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Abstract
The task of developing an automatic speaker verification (ASV) system for children
is extremely challenging due to unavailability of sufficiently large and free speech
corpora from child speakers . On the other hand, hundreds of hours of speech data
from adult speakers are freely available. Therefore, majority of the works on speaker
verification reported in the literature deal predominantly with adults’ speech, while
only a few works dealing with children’s speech have been published. The challenges
in developing a robust ASV system for child speakers are further exacerbated when
we use short utterances which is largely unexplored in the case of children’s speech .
Therefore, in this paper, we have focused on children’s speaker verification using short
utterances. To deal with data scarcity, several out-of-domain data augmentation tech-
niques have been utilized. Since the out-of-domain data used in this study is from adult
speakers which is acoustically very different from children’s speech, we have resorted
to techniques like prosodymodification, formantmodification, and voice conversion in
order to render it acoustically similar to children’s speech prior to augmentation. This
helps in not only increasing the amount of training data, but also in effectively cap-
turing the missing target attributes relevant to children’s speech. A staggering relative
improvement of 33.57% in equal error rate with respect to the baseline system trained
solely on child dataset speaks volume of the effectiveness of the proposed data aug-
mentation technique in this paper. Further to that, we have also proposed frame-level
concatenation ofMel-frequency cepstral coefficients (MFCC) with frequency-domain
linear prediction coefficients, in order to simultaneously model the spectral as well
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as temporal envelopes. The proposed idea of frame-level concatenation is expected to
further enhance the discrimination among the speakers. This novel approach, when
combined with data augmentation, helps in further improving the performance of the
speaker verification system. The experimental results support our claims, wherein we
have achieved an overall relative reduction of 38.04% for equal error rate.

Keywords Automatic speaker verification · Out-of-domain data augmentation ·
Prosody modification · Formant modification · Feature concatenation ·
Frequency-domain linear prediction

1 Introduction

Automatic speaker recognition is the process of automatically recognizing a speaker
from his/her voice samples. Speaker recognition is divided into two main activities
viz. speaker identification and speaker verification [26]. In the case of speaker iden-
tification, the aim is to identify a speaker from among either a closed or an open set
of speakers given the test speech sample. On the other hand, automatic speaker verifi-
cation (ASV) addresses the poignant authentication issue of the claimed identity of a
speaker. In this process, a speaker feeds in his/her data and claims the identity of a par-
ticular person. The deployedASVsystem thendigs into its stored database andmatches
the earlier learned template of the claimed identity with the input speech sample. The
ASV system then pronounces the claim to be genuine if the test speech samples and
the stored template match to a certain permissible degree; else the speaker is declared
an impostor. An ASV system can be further categorized into ‘text-dependent’ and
‘text-independent’ depending upon whether the word or sentence level transcriptions
of the speech inputs are used while developing the ASV system.

In the past quinquennial, social networking websites and e-learning tools have
become the new normal among people of all age groups. These technological marvels
come as a package, which is fraught with dangers of losing sensitive data and identity
theft. Those keeping abreast with it should be wary of these lurking perils. Even
though such a menacing issue can victimize anyone, children who are less aware
of the magnanimity surrounding the perils of losing sensitive data and identity theft
become more vulnerable targets. To address such an intimidating issue, a plethora of
security measures are being deployed; automatic speaker verification system is one
among those. The necessity of a robust ASV systems considering their pivotal role in
providing security and protection, entertainment, games and education, surveillance
[14] has thus taken a center stage in these testing times and is bound to grow by leaps
and bounds in the years to come. The focus of the researchers around the globe are
thus riveted on the development of an ASV system that can ascertain the speaker’s
identity with a low error rate. Dismally, the major chunk of the works reported in the
literature hover around with the task of building an ASV system for adult population.
The literary works reported on building an ASV system for children are regrettably
minimal [20, 26, 33].Motivated by these facts, thework presented in this paper focuses
on developing an ASV system for child speakers.
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1.1 Challenges

Building a state-of-the-art children ASV systems is plagued by several challenges and
no wonder why literary works reported in this domain is minimal. The lack of sizable
speech corpora which are freely available act as the first roadblock. Further, children
speech corpora are available in only a handful of languages spoken across the globe
[26]. For the languages inwhich children’s speech corpus is unavailable (zero-resource
condition), developing an ASV system is quite a formidable task. Even if a limited
amount of children’s speech data is on offering (low-resource condition), developing
a children’s ASV system, exploiting recently proposed techniques employing deep
learning architectures is still very challenging. State-of-the-art ASV systems incorpo-
rate deep learning architectures that require estimating a large number of parameters.
This, in turn, requires a large amount of domain-specific data. To circumvent with
the low- and zero-resource conditions, a few earlier works on children’s ASV have
performed extensive studies on the impact of synthetically generating speech data that
have acoustic attributes similar to that of children’s speech and then pooling it into
training. Out-of-domain data augmentation has been reported to be effective in the
context of children’s ASV task [25].

The performance of an ASV system for children is further dented when there
is a reduction in the duration of the test speech utterances, commonly termed as
short-utterance situations. Speech segments of duration 5–10 seconds are commonly
termed as short-utterances in the literary domain. The unavailability of sufficiently
longer duration of speech data can be tackled during training phase by some data
augmentation techniques; it is not feasible to do the same during the testing phase
[14]. The works reported on children’s ASV hardly deal with such short-utterance
scenario.

1.2 Proposed Approaches

Motivated by the facts discussed earlier, we have studied the role of out-of-domain
data augmentation in the context of short-utterance-based children’s ASV task. In this
regard, we have explored the effect of synthetically generating speech data which is
acoustically similar to that of children’s speech from the available adult speech corpus
prior to augmentation. The techniques used to address the dearth of domain-specific
data explored in this paper includes (i) voice conversion (VC) of adults’ speech data
through a cycle-consistent generative adversarial network (C-GAN) [8], (ii) prosody
modification (PM) [22, 24] of adults’ speech, i.e., optimally changing the pitch and
duration of the speech data from adult speakers, and (iii) up-scaling the formant fre-
quencies (FM) [9, 12] of adults’ speech data. All the explored techniques modify the
attributes of adults’ speech in order to render it acoustically similar to children’s speech.
Therefore, the explored out-of-domain data augmentation techniques are observed to
be very effective as demonstrated through the experimental studies presented in this
paper.

In general, the Mel-frequency cepstral coefficients (MFCC) are the most widely
used front-end acoustic features in the context of speaker verification task. However,
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in this study, we have also explored the role of another well-known front-end speech
parameterization technique namely frequency-domain linear prediction (FDLP) coef-
ficients. The MFCC features capture the spectral envelope. On the other hand, the
FDLP features capture the temporal envelope. In this paper, we have explored the
efficacy of FDLP in isolation as well as in combination with MFCC features in the
context of children’s speaker verification task. Our experimental explorations show
that simultaneous modeling of temporal as well as spectral envelopes (i.e., frame-level
concatenation of MFCC and FDLP features) leads to better results compared to the
case when eitherMFCC or FDLP features are used. Furthermore, we have also studied
the effectiveness of employing three different filter-banks while extracting the FDLP
features. The studied filter-banks are the Mel-, Bark-, and linear filter-banks. The pre-
sented experimental evaluations show that using linear filter-bank while extracting the
FDLP features yields superior results. This is because of the fact that a significant
amount of relevant spectral information is present in the higher-frequency compo-
nents in the case of children’s speech that get averaged out when either the Mel- or
Bark-filter-banks are used. On the other hand, the use of linear filter-bank helps in
effectively preserving the information present in the higher-frequency components.

As demonstrated later in this paper, the proposed frame-level concatenation of
the two kinds of front-end acoustic features increases the class separation among
the speakers. This, in turn, enhances the performance with respect to children. The
experimental evaluations demonstrate that an ASV system trained after concatenating
FDLP features with MFCC features outperforms the one trained on MFCC/FDLP
alone. The paper also elucidates the age-group as well as gender wise analysis of
system performance to figure out the consequences of data augmentation and feature
concatenation. This proposed approach aids in considerably subsiding the equal error
rate (EER) and detection cost function (DCF) as opposed to our baseline system trained
exclusively on children’s speech usingMFCC features. TheASV system for children’s
speech incorporated in this work for experimental evaluations employs x-vector-based
speaker representation along with probabilistic linear discriminant analysis (PLDA)
based scoring.

The remainder of this paper is organized as follows: Section2 presents a com-
prehensive literature review of some of recent papers underlining the importance of
representing temporal structures using FDLP inASV related tasks. Section3 describes
the proposed out-of-domain data augmentation techniques to deal with scarcity of
domain-specific data. In Sect. 4, we have cast light upon the motivation of frame-level
concatenation of FDLP and MFCC features in our proposed children ASV system.
The experimental evaluations exhibiting the efficacy of our proposed technique are
presented in Sect. 5. In Sect. 6, an overview of the discussed approaches are tabulated
along with the advantages and limitations of each discussed approach. Section7 talks
about the future scope of this work. Eventually, the conclusion in Sect. 8 brings down
the curtain on the paper.
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2 RelatedWorks

Spectrum-based analysis techniques are traditionally used in automatic speech and
speaker recognition for acoustic modeling. Spectral structures such as formants do
convey essential linguistic details but its only a partial representation of speech sig-
nals. On the other hand, temporal structure in the sub-10ms transient segment contains
crucial indications for both the perception of natural sounds and the comprehension of
speech stop bursts. This underlines the importance of capturing the temporal envelop
along with spectral envelop in the performance of speaker verification tasks. Earlier
works have shown that modeling the temporal envelop helps in enhancing the perfor-
mance of tasks such as recognizing reverberant speech [31], replay spoofing attack
detection [32], spoken term detection [13] and speech synthesis attacks [21]. ASV
systems are susceptible to a number of spoofing attacks, including replay, voice con-
version, and speech synthesis. In [32], the authors’ presented a study on temporal
envelope features for the detection of replay spoofing attacks, which were extracted
using the FDLP framework.

The study in [10] proposes to use FDLP coefficients for dialect classification moti-
vated by its long temporal summarization during pole estimation. Support vector
machine (SVM) and feed-forward neural network (FFNN) classifiers use the i-vectors
and x-vectors derived from both baseline (MFCCs, linear prediction cepstral coeffi-
cients (LPCCs), perceptual LPCCs (PLPCCs), RASTA filtered PLPCCs (PLPCC-R)),
and FDLP features to identify the dialects. It has been demonstrated in that study
that FDLP coefficient features outperform baseline features like MFCCs and PLPCC.
Additionally, it is demonstrated that the baseline features and the FDLP features
include complementary information.

Language identification systems performance degrades on account of a mismatch
between training and testing speech utterances, especially when dealing with short
duration utterances. The idea that long-term trends are less impacted by this mismatch
than short-term features is explored in [5]. It specifically suggests using characteristics
based on the temporal envelopes of sub-bands. In that study, linear prediction in the
frequency domain is used to get the temporal envelopes. The cepstral characteristics
are then created from those envelopes. A bidirectional long short-term memory recur-
rent neural network is then employed in order to identify languages. Experimental
analyses shows that in comparison with baseline features, the proposed features dis-
play significantly improved robustness under various noise and mismatch conditions.
Particularly, across the test-set, the proposed features outshine cutting-edge bottleneck
characteristics.

The speech activity detection (SAD) technique for speaker verification in noisy
contexts is presented in [6]. The phoneme posteriors obtained from a multi-layer per-
ceptron (MLP) are the foundation of the proposed SAD. In order to train the MLP,
long temporal chunks of the speech streamwere examined in key bands utilizing mod-
ulation spectral characteristics. FDLP was used to determine the temporal envelopes
for each sub-band. A minimum mean square envelope estimate technique produced
sub-band envelopes that were resilient. The trained MLP used the speech features as
input to calculate phoneme posterior probabilities. To determine speech/non-speech
decisions for SAD, all speech phoneme probabilities were combined into a single
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speech class. The suggested SAD was used for a speaker verification task employing
noise degraded versions of the NIST 2008 speaker recognition evaluation data, and it
significantly reduced the relative equal error rate and hence enhanced the performance
of the ASV task.

The work in [7] presents a strong text-dependent speaker identification system
based on the unique FDLP feature. With the use of a 2-D regressive model, this
feature was extracted from the all pole system. Performances of the proposed approach
were evaluated in both quiet and noisy environments. Under noisy situations, the
introduced technique performed better than all competing methods for all studied
signal to noise ration (SNR) values, and its performance in clean conditions was
equivalent. The suggested method also produced a consistent pattern across many
noise types and offered very reliable performance. The findings of this study reveal
that the suggested method may simulate the human voice production system quite
precisely, which accounts for its robustness.

It is imperative to realize and appreciate that all the aforementioned works on
FDLP-based ASV system are built for adult speakers and none of them addresses the
challenges involved in building short-utterance-based children’s ASV system. This
motivated us to study the impact of employing FDLP features in the case of children’s
ASV task using short-utterances. To the best of our knowledge, the effectiveness of
FDLP features in the context of children’s ASV task has not been studied yet. The
work presented in this paper studies the role of FDLP features not only in isolation
but also in combination with MFCC features. The experimental evaluations presented
in this paper suggest that simultaneous modeling of both spectral as well as temporal
envelopes is more powerful thanmodeling either of the two in isolation. Hence, frame-
level concatenation of MFCC and FDLP features is proposed in this study.

3 Data Augmentation

As mentioned earlier, state-of-the-art ASV systems employ x-vectors-based speaker
representation. For extracting the x-vectors, a time-delay neural network (TDNN)
comprising of a large number of hidden layers and hidden nodes per layer is trained.
When the training data is amply large, the fixed length vector representation derived
from the speech data (aka x-vectors) are reported to be immensely effectual. As already
discussed, one of the hindrances in the development of a reliable ASV systems for
children is a dearth of domain-specific data. Therefore, training an x-vector-basedASV
system on a limited amount of children’s speech results in a lackluster performance.
Out-of-domain data augmentation can help alleviate this problem. Motivated by this,
we have resorted to synthetically generating speech data which is acoustically similar
to that of children’s speech using the available adults’ speech corpus. The synthetically
generated data were then pooled into training in order to circumvent the detrimental
effect of data scarcity.

Several ways of data augmentation have been explored in this work and are briefly
explained in the following:



Circuits, Systems, and Signal Processing (2024) 43:1715–1740 1721

Fig. 1 Block diagram summarizing the different out-of-domain data augmentation techniques explored in
this study
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Fig. 2 Block diagram summarizing the out-of-domain data augmentation technique proposed in this paper

1. In the first approach, the adults’ speech was subjected to voice conversion (VC)
using a cycle-consistent generative adversarial network. The C-GAN was trained
using 10 minutes of speech data from both adult as well as child speakers. Due to
VC, adults’ speech utterances sound very similar to children’s speech as noticed
during the listening tests. Finally, the voice converted adults’ data was pooled with
the children’s speech as well as the original adults’ speech. The model parameters
were then trained on the pooled data. The overall scheme is pictorially represented
in Fig. 1a.

2. In the second approach, children’s speech was pooled together with adults’ data
along with the prosody modified (pitch and time-scale modification) adults’ speech
as shown in Fig. 1b. In this case, pitch of speech data from the adult speaker was
increased by a factor of 1.35, while the duration was increased by a factor of 1.4.
These scaling factorswere determined from the earlier reportedworks on children’s
speech recognition [23]. The motivation behind this approach lies in the fact that
children’s speech exhibits higher fundamental frequency or pitch as opposed to
adult’s speech. The variation of pitch among children of diversified ages is also very
evident. Further, it is also a well-known fact that on an average, the speaking-rate
for children is lesser than that for the adult speakers. Hence, stretching the speech
utterances from adult speakers can compensate for the differences in the speaking-
rates. In order to perform prosody modification (PM), the technique reported in
[17] was used.

3. The formant frequencies in children’s speech are higher as compared to those for
the adults owing to the fact that vocal tract length is smaller in the case of child
speakers. In addition to that the average phoneme duration in case of children is
longer. As a result, the speaking-rate of children is slower as compared to adults
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as already mentioned. These differences in the acoustic characteristics of a child
speaker in contrast to an adult speaker leads us to the third approach for data
augmentation wherein the formant frequencies (FM) of adults’ speech data are
up-scaled by a factor of 0.08. At the same time, the speaking-rate of adults’ speech
data was decreased by a factor of 1.4 through time-scale modification (TSM) [17].
The modified adults’ data was then pooled together with the children’s speech data
and the unperturbed adult speech data. This approach is pictorially represented in
Fig. 1c. The mentioned scaling factors were determined from the earlier works as
already mentioned [11, 23].

4. Finally, in the proposed approach of data augmentation, the speech data from chil-
dren as well as the unperturbed adults’ speech data were pooled together with all
the modified versions of adults’ data discussed above. The proposed data augmen-
tation technique is summarized pictorially in the block diagram shown in Fig. 2.
This helps to further increase the amount of training data. At the same time, all the
targeted missing acoustic attributes are well-captured by the resulting training set.

It is noteworthy here that even though the aforementioned techniques of syntheti-
cally generating speech data are well-acclaimed in the literary works, their efficacy in
the context of children’s ASV systems using short utterances are relatively unexplored.

4 Role of feature concatenation

In the second part of this paper, as discussed earlier, we have studied the effect of
concatenating two complementary front-end acoustic features at the frame-level in
order to enhance the performance of the children’s ASV system. In this regard, we
have chosen the MFCC and FDLP features. The MFCC features are well-known and
most commonly used front-end acoustic features in the context of speaker verifica-
tion. The MFCC features model the spectral envelop corresponding to each of the
short-time frames. However, the temporal structure is not effectively represented. In
order to address this short-coming, the velocity and acceleration coefficients are gen-
erally appended to the base features. In recent years, time-splicing has been utilized
in the place of appending velocity (delta) or acceleration (delta-delta) coefficients.
This shows that effectively capturing the temporal envelop is also critical. Earlier
works have shown that effective modeling of the temporal peaks can aid in improving
the efficacy of several speech processing tasks [13, 31, 32]. The front-end acoustic
features used in those works are FDLP features. The FDLP features capture the tem-
poral envelope by applying linear predictive coding on the spectra rather than the
time-domain representation. Hence, the MFCC and FDLP features represent com-
plementary acoustic information. Motivated by the complementary nature of the two
features, it is expected that frame-level concatenation of the two types of features will
also enhance the performance of children’s ASV task.

In Fig. 3, we have pictorially outlined the frame-level concatenation approach.
Given the speech signal, first, we extract MFCC and FDLP features. Next, for each
of the short-time frames, the corresponding MFCC and FDLP features are appended.
The resulting feature vectors are used as the input to the x-vector extraction process
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Fig. 3 Block diagram outlining the procedure for concatenating MFCC and FDLP features

instead of the MFCC features. It is worth highlighting here that the role of FDLP
features in the context of children’s ASV task is unexplored.

In order to study the effect of feature concatenation, the following analysis was
performed. Three child speakers were chosen randomly from the available speech
corpus. Next, we took the MFCC features corresponding to all the speech utterances
from those speaker. Finally, t-SNE plot was drawn using the selected MFCC features,
each speaker being treated as one class. The t-SNE plot corresponding to this study
is shown in Fig. 4a. This study was repeated using FDLP features as well as after
frame-level concatenation of MFCC and FDLP features. The corresponding t-SNE
plots are shown in Fig. 4b and c, respectively. As evident from the t-SNE plots, the
speaker clusters move farther apart when FDLP features employed in place of MFCC
features. In addition to that overlap among the speaker clusters is significantly less
when the two features are concatenated. Therefore, the proposed idea of frame-level
concatenation is expected to enhance the discrimination among the speakers. The same
has been experimentally verified in this paper.

Since the proposed feature concatenation approach involves MFCC and FDLP
features, in the following subsections, the two types of features are discussed for the
sake of completeness. The discussion given next closely follows the works reported
in [3] and [1], respectively.

4.1 Mel-frequency cepstral coefficients (MFCC)

Mel-frequency cepstral coefficients are the most commonly used front-end acoustic
features as already mentioned earlier. During the MFCC feature extraction process,
the speech signal is first analyzed into overlapping frames of short duration followed
by the computation of short-time Fourier transform (STFT). Next, spectral warping is
done over a non-uniform frequency scale by using triangular Mel-filter-bank. Resul-
tant power spectrum undergoes Logarithmic compression followed by discrete cosine
transform (DCT). Applying DCT yields the real cepstrum (RC). The final feature vec-
tors that are fed as input while training any classifier are obtained by low-time liftering
of real cepstrum. The overall process is summarized in the block diagram shown in
Fig. 5.
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Fig. 4 t-SNE plots depicting the superior discrimination among speaker clusters obtained through frame-
level concatenation of MFCC and FDLP features

4.2 Frequency-Domain Linear Prediction (FDLP) coefficients

Now, its time to redirect our focus to the extraction procedure of an alternative acous-
tic front-end feature utilized in this study, namely the FDLP. To facilitate the process
of feature extraction, the input speech signal is divided into segments, each approxi-
mately 1000 milliseconds in duration. These segments are subsequently broken down
into sub-bands, and the FDLP technique is employed to derive a parametric model
that characterizes the temporal envelope. In the case of shorter utterances, the input
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Fig. 5 Block diagram outlining the process of extracting MFCC features

Fig. 6 Block diagram outlining the process of extracting FDLP features

signal is padded with zeros to ensure an adequate number of samples before sub-band
decomposition. The collection of temporal envelopes from all the sub-bands creates
a two-dimensional representation in the time-frequency domain for the input signal.
This two-dimensional representation is subjected to convolution with a rectangular
window having a duration of 25 milliseconds and a frame rate of 100 Hz, with 10 mil-
liseconds of overlap between frames. These subsampled short-term spectral energies
are subsequently transformed into short-term cepstral features. The entire process is
succinctly illustrated using the block diagram depicted in Fig. 6

The FDLP feature extraction employed in the pilot study of this paper was carried
out using three different filter-banks: Mel-, Bark- and linear filter-banks. The brief
detail of each of these scales are summarized in the following: Mel-scale filter-banks
are a set of triangular filters with a peak response equal to unity at the center frequency.
The central frequency of each Mel-scale filter bank is uniformly spaced till 1000 Hz,
and it follows a logarithmic scale thereafter. The mapping from linear frequency scale
(f in Hz) to the Mel-frequency scale (m) is given by:

m = 2595 log10

(
1 + f

700

)
(1)

TheBark scale provides an alternative perceptuallymotivated scale to theMel-scale.
The basilar membrane (BM) which is an important part of the inner ear performs
the spectral analysis followed by speech intelligibility perception in humans. Each
point on the BM can be considered as a band-pass filter having a bandwidth equal to
one critical bandwidth or one Bark. The bandwidth of several auditory filters were
empirically observed and used to formulate the Bark scale. The transformation of
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linear frequency scale(f in Hz) into Bark-frequency scale (B) [18, 29] is given by:

B = 13 arctan

(
0.76f

1000

)
+ 3.5 arctan

(
f

7500

)2

(2)

The linear filter-banks’ resolution is alike for all the frequency components of the
spectral information. The linear-scale frequency of linear filter-bank may prove to be
beneficial for children’s ASV system as the filter-bank coefficients cover all speech
frequency ranges equally and considers them equally important. Earlier works have
shown that the higher-frequency components in children’s speech are richer in speaker-
specific information.Hence, effectively preserving those by the use of linear filter-bank
may improve the performance of an ASV system. The same has been experimentally
verified in this study.

5 Experimental Evaluation

In this section, the relative effectiveness of the proposed data augmentation technique
as well as the feature concatenation approach are experimentally verified and the
results are presented.

5.1 The Speech Corpora

Four different speech corpora were utilized for the development and evaluation of
children speaker verification system. Those corpora are CSLU kids corpus [27], CMU
kids corpus [4], PF-STAR children’s speech database [2] and WSJCAM0 adults’
speech corpus [19]. The details of each datasets are as follows:

1. CSLU kids corpus: This dataset consisting of spontaneous and prompted speech
comprising of 100 hours of data with 73, 100 utterances from 1100 children. The
contributing children speakers are in-between kindergarten to grade 10. The speech
data is sampled at 16 kHz rate. We have used this corpus as the training data in this
work.

2. CMUkids corpus: This dataset comprises of 9.1 hours of datawith 5, 180 utterances
from 76 children. The child speakers belong to the of age group 6 to 11 years. This
database is also sampled at 16 kHz rate. We have used this corpus as our test-set.
A total of 423, 388 genuine and 26, 403, 832 impostor trails are present in this
dataset. The average duration of the data in this corpus is 6seconds. Therefore,
evaluation on this set represents the short-utterance case.

3. WSJCAM0 corpus: This adults’ speech dataset is used for out-of-domain data aug-
mentation. This corpus consists of 15.5 hours of data with 7, 852 utterances from
92 adult speakers (male and female). The sampling rate is 16 kHz. After performing
several data modification techniques like voice conversion (VC), prosody modi-
fication (PM) and formant modification (FM) along with time scale modification
(TSM), a total of 63 hours of synthetic data generated usingWSJCAM0 for training
purpose with acoustic attributes similar to those of children’s speech.
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4. PF-STAR children’s speech database: This dataset comprising 8.3 hours of speech
data from 121 speakers was utilized for the development set. A total of 6, 664
genuine trails and 995, 420 impostor trails are present in this development set.
There are 856 utterances in this development set and duration of the utterances is
very long (up to 3 minutes).

5.2 Performance EvaluationMetrics

To evaluate the performance of the developed short-utterance based children’s ASV
system, the metrics used in this study are: equal error rate (EER) and decision cost
function (DCF). The EER is the location on the detection error trade-off (DET) plot
where the likelihood of both false acceptance rate (FAR) and false rejection rate
(FRR) is equal. Lower the value of EER, higher is the accuracy of the ASV system.
The severity of the two types of errors may not be equivalent. Consequently, it makes
sense to weight the two normalized error rates with

– The prior probability of targets in the expected application and
– The estimated costs of the two error types.

After applying these weightings, one obtains a scalar performance metric, popularly
called as detection cost function (DCF). The DCF is computed using Eq.3:

DCF = (CFRR ∗ FRR ∗ PTarg) + (CFAR ∗ FAR ∗ (1 − PTarg) (3)

whereCFAR andCFRR stand for the cost of FAR and cost of FRR, respectively. PTarg
is defined as the prior probability that the test speech wasmade by the claimed speaker.
The decision cost function for the NIST evaluation is represented as in Eq.3, where
PTarg is set to 0.01, the cost of false alarm CFAR is set to 1, and the cost of miss
CFRR is set to 10. The minimum value obtained on the test data is referred to as the
minimum DCF (minDCF). It can be obtained by selecting the score threshold such
that it minimizes Eq.3 on the test data.

5.3 Experimental Setup

The entire set-up for the ASV system was developed using the kaldi toolkit [15].
As already stated earlier, we have used two front-end acoustic feature namely Mel-
frequency cepstral coefficient and frequency-domain linear prediction coefficients.
It is worth mentioning here that the MFCC features were extracted using the Kaldi
toolkit while FDLP-based front-end speech parameterization was performed using
MATLAB. In the process to extract those two kinds of front-end features, speech
data were first high-pass filtered having pre-emphasis factor of 0.97. Each of the
speech utterances were analyzed into short-time frames using overlapping Hamming
windows. The duration of those overlapping Hamming windows were chosen to be
25 ms with a frame shift of 10 ms. A 30-channel log Mel-filter-bank was engaged for
warping of spectrum before extracting 30-dimensional MFCC features. On the other
hand, for the FDLP feature extraction, three different types of filter-banks, namely
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Mel-scale, Bark-scale and linear-scale filter-bank, were employed. The number of
modulation components and cepstral components were 14 and 30, respectively. The
frame length were chosen to be 25 ms with a frame shift of 10 ms, similar to that of
MFCC specifications.

The x-vector extractor consisted of a time-delay neural network (TDNN) architec-
ture [28] comprising of 7 hidden layers trained for 6 epochs. The parameters of the
network were trained using gradient descent algorithm [16, 28]. Each of the speech
utterances was finally represented as a 512-dimensional x-vector.

5.4 Experimental Results and Discussions

For experimental evaluations,wefirst performed an initial study using the development
set derived from the PF-STAR children’s speech database. The training set was com-
posed of the CMU kids corpus and the WSJCAM0 database along with its modified
versions. Since the amount of data used for training was lesser in duration, the overall
training time was also less. Hence, this study helped us to perform a larger number of
experiments in lesser amount of time. It also helped us in reaching meaningful con-
clusions in lesser amount of time and then translate it to the case of short utterances.
Furthermore, since the duration of the test utteranceswas significantly longer, it helped
us in gauging the severity of the problem faced when the duration of the test data is
reduced significantly. In the following, we first present the initial study employing the
development set. This is followed by the experimental evaluations performed in the
case short utterances.

5.4.1 An initial study using the development set

To test the feasibility, reliability and pertinence of the extracted front-end acoustic
feature, FDLP individually as well as in tandem with the classical MFCC features, a
pilot study was designed. The EER and minDCF values obtained for this pilot study
evaluated against long utterances of children’s speech test-set with respect to an ASV
system trained on either children’s speech or a mix of children’s and adults’ speech
along with the modified adults’ speech are given in Table 1. As evident from the table,
the EER and minDCF undergo appreciable improvement with the implementation of
the proposed data augmentation technique. A relative improvement of 35.86% with
respect to the baseline ASV system trained exclusively on child dataset is achieved
when the proposed data augmentation techniques is employed. This shows that the
missing targeted attributes have beenwell-captured as the consequence of the proposed
data augmentation. Consequently, the developed ASV system generalizes better for
the children’s speech. The separate impact of the augmented data for different setups
are also enlisted in Table 1 for comparison with the data augmentation technique
proposed in this paper.

Next, the effectiveness of the proposed feature concatenation approach was evalu-
ated. TheEER andminDCFvalues obtainedwhenMFCCand FDLP features extracted
from three different filter-banks were concatenated are given in Table 2 for the entire
test-set. The EER and minDCF values obtained when the ASV system is trained
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Table 1 EER and minDCF values for the children’s long-utterance speech test set demonstrating the
effectiveness of out-of-domain data augmentation techniques. The MODIFIED ADULT SPEECH in
the out-of-domain data augmentation scheme includes adult voice conversion (ADULT-VC), adult time-
scale modification (ADULT-TSM), adult formant modification (ADULT-FM) and adult pitch modification
(ADULT-PM)

Data used Evaluation Metric

for training EER(%) minDCF

CHILD (Baseline) 4.235 0.6442

CHILD + ADULT 3.574 0.5432

CHILD + MODIFIED ADULT SPEECH 2.931 0.4565

CHILD + ADULT + MODIFIED 2.716 0.3655

ADULT SPEECH (PROPOSED)

Bold used for specific numbers signify better performance of the proposed technique/approach in the paper,
compared to the other techniques

either using only MFCC features or using only FDLP features are also enlisted for
comparison. The proposed data augmentation technique has been employed prior to
the training of the ASV system. As evident from Table 2, relevant improvements are
observed in the evaluation metrics when MFCC features are concatenated with the
FDLP features. The frame-level concatenation of the MFCC features with the FDLP
features extracted after employing the linear filter-bank out-classes all other feature
concatenation pairs and culminates in a significant relative improvement of 22.34%
in EER on the entire test-set.

The preliminary study discussed so farwas conducted on a relatively smaller sample
size but serves as a valuable preparatory step before themain rigorous research process
is undertaken. The takeaways of this pilot study are as follows: Firstly, the evaluation
metrics obtained by the implementation of FDLP features alone is only slightly better
as compared to the implementation of only MFCC features. This suggests that model-
ing temporal envelopes alone (by using FDLP) or modeling spectral envelopes alone
(by using MFCC) is not enough. Concatenation of MFCC with FDLP, which simulta-
neously does spectral as well as temporal estimation, leads to more effective results in
terms of EER andminDCF. Secondly, it has alsomade evident that the feature fusion of
MFCC features with the FDLP features extracted from linear filter-banks provides the
most desirable results in context to children’s ASV system. The linear-scale frequency
of linear filter-bank proves to be beneficial for children’s ASV system as compared to
Mel-scale and Bark-scale since it effectively preserves the higher-frequency compo-
nents in children’s speech which are richer in speaker-specific information.

5.4.2 Rigorous Study: Case of Short utterances

In the previous subsection, the development set comprising of very long utterances
from children emphasized the efficacy of the frame level concatenation of MFCC
features with the FDLP features. Taking a cue from this, an extensive study involving
feature fusion model of MFCC and FDLP coefficients (extracted from linear filter-
banks) is undertaken to train the children’s ASV system on a large training dataset and
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Table 2 EER andminDCF values for theASV system trained on the full dataset obtained using the proposed
data augmentation technique, demonstrating the effectiveness of feature concatenation. This study was
performed on x-vector-based children’s ASV system employing long utterances for testing

Features EER (%) minDCF

MFCC 2.716 0.3655

FDLP_Linear 2.412 0.3588

MFCC + FDLP_Bark 2.395 0.3448

MFCC + FDLP_Mel 2.287 0.3631

MFCC + FDLP_Linear 2.109 0.3313

Bold used for specific numbers signify better performance of the proposed technique/approach in the paper,
compared to the other techniques

evaluated on short-utterances of children’s test-set. In this case, the CSLU kids corpus
was used for training purpose while the CMU kids database was used for evaluation.
The details of the different datasets used for training and testing purposes for both the
development set as well as the evaluation set is shown in Table 3.

The EER and minDCF values for the children’s short-utterance test set with respect
to an ASV system trained on either children’s speech or a mix of children’s and adults’
speech alongwith themodified adults’ speech are given in Table 4.When the proposed
out-of-domain data augmentation is applied, the EER of the ASV system climbs from
2.716% (for long utterances of development set) to 14.58% (for short utterances of
test-set), despite the fact that the amount of training data used in the latter case is 178.5
hrs as opposed to 87.6 hrs of training data in the former case. This brings forth the
gravity of the task in hand, namely the short-utterance case. Again, as evident from
the Table 4, the EER and minDCF values undergo successive improvement with the
application of subsequent data augmentation technique. A relative improvement of
33.6% with respect to the baseline system trained on child dataset alone is achieved
when the proposed data augmentation techniques is employed.

Next, we evaluated the effectiveness of the proposed feature concatenation
approach. The EER and minDCF values obtained when MFCC and FDLP features
are concatenated are given in Table 5. In this case, the proposed data augmentation
technique has been employed prior to training the ASV system. The EER andminDCF
values obtained when MFCC features are used are also enlisted for comparison. As
evident, an absolute reduction by 1% is achieved by feature concatenation. The detec-
tion error trade-off (DET) plot summarizing these results is shown in Fig. 7. In this
plot, baseline refers to the ASV trained exclusively on children’s speech using MFCC
features.

To gauge the effectiveness of proposed approaches in more detail, we have also
performed an age-wise analysis as well as gender-wise analysis of children’s speech.
To evaluate the effect of age variation, the test-set was split into two groups. The
first consisted of data from speakers belonging to age-group 6 − 7 years while the
second one comprised of speech utterances from speakers belonging to age-group
8 − 9 years. The EER and minDCF values for this experimental study are given in
Table 6. In this case as well, the proposed out-of-domain data augmentation has been
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Table 4 EER and minDCF values for the children’s short-utterance speech test-set with respect to an ASV
system trained on either children’s speech or a mix of children’s and adults’ speech along with the modified
adults’ speech

Dataset Evaluation metric

EER (%) minDCF (%)

CHILD 21.95 0.9975

CHILD + ADULT-FM-TSM 19.78 0.9881

CHILD + ADULT-VC 17.34 0.9751

CHILD + ADULT-PM 16.30 0.9492

CHILD + ADULT + ADULT-FM-TSM 14.58 0.9233

+ ADULT-PM + ADULT-VC (PROPOSED)

Bold used for specific numbers signify better performance of the proposed technique/approach in the paper,
compared to the other techniques

Table 5 EER and minDCF values with respect to the ASV system trained on the dataset obtained using
the proposed out-of-domain data augmentation technique and subjected to children’s short-utterances,
demonstrating the effectiveness of feature concatenation

Acoustic Evaluation metric

features EER (%) minDCF

MFCC 14.58 0.9233

MFCC + FDLP 13.60 0.9014

Bold used for specific numbers signify better performance of the proposed technique/approach in the paper,
compared to the other techniques

employed before training the x-vector extractor. As can be seen from the listed results
in Table 6, a significant degradation (reflected by the poor values of EER) is noted
for children in the lower age-group (6-7 years) compared to the children in the higher
age-group (8-9 years) or against the children in the full test-set. This may be attributed
to various factors, such as the development of language skills, motor control, and
cognitive processing as children grow and mature. Due to the inherent shorter vocal
tracts, children’s speech has higher formant frequencies and pitch frequencies, which
contribute to the degradation. The speaking rate tends to stabilize as children grow
and the formant frequencies subsides. Further as is evident from Table 6, the ASV
system trained solely on the MFCC features perform poorly in terms of evaluation
metrics. The children’s ASV system trained on the concatenated acoustic features
yields better results and this improvement is more profound in the lower age-group as
the concatenation of FDLP features with the MFCC features represent the spectral as
well as the temporal structure effectively.

The EER for the full test-set shows a relative reduction of 6.72% on the frame-
level concatenation of MFCC and FDLP feature, pictorially depicted by the first bar
in the Fig. 8. The corresponding relative reduction in EER for the age group 6 − 7
years is 11.90%, pictorially represented by the second bar in Fig. 8. The EER of age
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Fig. 7 Detection error trade-off plot demonstrating the effectiveness of proposed feature concatenation
approach

group 8 − 9 years shows a relative reduction of 9.25% when MFCC and FDLP are
concatenated, pictorially depicted by the third bar in Fig. 8.

Finally, the effect on the performance of the employed ASV system was evaluated
due to gender-wise grouping of the children’s speech test-set. The EER and minDCF
values for this experimental study are given in Table 7. As evident from the enlisted
results, a significant degradation (reflected in the poor values of EER) is noted for the
female children as compared to the male children or when compared with the children
in the full test-set. This degradation is due to higher formant frequencies and pitch of
female children’s speech compared to their male counterparts. Further, as evident from
the table, the EER considerably reduces when FDLP features are concatenated with
MFCC features. The relative reduction in EER for the female child on the frame-level
concatenation of the features is 9.27%, pictorially depicted by the fourth bar in Fig. 8.
For the male child, the relative reduction in EER is 8.55% as compared to the baseline,
pictorially depicted by the fifth bar in Fig. 8.
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Table 6 Age-group-specific
EER and minDCF values with
respect to the ASV system
trained on the dataset obtained
using the proposed
out-of-domain data
augmentation technique

Acoustic Age Evaluation metric
features group EER (%) minDCF

MFCC 6-7 17.39 0.9657

8-9 14.04 0.9203

MFCC + FDLP 6-7 15.32 0.9420

8-9 12.74 0.8983

Bold used for specific numbers signify better performance of the
proposed technique/approach in the paper, compared to the other tech-
niques

Fig. 8 Bar graph representation of the relative reduction in EER(%) for various speaker groups(in terms
of full test-set, age and gender) corresponding to the ASV system trained on the concatenated MFCC and
FDLP features

6 Summarized Overview

To sum it up, an overview of the discussed approaches in this paper along with their
advantages and limitations are summarized in Table 8.

7 Future Scope

As a future extension of this work, in addition to the out-of-domain data derived from
adults’ speech, we would like to explore the effectuality of in-domain data augmenta-
tion techniques for the purpose of increasing the amount and diversity of the captured
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Table 7 Gender-wise break up
of EER and minimum DCF
values highlighting the
significance of feature
concatenation approaches. This
study was performed on
x-vector-based ASV system
trained on a mix of children’s
speech and adults’ speech along
with the modified versions of
adults’ speech

Acoustic Child Evaluation metric

features Gender EER (%) minDCF

MFCC Female 17.68 0.9585

Male 10.05 0.8534

MFCC+FDLP Female 16.04 0.9382

Male 9.19 0.8049

Bold used for specific numbers signify better performance of the
proposed technique/approach in the paper, compared to the other tech-
niques

Table 8 Overview of the discussed approaches in the implementation of short-utterance-based children
ASV system

Discussed Approaches Advantages Limitations

1. Out-of-domain data
augmentation, employing
speech processing
techniques to modify the
acoustic attributes of adults’
data to match children’s
speech. These techniques
include VC, PM, FM-TSM

– Increase in amount of
training data leading to
more robust estimation of
model parameters;

– Modifying the acoustic
attributes of adult ensures
that the ASV system does
not get biased toward adult
speakers.

– Finding an optimal data
augmentation techniques
for the data training is
non-trivial;

– The underlying bias of the
original data is maintained
in the augmented data;

– Implementation of VC
using C-GANs is
computationally quite
intensive.

2. Front-end feature extraction:
MFCC

– Traditional front-end
acoustic feature which
effectively models the
spectral envelop at
segmental(10-30 ms) levels
of speech; – They provide
compact and stable
representation of vocal tract
of a speaker

– They fail to represent
details at sub-segmental
(3-5 ms) and
supra-segmental (100-300
ms) levels of speech.
Temporal structures are
only weakly represented,
even after employing
time-splicing techniques.

3. Frame level feature
concatenation of MFCC with
the FDLP features

– MFCC and the FDLP
features containing
complementary acoustic
information which helps in
simultaneously modeling
the spectral as well as
temporal envelopes;

– Proposed feature
concatenation results in
speaker clusters to move
significantly apart,
enhancing discrimination
among the speakers.

– Increase in dimensionality
due to feature concatenation
leads to an increase in
computational complexity
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acoustic attributes of children’s speech for training. In particular, we would like to
explore and incorporate the vocal tract length perturbation (VTLP) technique. VTLP
approach explicitly models and compensates for the ill-effects of variations in vocal
tract length by introducing diversity into the complete children speech dataset by creat-
ing numerous sets of data with varying linear warping factors. The out-of-domain data
augmentation techniques in tandem with the in-domain data augmentation techniques
are anticipated to reduce the EER and minDCF values, which will eventually help in
the realization of a more robust and dependable children’s ASV system. In addition,
the works discussed in [30, 34] were found highly influential, their findings as vital and
the authors’ would like to integrate these findings into children’s speaker verification
tasks in their future endeavor. In [30], a robust algorithm is used for identifying output
error (OE) models with constrained output in the presence of non-Gaussian noises,
addressing practical challenges such as rare, inconsistent observations and outliers.
The algorithm, based on Huber’s robust statistics theory, considers the significant role
of constraints in ensuring control performance and process safety. The proposed robust
algorithm, enhanced by optimal input design using a minimum variance controller,
demonstrates improved accuracy in parameter estimates for OE models compared to
linear identification algorithms, with simulations illustrating enhanced convergence
rates. The study in [34] focuses on addressing the issue of hybrid-driven fuzzy fil-
tering for nonlinear semi-linear parabolic partial differential equation systems facing
dual cyber attacks, including deception and denial of service attacks. The approach
involves employing a Takagi-Sugeno fuzzymodel for system reconstruction, applying
a hybrid-driven mechanism for filter design to balance system performance and lim-
ited network resource consumption, and using the Lyapunov direct method to establish
stability conditions for the augmented system.

8 Conclusion

The work in this paper outlines our efforts to create a reliable children’s ASV system
employing short-utterances under low-resource conditions. To address the inevitable
problem of speech data paucity, various out-of-domain data augmentation techniques
were explored to synthetically generate more data for training. Interestingly, all the
augmentation techniques have shown improvement from the previous augmented data
as evident from the result section. When the proposed data augmentation approach
is used, a relative improvement of 33.57% is made compared to the baseline system
trained on the child dataset alone. Out-of-domain data augmentation approach helps
in widening the diversity of the captured acoustic attributes, by introducing missing
desirable characteristics while keeping the acoustic mismatch in check. In addition to
data augmentation, the effectiveness of frame-level concatenation of MFCC with the
FDLP, is also examined in this paper. Traditional front-end acoustic features such as
MFCCsmodel the spectral envelop corresponding to each of the short-time frames. On
the other hand temporal structures are only weakly represented, even after employing
time-splicing techniques. The frame-level concatenation of the MFCC features with
the FDLP features are demonstrated to simultaneously model the spectral as well as
temporal envelopes in this work. Furthermore, age- and gender-wise analyses were
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carried out to study the combined effect of data augmentation and feature concatenation
on the ASV system performance. Children in the lower age bracket exhibiting more
pronounced inter-speaker variability, results in a degraded performance in terms of
EER and minDCF compared to the children in the higher age bracket. At the same
time, the employed ASV system incorporating both the proposed data augmentation
technique as well as feature concatenation is found to be more effective for children
in the lower age-group. The findings of this study will provide a foundation for future
advancements in children speaker verification systems in the context of short utterances
and contribute toward improved security, personalized experiences, and educational
opportunities for children while ensuring their safety and well-being.
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