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Abstract
Bright-dark components and edge details are themost important complementary infor-
mation between infrared and visible images. To extract and fuse them efficiently, a
novel non-subsampled morphological fusion algorithm is proposed in this paper. The
algorithm uses non-subsampled pyramid (NSP) as the spatial-frequency splitter to
decompose the source image to get a series of high-frequency detail images and one
low-frequency background image. Then, a dual-channel multi-scale top–bottom hat
(MTBH) decomposition is constructed to extract the bright-dark details from the low-
frequency background. In addition, to extract the edge details with different directions
fromhigh-frequency images, a dual-channelmultidirectional inner-outer edge (MIOE)
decomposition is constructed. Through these decompositions, the bright-dark infor-
mation and edge details present in the source images can be effectively extracted. Then,
based on the distinct roles of the extracted information, the decomposed images are
fused using diverse fusion strategies. Subsequently, the fused image is reconstructed
using the appropriate inverse transforms corresponding to each decomposition. The
experimental results demonstrate that the fusion images generated by this algorithm
exhibit richer details and higher image contrast compared to those produced by state-
of-the-art algorithms.
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1 Introduction

As commonly known, infrared sensors have the capability to accurately capture the
infrared radiation emitted by objects, independent of lighting conditions [16]. There-
fore, infrared images can highlight targets with high thermal radiation well (such as
the people in the infrared image in Fig. 1) [11]. Unfortunately, the spatial resolution
of infrared images is insufficient for displaying detailed textures clearly. Conversely,
visible images can provide clear textures and rich details, such as edges or lines. How-
ever, in situations with inadequate illumination or complex scenes, visible images
often struggle to display targets effectively (such as the people in the visible image
in Fig. 1) [26]. Hence, relying solely on a single infrared or visible image cannot
offer comprehensive information about a specific scene in numerous computer vision
applications. In dealing with this challenge, image fusion technology emerges as an
effective solution capable of synthesizing the information from both infrared and vis-
ible source images [41]. As a result, infrared–visible image fusion technology plays a
crucial role in various fields, including object recognition [35], remote sensing [37],
surveillance [15], and more.

To acquire high-quality infrared–visible fusion images, a large number of fusion
algorithms have been proposed. Among them, the fusionmethods based onmulti-scale
transformation have garnered significant attention and witnessed rapid development
[7, 8, 17]. For instance, the effectiveness of wavelet-based multi-scale transform
algorithms has been substantiated through numerous experiments and applications,
rendering them persistently studied and utilized to this day [9, 32, 40, 45]. However, a
limitation of these methods is their inability to effectively represent two-dimensional
singular information such as edges or lines [6]. Consequently, one has to propose
multidirectional wavelet [2–4], curvelet [1], contourlet [23], shearlet [14], and other

Fig. 1 A pair of typical infrared–visible images. The left one is an infrared image, and the right one is a
visible image
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methods [5, 29] to solve the above problem. Regrettably, these approaches often neces-
sitate designing complex filter banks, and their exceptional fusion performance comes
at the expense of real-time processing capability.

With the development of technology, hybrid multi-scale methods have emerged as
a solution to overcome the performance limitations of individual algorithms [12, 13,
42]. For example, Zhou et al. have proposed a novel fusion method based on hybrid
multi-scale decomposition. In their algorithm, the fused image can produce enhanced
visual effects by incorporating infrared spectral information [12]. Furthermore, with
the widespread adoption of deep learning, a plethora of deep-learning-based fusion
methods have been proposed in recent years [19–21, 27]. For example, in Ref. [18],
a fusion framework for infrared–visible images based on deep learning is presented,
while Ref. [20] combines a residual network with zero-phase analysis for the fusion
of infrared–visible images.

These deep-learning-based fusion methods are innovative and have achieved
notable achievements. But, according to Ref. [39], extensive fusion experiments sug-
gest that the improvement in fusion performance brought about by deep-learning
technology is quite limited. In most cases, these methods do not exhibit signif-
icant advantages compared to traditional classical algorithms. Additionally, there
are two prominent drawbacks associated with deep-learning-based methods. Firstly,
their fusion performance heavily relies on the availability of training datasets. Unfor-
tunately, constructing large-scale datasets is often challenging in many fields, and
ground-truth fusion images are frequently unavailable. Secondly, their generalization
capability is severely constrained. Fusion models trained on datasets of multi-focus
images usually show poor performance when confronted with other image types.
As a result, it is crucial to develop a general, high-performance fusion method for
infrared–visible images.

In general, the key to obtaining high-quality fusion images lies in extracting
and effectively fusing the complementary information present in the source images.
As is commonly acknowledged, the primary sources of complementary information
between infrared and visible images are texture details (such as edges and lines) and
bright-dark information. Therefore, fully extracting and efficiently fusing these ele-
ments is crucial for achieving optimal fusion outcomes. To address this objective, this
paper proposes a novel fusion method called non-subsampled morphological transfor-
mation (NSMT). Firstly, the NSP decomposition is applied to decompose the source
image into one low-frequency background image (LF) and a series of high-frequency
detail images (HF) with different resolutions. Secondly, a dual-channel multi-scale
morphological decomposition called MTBH is constructed to extract the bright-dark
details from theLF image. Simultaneously, a dual-channelmulti-directionmorpholog-
ical edge decomposition calledMIOE is constructed to decompose the HF images to
fully extract the edges with various directions. Subsequently, the edge images includ-
ing smooth images and detailed images are fused by the approach of choosing the
absolute maximum and window-gradient maximum, respectively. For the bright-dark
information from the background, the rule of “choosing brighter from the bright and
darker from the dark” is used to enhance image contrast. Finally, the fusion image is
reconstructed by corresponding inverse transformation.
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The rest of this paper is organized as follows: inSect. 2,wewill present and elaborate
on the details of the proposed algorithm, covering three key aspects: decomposition,
fusion, and reconstruction. Section 3 demonstrates the fusion performance of our
method through a series of fusion experiments. Finally, Sect. 4 provides the main
conclusions drawn from this research.

2 Proposed Algorithm

The flowchart of our NSMT is shown in Fig. 2, which consists of three processes, i.e.,
decomposition, fusion, and reconstruction. In Fig. 2, the iNSP, iMTBH , and iMIOE
are the inverse transformations of NSP, MTBH, and MIOE, respectively.

2.1 Decomposition

The decomposition process ofNSMT is shown inFig. 3. First, the source image f (x, y)
is decomposed to obtain K high-frequency detail images HFi and one low-frequency

Fig. 2 The flowchart of ourNSMT
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Fig. 3 Decomposition schema of our NSMT

background image LF byK-level NSP. Second, the LF image is decomposed to obtain
the bright-dark smooth image TN -BN and the bright-dark detail images T Hn-BHn

by N-level MTBH. For the high-frequency detail image HFi , we can get the smooth
inner-outer edge images Ii,D-Oi,D and multi-direction inner-outer edge detail images
I Ei,d -OEi,d by D-direction MIOE.

2.1.1 NSP Decomposition

To obtain shift-invariant property, Zhou et al. realized the NSP decomposition by
constructing dual-channel 2-D non-subsampled filter banks [43]. When the decompo-
sition filter banks {H0(z),G0(z)} and the reconstruction filter banks {H1(z),G1(z)}
satisfy Bezout equation, such as Eq. (1), the decomposition will satisfy the condition
of complete reconstruction.

H0(z) · H1(z) + G0(z) · G1(z) = 1 (1)

Moreover, to realize multi-scale decomposition, each stage needs to sample the
previous filter according to the sampling matrix D = 2I (I represent the second-order
unit matrix). The decomposition process is shown in Eq. (2).

⎧
⎪⎪⎨

⎪⎪⎩

f0(x, y) = F

fi (x, y) = H0

(
z2

i−1 I
)

∗ fi−1(x, y)

hi (x, y) = G0

(
z2

i−1 I
)

∗ fi−1(x, y)

(2)

where F represents the source image; H0(∗) and G0(∗) represent the low-pass and
high-pass filters after up-sampled, respectively; fi (x, y) and hi (x, y) represent the
low- and high-frequency image in the i-th layer.

An image can be decomposed into K +1 sub-images (including one low-frequency
image and K high-frequency images) by K-level NSP decomposition. Taking image
“Kaptein” as an example, the decomposed results by 4-level NSP as shown in Fig. 4.

According to the decomposed results, it is easy to find that the edges and lines are
mainly concentrated in high-frequency images, and their fineness increases with the
layer. In addition, the details in the LF image are very blurred, in which the main
information is the bright-dark background information. This result provides practical
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Fig. 4 The decomposed results of the “Kaptein” image by 4-level NSP

feasibility for extracting multi-direction edges from HFi and bright-dark information
from LF .

For reconstruction, high-frequency and low-frequency reconstructed filters are used
to filter high- and low-frequency images, respectively. The reconstruction of the i-th
layer is shown in Eq. (3).

fi (x, y) = H1

(
z2

i I
)
fi+1(x, y) + G1

(
z2

i I
)
hi+1 (3)

2.1.2 MTBH Decomposition

Morphological top-hat (TH) and bottom-hat (BH) can be defined based on morpho-
logical Open and Close. Their definitions are shown in Eq. (4). The TH can extract
patches that are brighter than neighbors, namely bright details. And, the function of
BH is to extract dark details [44].

{
T H(F) = F − Open(F)

BH(F) = Close(F) − F
(4)

Due to theTH andBH decomposition at a single scale cannot extract the bright-dark
details adequately. Multi-scale Open and Close are defined, respectively, in Eq. (5).

{
OPenn(F) = F◦nS = (F�nS) ⊕ nS
Closen(F) = F · nS = (F ⊕ nS) − �nS

(5)

where n = 1, 2, ...N is the scale factor, which is an integer and determines the size
of structuring elements, ⊕ and � represent Dilate and Erode, respectively. In this
paper, the shape of the structuring element S is “disk.” The nS represents the n-th
structuring element whose size is determined by 2n + 1. So, based on the pyramid
idea, the multi-scale top-hat MTH decomposition can be defined such as Eq. (6).
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⎧
⎨

⎩

T0(x, y) = F
Tn(x, y) = Openn(Tn−1(x, y))
MTHn(x, y) = Tn−1(x, y) − Tn(x, y)

(6)

where F is a source image, MT Hn(x, y), n = 1, 2, . . . , N represent a set of bright
detail images. In addition, the last layer image is a smooth bright background image,
which is represented by TN (x, y). By a similar process, we can obtain the decompo-
sition of multi-scale bottom-hat MBH shown in Eq. (7).

⎧
⎨

⎩

B0(x, y) = F
Bn(x, y) = Closen(Bn−1(x, y))
MBHn(x, y) = Bn(x, y) − Bn−1(x, y)

(7)

In Eq. (7), MBHn(x, y) represents the dark detail image and the smooth dark
background image is BN (x, y).

Figure 5 shows the decomposed results of the LF image from Fig. 4 by 5-level
MTBH. As can be seen from Fig. 5, the high-layer image contains bright-dark details,
and the fineness of bright-dark information increases with the number of layers. This is
mainly becauseMTBH only compares with the pixels around the structuring element
when extracting the bright-dark information. Therefore, bright-dark details will appear
in high-layer images, while large areas with the bright-dark feature will be captured
by low-layer images or directly retained in smooth images as backgrounds. Taking
the pedestrian in the infrared image as an example, the pedestrian area has not been
extracted in the high-layer bright detail image MT H I R

4 or MT H I R
5 . However, in

the low-layer image MT H I R
1 , the pedestrian area has been successfully extracted.

Moreover, the sky in the visible image is retained as the background in the smooth

Fig. 5 The decomposed results of LF image by 5-levels MTBH
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image T V I S
N (which is the background information after removing the bright-dark

details) due to its too large area. In addition, it should be noted that in the dark detail
image MBHn(x, y), even the dark information is displayed with bright pixels.

According to Eq. (6) and (7), the source image F can be perfectly reconstructed by
MTH or MBH decomposition, respectively, as shown in Eq. (8).

⎧
⎪⎪⎨

⎪⎪⎩

F = T0(x, y) = TN (x, y) +
N∑

n=1
MTHn(x, y)

F = B0(x, y) = BN (x, y) −
N∑

n=1
MBHn(x, y)

(8)

2.1.3 MIOE Decomposition

Considering the directionality of edges, a series of 7-pixels “line” structuring element
Sd with different directions are used to construct multi-direction inner-edge (MIE) and
outer-edge (MOE) to extract the edge details in different directions. The definition is
shown in Eq. (9).

{
MIEd = F − F�Sd
MOEd = F ⊕ Sd − F

(9)

where the d represents the direction number; the F is the source image. Moreover, the
inner-outer edge smooth image ID and OD are shown in Eq. (10).

⎧
⎪⎪⎨

⎪⎪⎩

ID = 1
D

D∑

d=1
(F � Sd)

OD = 1
D

D∑

d=1
(F ⊕ Sd)

(10)

Taking the HF3 as the sample, the 4-direction decomposition is shown in Fig. 6.We
can easily find that the edges in the decomposed images have significant directionality
from MI E3,1 to MI E3,4 (or from MOE3,1 to MOE3,4). It should be noted that the
fineness of these multi-direction edge images is consistent, and the difference is only
in the direction of the edges.

According to Eq. (9) and (10), the reconstruction process can be easily deduced
fromMIE or MOE, respectively, as shown in Eq. (11).

⎧
⎪⎪⎨

⎪⎪⎩

I E R = 1
D

D∑

d=1
(ID + MIEd)

OER = 1
D

D∑

d=1
(OD − MOEd)

(11)

where D represents the total number of directions, and I E R and OER represent
reconstructed images based on MIE and MOE, respectively.
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Fig. 6 The 4-directions edge detail images of HF3

2.2 Fusion

To make full use of the extracted information, our NSMT adopts different fusion rules
for the decomposed results fromMTBH and MIOE.

2.2.1 Fusion forMTBH

There is a fact that high contrast is more conducive to highlighting image details.
So, for the fusion of bright-dark information (including the smooth layer and detailed
layer), the rule of choosing the brighter from the bright and darker from the dark is
proposed to improve the image contrast. The technique of fusion can be formulated
as Eq. (12).

{
f T = max

(
T V I S, T I R

)

f B = min
(
BV I S, BI R

) (12)

where f T and f B represent the fused bright and dark images; T and B represent the
extracted bright and dark images.
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2.2.2 Fusion forMIOE

For the edge smooth image Ii,D and Oi,D , the rule of choosing absolute maximum is
adopted such as Eq. (13).

f I Oi,D(x, y) =
{
I OV I S

i,D (x, y),
∣
∣
∣I OV I S

i,D (x, y)
∣
∣
∣ >

∣
∣
∣I O I R

i,D(x, y)
∣
∣
∣

I O I R
i,D(x, y), otherwise

(13)

where f I Oi,D(x, y) represents the fused inner-outer edge smooth image;
I OV I S

i,D (x, y) and I O I R
i,D(x, y) represent the extracted infrared and visible inner-outer

edge smooth image.
In addition, the window-gradient maximum rule is applied to fuse the inner-outer

edge detailed image MI Ei,d and MOEi,d . In our NSMT , the size of the window is
3× 3, and the fusion rule is shown in Eq. (14). The WG(x, y) is the window gradient
of a specific pixel (x, y).

f M I OEi,d(x, y) =
{
MIOEV I S

i,d (x, y), WGV I S(x, y) > WGI R(x, y)
MIOEI R

i,d(x, y), otherwise
(14)

where WG(x, y) =
√

Gx
2 + Gy

2, in which the Gx and Gy represent horizontal and
vertical gradients, and their definitions are shown in Eq. (15).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gx =
3∑

x=1

3∑

y=1
[ f (x, y) − f (x, y − 1)]

Gy =
3∑

x=1

3∑

y=1
[ f (x, y) − f (x − 1, y)]

(15)

2.3 Reconstruction

2.3.1 Reconstruction of Background Image f LF

In the process of reconstructing the LF image, we hope to ensure the integrity of
bright-dark information and flexibly adjust the image contrast by using the proportion
of bright-dark components. So, the smooth images are synthesized by the average
method, and the bright-dark detail images by the weighted method. According to
Eq. (8), the reconstruction process of f LF can be expressed as shown in Eq. (16),

f LF = ( f TN + f BN )

/

2.0 + α

N∑

n=1

fMTHn − (1 − α)

N∑

n=1

fMBHn (16)
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where f LF is the low-frequency background image LF of the fused image; α is a
weight factor to adjust the proportion of bright-dark details. In this paper, α = 0.5
without any prior knowledge.

2.3.2 Reconstruction of Edge Detail Images f HFi

As we all know, the inner and outer edges are also equally important. So, the average
method is used to synthesize the f H Fi as shown in Eq. (17),

fHFi = f IER
i + fOER

i

2
(17)

where the f I E R
i and f OER

i represent the reconstructed inner and outer fused image
according to Eq. (11).

2.3.3 Reconstruction of Fusion Image

According to Eq. (3), the f0(x, y) can be reconstructed by iterating f LF and f H Fi
layer by layer. Then, the fusion image F can be obtained directly according to F =
f0(x, y).

3 Experiments and Discussions

To explore the fusion performance of our NSMT , some state-of-the-art methods are
selected as comparison objects such asFPDE [5],HMSD [42], JSR [24],LATLRR [22],
MSVD [30], VSMWLS [28], and some deep-learning-based methods (including DLF
[18], DenseFuse [19], and ResNet [20]). In this paper, about our NSMT , there are five
sub-images, i.e., one low-frequency background image LF and four high-frequency
detail images HFi (i = 1, 2, 3, 4) by 4-level NSP decomposition. In addition, to
extract bright-dark information as much as possible from the LF image, the number of
decomposition levels ofMTBH is set to 5 (N = 5). For the HFi image, the numbers
of directions of MIOE from i = 1 to 4 are set to 2, 4, 8, 16 (namelyD = 2, 4, 8, 16),
respectively.

Ten pairs of typical infrared–visible images have been selected as fusion objects
from the public database, and all images have been pre-registered. These images are
often selected as fusion objects in many infrared–visible image fusion studies because
they are very representative and contain common objects such as buildings, trees,
roads, pedestrians, and grasslands. The source images and fusion results are shown
in Fig. 7. The first two rows are original infrared and visible source images, the last
row is the fusion results of our NSMT , and the rest nine rows correspond to the fusion
results of nine comparison methods, namely DLF, DenseFuse, FPDE, HMSD, JSR,
LATLRR, MSVD, ResNet, and VSMWLS. According to the fusion results, we can find
that all methods can fuse infrared and visible images successfully.
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Fig. 7 Fusion results of ten pairs of infrared–visible images. From top to bottom: infrared images, visible
images, fusion results of DLF, DenseFuse, FPDE, HMSD, JSR, LATLRR, MSVD, ResNet, VSMWLS our
NSMT
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3.1 Subjective Evaluation

Due to the limitation of page size, it is very difficult to judge which one is the best or
worst according to the above figure. To show their difference more intuitively, taking
the first column images as an example, the regions in red rectangles were selected as
observation objects as shown in Fig. 8.

According to selected regions, it is not difficult to find that the results of our NSMT
and FPDE are better than that of other methods in terms of sharpness, and they can
show clearer outline of the branches. As we all know, the edge details are mainly
from the visible image. Therefore, when the visible image is taken as the reference,
the fusion result of NSMT can better retain the information from the source image.
There are two main reasons for the above phenomenon. On the one hand, the NSMT
extracts the bright-dark information from the low-frequency background and fuses
them with the rule of “choosing brighter from the bright and darker from the dark,”
which can effectively preserve the bright-dark distribution from the source images. On
the other hand, the multidirectional edges extracted from the high-frequency images
can effectively maintain the edge integrity with the rules of absolute maximum and
window-gradient maximum. The combination of the above two aspects makes the
fusion image generated from NSMT have an excellent visual effect.

(b)

(h)(g)

(a)

(c) (d)

(i)

(e) (f)

(IR) (VIS)

(j)

Fig. 8 The fusion images from first column. From (a) to (j) are the fusion results ofDLF, DenseFuse, FPDE,
HMSD, JSR, LATLRR, MSVD, ResNet, VSMWLS, and our NSMT
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(IR) (VIS) (a) (b)

(f)(e)(d)(c)

(g) (h) (i) (j)

Fig. 9 The fusion images from sixth column. From (a) to (j) are the fusion results of DLF, DenseFuse,
FPDE, HMSD, JSR, LATLRR, MSVD, ResNet, VSMWLS our NSMT

In order to further explore the performance of the NSMT , the sixth column in Fig. 7
is taken as the observation object, as shown in Fig. 9. First, as far as the pedestrian
indicated by the red arrow is concerned, the pedestrian in the fusion images of HMSD
and NSMT has higher brightness than that of others. However, when we focus on
the green rectangular regions, NSMT has obvious advantages over HMSD in terms
of sharpness and edge integrity. In addition, NSMT shows better performance than
other methods in terms of contrast in this region. An excellent contrast can make
the results generated by NSMT have higher sharpness and more notable targets. These
results further verify the excellent performance ofNSMT in fusing infrared and visible
images.

3.2 Objective Evaluation

In practice, an ideal fusion image is often associated with specific tasks, so it is not
always easy to find a universal quality evaluation method. Although the subjective
evaluation can judge the fusion quality from the human perspective. But, the quality
difference among fusion results is very small inmost cases. So, it is difficult to give uni-
form and accurate results due to differences in individual mental state, visual acuity,
psychological factors, and so on. To circumvent the above deficiency, many objec-
tive evaluation methods and metrics are proposed. However, there is no universally
accepted method to objectively evaluate image fusion results.
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In this paper, to comprehensively evaluate our NSMT from different perspectives,
we choose eight commonly used and typical objective metrics, namely standard devi-
ation (SD), information entropy (IE) [34], mutual information (MI) [33], Q0 [36],
QW [31], QAB/F [38], QE [31] and VIF [10]. Among them, the SD can evaluate
the image contrast from a statistical viewpoint. The I E can measure the information
amount of the fused image from the viewpoint of information theory. The MI can
measure the information amount that is transferred from source images to the fused
image. The Q0 can evaluate the distortion degree of a fused image, which combines
three factors of image distortion related to the human visual system, namely loss of
correlation, contrast distortion, and luminance distortion. The Qw is used to evaluate
the salience of information from source images. The QAB/F can measure the amount
of edge details transferred from source images into the fused image. The QE was
designed by modifying Qw, which contains edge information and visual information,
simultaneously. The VIF can measure the visual information fidelity of the fusion
image relative to the source images.

The evaluation results of all metrics based on ten pairs of typical infrared–visible
images are shown in Fig. 10. It can be found from the above figure that the NSMT has
generated the best results in most cases on the other six metrics except Q0 and V I F .
According to SD, we can find that ourNSMT is significantly ahead of other algorithms
in the ninth pair of images. This is because the brightness difference between the source
images of the ninth pair is very obvious. About the ninth pair of images, we can see
that the infrared image is very dark on the whole, while the overall brightness of the
visible image is high. Therefore, it can be judged that our NSMT can make good
use of the bright-dark components to synthesize high-contrast fused images when the
brightness difference between the source images is large. Additionally, we note that in
terms ofMI , the fusion results of NSMT have significant advantages in most images.
This demonstrates that the NSMT can retain the information from the source image
better than other algorithms. This conclusion can also be drawn from the performance
of NSMT on metric QAB/F . Moreover, the superiority of NSMT in metric QE further
proves its excellent edge extraction ability. As it should be, for Q0 and VIF, our
algorithm also shows good fusion performance, although not obvious.

To show the fusion performance of our algorithm as a whole, the average results of
all images for each metric are shown in Table 1, in which the best results have been
marked in bold values. According to this table, we can intuitively see that our algorithm
is ahead of these state-of-the-art algorithms in almost all metrics (not including Q0
and VIF), especially in image contrast (by SD), and mutual information (by MI).
Although the performance of NSMT is mediocre in metrics Q0 and VIF, it still shows
satisfactory competitiveness.

3.3 Comparison of Fusion Time

In this section, the fusion processing speed of our method will be shown by fusing the
ten pairs of images from Fig. 7. To ensure a more reasonable comparison of fusion
speeds across all methods, we exclude the worst and best fusion results. The mean
fusion processing time of the remaining eight results is then calculated and presented
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Fig. 10 Objective comparisons of the eight metrics
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Table 1 The average results of each metric

SD IE MI Q0 Qw QAB/F QE V I F

DLF 34.0134 6.8175 2.3082 0.5010 0.7852 0.5601 0.2974 0.4480

DenseFuse 26.0659 6.4221 2.3467 0.4837 0.6556 0.3724 0.2263 0.2999

FPDE 38.8473 6.9924 2.2623 0.4474 0.7534 0.5210 0.2709 0.4847

HMSD 37.0820 7.0319 2.0606 0.4756 0.7940 0.5503 0.2737 0.4631

JSR 39.2066 6.9805 2.6548 0.4558 0.7749 0.4962 0.2594 0.4425

LATLRR 36.7409 6.9359 2.2455 0.4669 0.7268 0.4832 0.2325 0.5131

MSVD 36.0400 6.8973 2.2177 0.4499 0.7000 0.4263 0.2256 0.4543

ResNet 38.6827 6.9756 2.5255 0.5094 0.7727 0.5318 0.2712 0.5354

VSMWLS 31.2337 6.7139 2.0985 0.4935 0.7806 0.5445 0.2843 0.3829

NSMT 41.9540 7.0686 3.3103 0.4793 0.8185 0.6094 0.3403 0.4624

Bold values indicate the best results

3.6912
0.0114 0.1305 0.2258

32.4887

10.7894

0.0668 1.1543 0.2135 0.4121
0
5
10
15
20
25
30
35

F u s i o n  T i me ( / S )

Fig. 11 The fusion processing time (unit is second) of all methods

in Fig. 11. The experimental platform employed in this study is Windows 10, with an
AMD 3900 × CPU and 32GB of memory. As depicted in Fig. 11, it is evident that
DenseFuse exhibits the fastest fusion speed, while JSR has the slowest. Although our
NSMT does not have a significant advantage overDenseFuse, its fusion speed remains
competitive.

4 Fusion of Noisy Image

It is well known that infrared thermal radiation imaging is easily polluted by environ-
mental thermal noise. Ref [25] points out that morphological operation has certain
denoising ability. To test this conjecture, the white Gaussian noise with different
degrees is added to infrared source images. In this paper, the mean value of white
Gaussian noise is 0, and the variance is 5, 10, 15, and 20, respectively. In general,
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Fig. 12 Objective comparisons of the four metrics for noisy image fusion

noise will blur image details, such as edges or lines. In addition, the addition of Gaus-
sian white noise will affect the brightness distribution of the image to a certain extent,
thus changing the contrast of the original image. Therefore, for the evaluation of noisy
image fusion, four evaluation metrics are selected, namely Qw, QE , QAB/F , and
SD. The evaluation results of four metrics based on ten pairs of typical infrared–vis-
ible images are shown in Fig. 12. The axis of the radar chart represents the fusion
algorithms.

According to Fig. 12, we can draw some very useful conclusions. First, the noise
in the infrared image indeed degrades the image quality of fusion results. Second, the
noise has a significant impact on salient features (such as edges and lines). And, the
salient features decreases as the noise level increases, which can be drawn from the
metrics Qw, QE , and QAB/F . Third, the noise has a relatively small effect on contrast
(according to SD), especially when the noise intensity is not high, this effect can
be ignored. However, when the noise increases to a certain level, the image contrast
will decrease significantly. Even so, the results of SD show that the contrast of the
fused images from NSMT , DLF, DenseFuse, HMSD, LATLRR, and RESNET are
almost unaffected by noise. Fourth and most importantly, for image fusion with noise,
our NSMT performs the best among all algorithms regardless of any metric, and its
performance is significantly superior to other algorithms. In summary, our NSMT can
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not only successfully fuse noisy images but also effectively reduce the impact of noise
on the fusion results and produce very satisfactory results.

5 Conclusions

In this paper, we propose a new image fusion algorithm called NSMT . Firstly, the NSP
is used to decompose the source image to obtain the low- and high-frequency com-
ponents, and then the multi-scale MTBH and multi-direction MIOE are constructed
to furtherly extract the bright-dark and edge details. In the decomposition process,
theMTBH decomposition can efficiently extract the bright-dark details from the low-
frequency background image. Meanwhile, for the high-frequency detail images, the
MIOE decomposition can extract the edge details in different directions well. In the
fusion process, the rule of “choosing brighter from the bright and darker from the
dark” can effectively fuse the bright-dark information to improve the image contrast
and show better visual effects. Moreover, the rules of choosing absolute maximum and
window-gradient maximum can retain and highlight the multi-direction edge from the
high-frequency detail images well. According to the fusion experiments, we find that
the proposed method has absolute superiority in fusion quality compared with those
state-of-the-art methods. Our NSMT can not only generate fused images with high
contrast but also preserve the information from source images well. In addition, our
NSMT has shown its excellent performance in extracting and retaining the edge infor-
mation of visible images from both subjective and objective aspects. In summary, it
can be concluded that the proposed method in this paper is a very competitive fusion
algorithm for infrared–visible images.
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