed as follows:

SNR = 10 • log10

[ ∑M
i=1

∑N
j=1 [I (i, j)]

2∑M
i=1

∑N
j=1

[
Ip(i, j) − I (i, j)

]2
]

Firstly, experiments are performed on the ’65019.jpg’ image, which is corrupted
with synthetic noise by the following parameters: (γ = 0.5, σω = 0.5, σηG = 10).
Zoomed region of interest (ROI) is used to show more details for small objects after
denoising (see Fig. 15).
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Figure 16 shows the results of zoomed restored sub-images after application of
the three filters, SRAD, DPAD, and the proposed one (SDN-RAD) for red, green, and
blue components. In view of these outcomes, we can observe that SDN-RADpreserves
image structuresmuch better than SRAD andDPADfilters for three channels. Also, its
correspondent result of colored sub-image is very well denoised without changing the
content of the original image. In addition, it has a better visual quality in comparison
with the other filters. Indeed, the color of the obtained image, edges, and fine structures
is better preserved. Table 1 includes setting parameters of each filter (SRAD, DPAD,
and SDN-RAD) and their simulation results of SNR and RMSE.

The term "�t" is the step time, and "Runtime" is the period of time during which
the algorithm is running. From the data presented in the table, SDN-RAD shows good
results for both SNR and RMSE for the three channels, since it has reached a good
performance with the greatest SNR value and the lowest RMSE score.

Fig. 16 From top to bottom and from left to right: noisy sub-image for red channel and its correspond results
obtained by DPAD, SRAD, and the proposed method; results for green channel, red channel, and colored
noisy sub-image; and denoised sub-image by DPAD, SRAD, and the proposed method
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Fig. 17 Denoised red Lena image (Fig. 14); noisy red channel and obtained results, respectively, of SDN-
RAD, SRAD, DPAD-Median, and DPAD-Moda

In order to enhance the assessment of the effectiveness of the proposed algorithm,
simulation studies were performed using other image corrupted with different param-
eters of synthetic noise. Figures 17, 18, and 19 show obtained results of the smooth
out of Lena image for red, green, and blue channels corrupted with noise character-
istics: γ = 0.5, σω = 1.5, σηG = 15. To provide a clear visual demonstration of the
algorithm’s effectiveness, two regions of interest (ROI) are selected in noisy Lena
image. By placing, side by side, the both noisy, and denoised ROI images, it can be
directly compare the changes in noise level, detail preservation for each algorithm
(see Figs. 17, 18, 19, and 20). Interpretation of the results obtained by our algorithm
shows that noise has been considerably reduced from the original image, producing
in a cleaner and more visually appealing results than SRAD and DPAD. From results
in Tables 5 and 6, our algorithm is expensive in execution time (highest runtime)
against SRAD and DPAD filters, this is due particularly to the noise estimation pro-
cess. Indeed, noise estimation in SRAD and DPAD is a matter of a few instructions,
but for our method, noise estimation requires several steps, such as calculating the
statistics pair (variance and mean intensity value) for each pixel, selection of weak
textured regions (by PCA and a texture strength metric), and adjusting the parameter
values that make the observed data most likely according to the assumed statistical
model by the ML-Estimator approach.

Now, the imagewith textured regions in Fig. 11 is used to showcase the effectiveness
of present algorithm in preserving fine textures while reducing noise during denoising
process. Experimental results were applied and displayed in Fig. 21. The simulation
results are shown in Table 7. From the performance of each denoising algorithm, our
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Fig. 18 Denoised green Lena image (Fig. 14); green component of noisy Lena image (Fig. 16); noisy green
channel and its correspondent results of SDN-RAD, SRAD, DPAD-Median, and DPAD-Moda

Fig. 19 Experiment outputs on blue component of noised Lena image (Fig. 14); noisy blue channel and its
correspondent results of SDN-RAD, SRAD, DPAD-Moda, and DPAD-Median
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Fig. 20 Experiment outputs on color noisy Lena image (Fig. 14); from top to bottom and from left to right:
color free image, noisy image, and its correspondent results with: SRAD, proposed method, DPAD-Moda,
and DPAD-Median
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Table 5 Simulation results of the three filters of ’65019.jpg’ image for synthetic noise with (γ = 0.5, σω =
0.5, σηG = 10)

Noise parameters:
(γ = 0.5, σω = 0.5, σηG = 10)

Channel �t Runtime (s) SNR RMSE

Red

SRAD 0.2 0.41 22.5894 7.18

DPAD 0.2 116.49 19.1476 13.52

SDN-RAD 0.1 6672.36 27.4714 1.62

Green

SRAD 0.2 0.52 22.8580 3.86

DPAD 0.2 146.39 25.8595 2.24

SDN-RAD 0.1 342.06 22.4636 1.83

Blue

SRAD 0.2 0.41 16.0282 0.46

DPAD 0.2 41.42 16.0462 0.85

SDN-RAD 0.1 74.95 17.3264 0.41

Noise parameters:
(γ = 0.5, σω = 0.5, σηG = 10)

Color image �t Runtime (s) SNR RMSE

SRAD 0.2 1.43 20.4919 3.83

DPAD 0.2 1890 19.2191 5.5367

SDN-RAD 0. 1 7089 23.5524 1.2867

Bold indicates the results obtained by the proposed method

improved algorithm has clear advantages over other filters for mixed noise suppression
and a visual effect, as well as the SNR and RMSE characteristics have reached a good
level. However, both the DPAD-Median, DPAD-Moda algorithms, and the SRAD
algorithm can only filter clear regions in the image with specific noise and cannot
better deal other regions, especially the slightly dark areas, containing complex noise.
In contrast with SDN-RAD, that can suppress complex noise from any area of the
image.

5 Conclusions

Despite extensive research on removing synthetic noises such as AWGN and speckle
noise, few have focused on real image denoising. However, real noise is a combining of
several kind of noises such as additive andmultiplicative noises. The biggest challenge
is the complexity of real noise because experimental usual noise is much simpler than
real one. It is pixel-independent, also simplified as single component and not related to
color components.On the other hand, real noise is pixel-dependent andmostly spatially
correlated and channel-variant. Therefore, the noise analysis and accurate modeling
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Table 6 Simulation results of the three filters of Lena image for synthetic noise with (γ = 0.5, σω =
1.5, σG = 15)

Noise parameters:
(γ = 0.5, σω =
1.5, σηG = 15)

Channels �t Runtime
(sec)

SNR RMSE

Red

SRAD 0.2 1.19 25.8981 0.62

DPAD-Moda 0.2 158.62 16.9445 15.78

DPAD-Median 0.2 209.32 16.2768 20.90

SDN-RAD 0.2 1723.36 27.2006 0.30

Green

SRAD 0.2 1.94 20.4054 1.37

DPAD-Moda 0.2 47.49 21.1410 0.65

DPAD-Median 0.2 0.68 15.9182 13.19

SDN-RAD 0.2 2443.67 21.6555 0.03

Blue

SRAD 0.2 7.6652 18.7488 3.89

DPAD-Moda 0.2 65.39 20.3519 2.92

DPAD-Median 0.2 1.07 20.0620 2.83

SDN-RAD 0.2 3209 20.9590 0.0347

Noise parameters:
(γ = 0.5, σω =
0.5, σηG = 15)

Color image �t Runtime (s) SNR RMSE

SRAD 0.2 10.7952 21.6841 1.9600

DPAD-Moda 0.2 271.500 19.4791 6.4500

DPAD-Median 0.2 231.070 17.5156 12.3067

SDN-RAD 0.2 7376.03 23.2717 0.1216

Bold indicates the results obtained by the proposed method

of noise guarantee an accurate estimation of the noise and then the development of an
effective denoising scheme. In this paper, an improved version of the SRAD filter is
developed to optimize the performance of removing a real noise in CCD images. The
characteristics of the SRAD filter makes it perfectly suitable for noise removing in the
case of images with smooth areas, but when the image is textured, the edge and texture
information in the enhanced image cannot be well preserved. In addition, it is adopted
for ultrasonic and radar imaging affected by noise with some assumptions, such as
a purely signal-independent, multiplicative, and white. However, these assumptions
simplify the effect of thefilter, as theygenerally lead to unsatisfactory denoising results,
especially for images with the general type of noise and intricate details. To overcome
these limitations, the present paper has suggested a new denoising system, designed
for more general signal-dependent noise. It is based heavily on the accurate estimation
of noises parameters. This is a typical SRAD filter approach, but with the insertion of
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Fig. 21 Experiment outputs of Fig. 11 (test image ’27059.jpg’ from BSD300 dataset); noisy image and its
correspondent results of proposed method, SRAD, DPAD-Median, and DPAD-Moda

an iterative select patch-based framework to accurately estimate the parameters of the
SDN. Extensive experiments demonstrate a significant increase in the image denoising
performance in terms of SNR and RMSE. The proposed new filter has shown great
potential for denoising imageswithout blurring them, preserving texture details, edges,
and small details. However, the main problem with performance here is the fact that
the method is slow and requires the time-consuming computation of noise parameters.
In summary, this study is about using a variant of the anisotropic diffusion technique
with estimating general noise models for image denoising purposes. The noise model
estimation not only has a good denoising effect but also can retain fine details of the
noisy image.
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Table 7 Simulation results on three channels of Fig. 21 for characteristics synthetic noise (γ = 0.5, σω =
1.5, σG = 15)

Channels Runtime (s) SNR RMSE �t iter

SDN-RAD RED 1643.50 20.2685 0.0230 0.2 89

GREEN 1896.67 20.6373 0.0410 0.2 92

BLUE 1469.29 19.5486 0.0672 0.2 93

SRAD RED 0.1363 18.5495 0.0228 0.2 8

GREEN 0.3424 19.2342 0.0754 0.2 20

BLUE 0.5986 17.7297 0.0925 0.2 40

DPAD-Moda RED 9.29 15.3259 13.4572 0.2 120

GREEN 19.43 15.0800 15.8816 0.2 250

BLUE 11.93 18.3755 4.18 0.2 150

DPAD-Median RED 11.05 16.6092 12.94 0.02 150

GREEN 12.14 15.8080 17.19 0.02 150

BLUE 10.96 19.1270 3.44 0.02 150

Bold indicates the results obtained by the proposed method

For future work, the proposed method can be improved and expanded to other
applications in thefields of feature recognition, segmentation, and others. Furthermore,
the proposed technique involves numerous operations such as estimation steps of noise
parameters, image gradients, and partial differential equations during the removal of
noise from the image. Therefore, the next work will be to determine whether the
algorithm can be further improved to reduce the time spent.
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