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Abstract
This article is devoted to estimating simultaneously both the states and the inputs of
linear time-invariant fractional-order systems (LTI-FOSs) with the order 0 < α <

2. Firstly, a necessary and sufficient stability criterion for LTI-FOSs with the order
0 < α < 1 is derived by the linear matrix inequality technique. Secondly, a novel
fractional-order observer combined with state vectors and ancillary vectors is given,
which can generalize several forms of existing observers. Moreover, the parameter
matrices of the desired observer for both the order 0 < α < 1 and 1 < α < 2 are
solved on the basis of the stability theorem and the solution to the generalized inverse
matrix. Finally, the fractional-order observer design algorithm is proposed and then
applied to an illustrated example, in which the simulation results are reported to verify
the effectiveness of the proposed approach.

Keywords Fractional-order systems · Observer design · State and input estimation ·
Stability

1 Introduction

Fractional-order derivatives (FODs) have become a hot topic during the past decades
because they are widely used in the control of dynamical processes [9, 13], and lots of
real-world physical systems can bewell described byFODs. There are three commonly
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used definitions of FODs named Riemann–Liouville derivative, Grünward–Letnikov
derivative, and Caputo derivative. During the past 2 decades, various types of the sta-
bility and stabilization of linear time-invariant fractional-order systems (LTI-FOSs)
have been widely investigated and many results are obtainable; for example, see [8,
16, 19, 20, 22, 25]. The robust stability and stabilization of fractional-order interval
systems with the order α ∈ (0, 1) was investigated in [19]. The Mikhailov stability
criterion and finite-time Lyapunov stability criterion for fractional-order linear time-
delay systems were derived in [8] and [22], respectively. The robust stability and
stabilization with the case α ∈ (0, 1) of fractional-order interval systems combined
with coupling relationships were considered in [16]. Additionally, the control prob-
lems of fractional-order descriptor systems are widely studied by many scholars. The
robust stabilization of uncertain descriptor fractional-order systems were solved by
designing fractional-order controllers [25]. Both state and output feedback controllers
were presented to stabilize the fractional-order singular uncertain systems with the
order α ∈ (0, 2) [20]. Moreover, the stabilization criterion of the fractional-order
triangular system was derived and the obtained stabilization results were utilized to
consider the control problems of fractional-order chaotic systems in three cases [26].
The linear feedback controllers were proposed to address the synchronization and
anti-synchronization of a class of fractional-order chaotic systems based on the trian-
gular structure [27]. The passivity was considered for fractional-order neural network
which is affected by time-varying delay [31]. The sliding controller was designed for
the synchronization of fractional-order chaotic systems with disturbances [28].

It is worth mentioning that since Luenberger introduced the concept of observer
for dynamic systems, which has become one of the fundamental system concepts
in the modern control theory. The observer is a dynamic system which utilizes the
available information of inputs and outputs to reconstruct the unmeasured states of the
original system. Observer design for linear systems is a popular problem in control
theory that has been studied in many aspects. This is due to the fact that a state
estimation is generally required for the control when all states of the system are not
available. The observer, observer-based controller and observer-based compensator
were designed for the integer-order systems with applications can be found in [17,
18, 32]. More recently, many types of full-order and reduced-order observers for LTI-
FOSs are obtainable. The observers were designed for LTI-FOSs with unknown inputs
[24]. By decomposing the parameter matrixes, an observer was derived for the LTI-
FOSs with 0 < α ≤ 1 without considering the unknown input [2]. On the basis of the
solutions to generalized inverted matixes, the observer was presented for singular LTI-
FOSs [23]. To satisfy the fault sensitivity, disturbance robustness and admissibility of
singularLTI-FOSs, an H_/H∞ fault detectionobserverwas considered [6]. In addition,
a nonasymptotic pseudo-state estimator was proposed for a class of LTI-FOSs which
can be transformed into the Brunovsky’s observable canonical form of pseudo-state
space representation with unknown initial conditions and H∞-like observer [33]. The
dynamic compensator was designed based on disturbance estimator for fractional-
order time-delay fuzzy systemswith nonlinearities and unknown external disturbances
in [12]. The robust fractional-order observer was designed for a class of disturbed LTI-
FOSs in the form of time domains and frequency domains, respectively [3]. Notice
that the above observers are under the definition of Caputo derivative, [34] designed
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observers for LTI-FOSs under the definitions of Riemann–Liouville derivative and
Grünwald–Letnikov derivative. On the other hand, observer-based controllers (OBCs)
have been applied to the control of LTI-FOSs effectively. The robust H∞ OBCs were
derived by use of the generalized Kalman–Yakubovich–Popov lemma [4], and the
novel sufficient criterion was given by means of linear matrix inequalities (LMIs) to
guarantee the stabilization of disturbed uncertain LTI-FOSs [10]. Several LMIs were
presented to obtain the stabilization for uncertain LTI-FOSs on the ground of robust
OBCs [11, 14]. The observer-based event-triggered output feedback controller was
given to investigate fractional-order cyber-physical systems with 0 < α < 1, in which
the system was affected by stochastic network attacks [35]. The OBCs was derived
for the stabilization of LTI-FOSs with the input delay [7].

Additionally, state estimation of LTI-FOSs in the presence of unknown inputs has
been another fascinating and relevant topic in the modern control theory. Two differ-
ent observers, H∞ filter for the estimation of the states, and fractional-order sliding
model uncertain input observer for the simultaneous estimation of both states and
unknown inputs, have been addressed for LTI-FOSs with the consideration of proper
initial memory effect [15]. A high-order sliding mode observer was proposed for the
simultaneous estimation of the pseudo-state and the unknown input of LTI-FOSs with
the single unknown input and the single output systems in both noisy and noise-free
cases, respectively [1]. Nevertheless, the problem on the reconstruction of unknown
inputs is still open. The reason for the reconstruction of unknown inputs is that, in
some applications, it is either a costly task or not basically doable to measure some of
the inputs. There are many situations where an input observer is required to estimate
the cutting force of a machine tool or the exerting force/torque of a robotic system. In
chaotic systems, one wishes to estimate not only the state for chaos synchronization
but also the information signal input for the secure communication. Compared with
the state estimation, less research has been carried out on estimating simultaneously
the state of a dynamic system and its inputs. Notice that not only the state estimation
but also the unknown inputs are of significance because the state estimation is gen-
erally required for the control when all states of the system are not available and the
unknown input can represent the impact of the failure of actuators or plant components,
and thus worth to be estimated and used in the field of fault detection and isolation.
Consequently, a new fractional-order observer is presented to estimate both states and
unknown inputs simultaneously. To the author’s best knowledge, this kind of observer
for LTI-FOSs is quiet new and not fully investigated. Motivated by the above dis-
cussions, we investigate the interesting problem that both states and unknown inputs
are simultaneously estimated for LTI-FOSs by reconstructing the original systems. In
comparison with the aforementioned papers, the main contributions of this work are
generalized as follows.

1. Necessary and sufficient conditions are presented to guarantee the stabilization of
LTI-FOSs with the case α ∈ (0, 1). Note that the stability criterion obtained can
be applied to [23] but it is incorrect when it comes to the result in [19].

2. A novel fractional-order dynamic observer consists of state vectors, ancillary vec-
tors and the estimations is presented which shows that the observers designed in
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[2–4, 10, 11, 23, 24, 33, 34] are the special form of the observer obtained in this
paper.

3. Not only the states but also the unknown inputs are simultaneously estimated com-
pared with [2, 3, 23, 24, 33]. The reconstruction of the initial LTI-FOSs makes the
estimation more efficient than the results derived in [14, 15].

The rest of this paper is arranged as follows. The definition of Caputo derivative
and the stability criteria for LTI-FOSs are proposed in Sect. 2. To estimate the states
and unknown inputs simultaneously, a fractional-order dynamic observer is proposed,
and the parameter matrices of the observer are solved by the solutions to the general-
ized inverse matrix in Sect. 3. In Sect. 4, an illustrated example is given to verify the
correctness and efficiency of the obtained results. Section5 draws the conclusion of
the paper.

Notation: AT : the transpose of a matrix A; Rn : the real n-dimensional Euclidean
space; Rn×m (Cn×m): the set of all n × m matrices defined in the real (complex)
plane; A∗: the conjugate transpose of Hermitian matrix A; ⊗: the Kronecker product;
Y+: the generalized inverse of matrix Y; Re(A) (Im(A)): the real (imaginary) part of
Hermitian matrix A; sym(A): AT + A.

2 Preliminaries and Problem Formulation

There are three mainly used definitions of fractional-order derivative: Riemann–
Liouville derivative, Grünward–Letnikov derivative and Caputo derivative. In this
paper, only Caputo derivative is used since this Laplace transform allows using initial
values of classical integer-order derivatives with clear physical interpretations. Caputo
derivative with α-order is defined as

Dα
t f (t) = Dα f (t)

dtα
=

{
1

�(α−n)

∫ t
a

f (n)(τ )

(t−τ)α+1−n dτ, n − 1 < α < n
dn f (t)
dtn , α = n

where n = [α], and the notation �(·) denotes the Gamma function which is presented
as

�(z) =
∫ ∞

0
e−t t z−1dt .

In the sequel, the following system is considered

Dα
t x(t) = Ax(t), (1)

where α ∈ (0, 2), x(t) ∈ Rn denotes the state, and A ∈ Rn×n .
To proceed, we begin with the following Lemmas.

Lemma 1 System (1) is stable with the order α ∈ (0, 2) iff [21]

| arg(spec(A)) |> α
π

2
.
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Lemma 2 When α ∈ (0, 1), (1) is stable iff [30]

eiθ Q1A + e−iθ A∗Q1 + e−iθ Q2A + eiθ A∗Q2 < 0, (2)

where θ = (1− α)π
2 , matrixes Q1, Q2 are Hermitian matrixes such that Q1 = Q∗

1 ∈
C
n×n, Q2 = Q∗

2 ∈ C
n×n, and Q1 > 0, Q2 > 0.

Lemma 3 If (1) with the order α ∈ (0, 1) satisfies the following conditions

2∑
m=1

2∑
n=1

sym {σmn ⊗ Pmn A} < 0, (3)

[
P11 P12
−P12 P11

]
> 0,

[
P12 P22
−P22 P12

]
> 0, (4)

where

σ11 =
[

sin
(
α π

2

)
cos

(
α π

2

)
− cos

(
α π

2

)
sin

(
α π

2

)] , σ12 =
[− cos

(
α π

2

)
sin

(
α π

2

)
− sin

(
α π

2

) − cos
(
α π

2

)] ,

σ21 =
[
sin

(
α π

2

) − cos
(
α π

2

)
cos

(
α π

2

)
sin

(
α π

2

) ]
, σ22 =

[
cos

(
α π

2

)
sin

(
α π

2

)
− sin

(
α π

2

)
cos

(
α π

2

)] ,

then it is stable, where Pκ1 ∈ Rn×n , κ = 1, 2 are positive symmetric matrices, and
Pκ2 ∈ Rn×n are skew-symmetric matrices.

Proof To begin with, we define Pκ1 = Re(Qκ), Pκ2 = Im(Qκ), κ = 1, 2. It follows
form Lemma 2 that Pκ1 − i PT

κ2 = Pκ1 + i Pκ2. Moreover, the asymptotic stability of
(1) can be guaranteed iff there exist two skew-symmetric matrices Pκ2 ∈ Rn×n and
two positive symmetric matrices Pκ1 ∈ Rn×n such that

Q1 = P11 + i P12 > 0, Q2 = P21 + i P22 > 0. (5)

Substituting (5) in (3) and combining with the Euler formulae yields that

(cos θ + i sin θ)(P11 + i P12)A + (cos θ − i sin θ)AT (P11 − i PT
12)

+ (cos θ − i sin θ)(P21 + i P22)A + (cos θ + i sin θ)AT (P21 − i PT
22)

= (cos θ + i sin θ)(P11 + i P12)A + (cos θ − i sin θ)AT (P11 − i PT
12)

+ (cos θ − i sin θ)(P21 + i P22)A + (cos θ + i sin θ)AT (P21 − i PT
22)

= P11A cos θ + i P12A cos θ + i P11A sin θ − P12A sin θ

+ AT P11 cos θ − i AT PT
12 cos θ − i AT P11 sin θ − AT PT

12 sin θ

+ P21A cos θ + i P22A cos θ − i P21A sin θ + P22A sin θ

+ AT P21 cos θ − i AT P22 cos θ + i AT P21 sin θ + AT PT
22 sin θ

= P11A cos θ + i P11A sin θ + AT P11 cos θ − i AT P11 sin θ

− P12A sin θ + i P12A cos θ − AT PT
12 sin θ − i AT PT

12 cos θ
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+ P21A cos θ − iP21A sin θ + AT P21 cos θ + i AT P21 sin θ

+ AT PT
22 − i AT PT

22 cos θ + P22A sin θ + i P22A cos θ

= P11A sin
(
α

π

2

)
+ i P11A cos

(
α

π

2

)
+ AT P11 sin

(
α

π

2

)
− i AT P11 cos

(
α

π

2

)
− P12A cos

(
υ

π

2

)
+ i P12A sin

(
α

π

2

)
− αT PT

12 cos(α
π

2
) + iαT P12 sin

(
α

π

2

)
+ P21A sin

(
α

π

2

)
− i P21A cos

(
α

π

2

)
+ AT P21 sin

(
α

π

2

)
+ i AT P21 cos

(
α

π

2

)
+ P22A cos

(
α

π

2

)
+ i P22A sin

(
α

π

2

)
− AT P22 sin

(
α

π

2

)
+ i AT P22 cos

(
α

π

2

)
< 0. (6)

Considering that a Hermitian matrix Q is positive iff

[
Re(Q) Im(Q)

−Im(Q) Re(Q)

]
> 0,

thus the above inequality is equivalent to

[
sin

(
α π

2

)
cos

(
α π

2

)
− cos

(
α π

2

)
sin

(
α π

2

)] ⊗ P11A +
[

sin
(
α π

2

)
cos

(
α π

2

)
− cos

(
α π

2

)
sin

(
α π

2

)] ⊗ AT P11

+
[− cos

(
α π

2

)
sin

(
α π

2

)
− sin

(
α π

2

) − cos
(
α π

2

)] ⊗ P12A +
[− cos

(
α π

2

) − sin
(
α π

2

)
sin

(
α π

2

) − cos
(
α π

2

)] ⊗ AT PT
12

+
[
sin

(
α π

2

) − cos
(
α π

2

)
cos

(
α π

2

)
sin

(
α π

2

) ]
⊗ P21A +

[
sin

(
α π

2

)
cos

(
α π

2

)
− cos

(
α π

2

)
sin

(
α π

2

)] ⊗ AT PT
21

+
[
cos

(
α π

2

)
sin

(
π
2 α

)
− sin

(
α π

2

)
cos

(
α π

2

)] ⊗ P22A +
[
cos

(
α π

2

) − sin
(
α π

2

)
sin

(
α π

2

)
cos

(
α π

2

) ]
⊗ AT PT

22

= sym

{[
sin

(
α π

2

)
cos

(
α π

2

)
− cos

(
α π

2

)
sin

(
α π

2

)] ⊗ P11A

}

+ sym

{[− cos
(
A π

2

)
sin

(
α π

2

)
− sin

(
α π

2

) − cos
(
α π

2

)] ⊗ P12A

}

+ sym

{[
sin

(
α π

2

) − cos
(
α π

2

)
cos

(
α π

2

)
sin

(
α π

2

) ]
⊗ P21A

}

+ sym

{[
cos

(
α π

2

)
sin

(
α π

2

)
− sin

(
α π

2

)
cos

(
α π

2

)] ⊗ P22A

}

=
2∑

m=1

2∑
n=1

sym
{
σmn ⊗ Pi j A

}
< 0, (7)

which completes the proof. ��
Lemma 4 (1) is stable with the order α ∈ [1, 2) iff

[
(AT P + PA) sin

(
α π

2

)
(AT P − PA) cos

(
α π

2

)
(PA − AT P) cos

(
α π

2

)
(AT P + PA) sin

(
α π

2

)] < 0, (8)

where P = PT > 0 [5].
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Consider the following fractional-order system

Dα
t x(t) = Ax(t) + Bu(t) + Fd(t),

y(t) = Cx(t) + Dd(t),
(9)

where α ∈ (0, 2), x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the output vector,
u(t) ∈ Rm is the control input, d(t) ∈ Rr is the unknown input vector, and A ∈
Rn×n,B ∈ Rn×m,F ∈ Rn×r , C ∈ Rp×n,D ∈ Rp×r are the known matrixes with
appropriate dimensions.

Lemma 5 Consider the following matrix equation

XY = Z.

The above equation has a solution iff [29]

rank

[Y
Z

]
= rank Y,

and the general solution can be expressed as

X = ZY+ + U[In − Y(Y)+],

where U can be selected arbitrarily and In is an n × n identity matrix. In addition,
some solution of the matrix equation can be expressed as

X = ZY+,

where Y+ = (YTY)−1YT .

3 Main Results

To cope with the simultaneous estimations of the states and unknown inputs, system
(9) can be rewritten as

EDα
t ξ(t) = Aξ(t) + Bu(t),

y(t) = Cξ(t),
(10)

where ξ(t) =
[
x(t)
d(t)

]
, A = [A F ], C = [C D], E = [In×n 0n×r ].

To make the estimation meaningful, we first give the following assumption.

Assumption 1 rank

[E
C

]
= n + r .
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3.1 Observer Design for LTI-FOSs with Unknown Inputs

Consider the following fractional-order observer

Dα
t z(t) = Nz(t) + Jy(t) + Hu(t) + Mψ(t),

Dα
t ψ(t) = Pz(t) + Qy(t) + Gψ(t),

ξ̂ (t) = Rz(t) + Sy(t), (11)

where z(t) ∈ Rn is the state vector,ψ(t) ∈ Rn is the ancillary vector, and ξ̂ (t) ∈ Rn+r

is the estimation of x(t) and d(t).N, J,H,M, P,Q,G,R and S are unknown matrices
with appropriate dimensions requiring to be figured out in the following.

Remark 1 Without considering the unknown input and the ancillary vector, i.e.,
d(t) = 0, ψ(t) = 0, system (10) and observer (11) can degrade into the usual form.
Specifically, (11) can generalize several existing observers in the following two forms.

1. When R = I , P = 0, Q = 0, G = 0 and M = 0, (11) gives that

Dα
t z(t) = Nz(t) + Hu(t) + Jy(t),

x̂(t) = z(t) + Sy(t),

this kind of observer can be found in [14, 24].
2. When R = I , S = 0, P = 0, Q = 0, G = 0, M = 0 and A − JC = N, we present

the following observer

Dα
t x̂(t) = Ax̂(t) + Bu(t) + J(y(t) − C x̂(t)),
ŷ(t) = C x̂(t),

this kind of observer can be found in [3, 10, 11, 14, 24].

Lemma 6 Observer (11) is effective for system (10) if there exists a matrix T such that

NTE + JC − TA = 0, (12a)

H − TB = 0, (12b)

PTE + QC = 0, (12c)

RTE + SC = I , (12d)

and the matrix

� =
[
N M

P G

]

satisfies

| arg(spec(�)) |> α
π

2
.
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Proof We define the following error

ζ(t) = z(t) − TEξ(t),

where the matrix T ∈ Rn×n is arbitrary with an appropriate dimension. Thus

Dα
t ζ(t) = Dα

t z(t) − TEDα
t ξ(t)

= Nz(t) + Jy(t) + Hu(t) + Mψ(t) − TAξ(t) − TBu(t)

= Nζ(t) + NTEξ(t) + JCξ(t) + Hu(t) − TAξ(t) − TBu(t) + Mψ(t)

= Nζ(t) + (NTE + JC − TA)ξ(t) + (H − TB)u(t) + Mψ(t)

and

Dα
t ψ(t) = Pζ(t) + PTEξ(t) + QCξ(t) + Gψ(t)

= Pζ(t) + (PTE + QC)ξ(t) + Gψ(t),

ξ̂ (t) = Rz(t) + SCξ(t)

= Rζ(t) + (RTE + SC)ξ(t).

If there exists a matrix T such that

NTE + JC − TA = 0,

H − TB = 0,

PTE + QC = 0,

RTE + SC = I ,

then it holds that

[
Dα
t ζ(t)

Dα
t ψ(t)

]
=

[
N M

P G

] [
ζ(t)
ψ(t)

]
= �

[
ζ(t)
ψ(t)

]
. (13)

Moreover, let

e(t) = Rζ(t), (14)

which yields that if ζ(t) → 0, then e(t) → 0. In addition, the errors ζ(t) → 0 and
ψ(t) → 0 iff the matrix � satisfies Lemma 1, which completes the proof. ��

3.2 Parameterization of the Observer

Actually, the design of observer (11) is to work out the matrices N, J, H,M, P, Q, G,
R and S appropriately. In the following, we will solve those matrices step by step.
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Firstly, it follows from (12c) and (12d) that

[
P Q

R S

] [
TE
C

]
=

[
0n×(n+r)

I(n+r)×(n+r)

]
, (15)

In light of Lemma 5, (15) has a solution iff

rank

[
TE
C

]
= rank

⎡
⎢⎢⎣
TE
C

0
I

⎤
⎥⎥⎦ = n + r .

Let E ∈ Rn×(n+r) be an arbitrary matrix with full row rank such that

rank

[
TE
C

]
= rank

[
E

C

]
= n + r , (16)

that is,

[
E

C

]
is equivalent to

[
TE
C

]
. Hence, there exists a matrix K such that

[
TE
C

]
=

[
I −K

0 I

] [
E

C

]
,

which yields that

TE = E − KC,

i.e.,

[
T K

] [ E
C

]
= E. (17)

By Lemma 5, (17) has a solution iff

rank

[E
C

]
= rank

⎡
⎣E

E
C

⎤
⎦ = n + r ,

and the solutions to (17) can be expressed as

T = E

[ E
C

]+ [
In×n

0

]
, (18)

K = E

[ E
C

]+ [
0

Ip×p

]
. (19)
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Secondly, since

[
E

C

]
is of full column rank, (15) can be rewritten as

[
P Q

R S

] [
I −K

0 I

] [
E

C

]
=

[
0
I

]
, (20)

which admits a solution iff

rank

[
E

C

]
= rank

⎡
⎢⎢⎣
E

C

0
I

⎤
⎥⎥⎦ = n + r . (21)

Furthermore, on the basis of Lemma 5, the general solution to (20) is given as

[
P Q

R S

]
=

{[
0
I

]
ϒ+ +

[
O1
O2

]
(I − ϒϒ+)

} [
I K

0 I

]
, (22)

where ϒ =
[
E

C

]
, O1, O2 are arbitrary matrices with appropriate dimensions.

Finally, the solution to (22) can be described specifically as

P = O1V1, (23a)

Q = O1V2, (23b)

R = U1 + O2V1, (23c)

S = U2 + O2V2, (23d)

where

U1 = ϒ+
[
In×n

0

]
, (24a)

U2 = ϒ+
[

K

Ip×p

]
, (24b)

V1 = (I − ϒϒ+)

[
In×n

0

]
, (24c)

V2 = (I − ϒϒ+)

[
K

Ip×p

]
. (24d)

Remark 2 It follows from Assumption 1 and E with full row rank that (17) holds.
Additionally, once E is given, T and K can be calculated directly.

Remark 3 It follows from (14) that if ζ(t) → 0, then e(t) → 0, i.e., e(t) is independent
of R. If we set O2 = 0 then (23c) and (23d) yield that

R = U1, (25a)
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S = U2. (25b)

Notice that (12a) is equal to

[
N J

] [
TE
C

]
= TA, (26)

or equivalently,

[
N J

] [
I −K

0 I

] [
E

C

]
= TA. (27)

According to Lemma 5, the solution to (27) is presented as

[
N J

] = [
TAϒ+ + O3(I − ϒϒ+)

] [
I K

0 I

]
,

in which O3 is an arbitrary matrix with an appropriate dimension. As a consequence,

N = U3 + O3V1, (28a)

J = U4 + O3V2, (28b)

where

U3 = TAϒ+
[
In×n

0

]
, (29)

U4 = TAϒ+
[

K

Ip×p

]
, (30)

Based on the above discussions, (13) can be rewritten as

Dα
t η(t) =

[
N M

P G

]
η(t) = Āη(t) = (A11 + ZA12)η(t) (31)

where

η(t) =
[

ζ(t)
ψ(t)

]
, A11 =

[
U3 0
0 0

]
, A12 =

[
V1 0
0 I

]
, Z =

[
O3 M

O1 G

]
.

Consequently, the design of observer (11) is reduced to the determination of the
matrix Z such that (31) is stable. The matrix Z can be obtained in the following two
cases.
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3.2.1 ˛ ∈ (0, 1)

Theorem 1 There exists a matix Z such that (31) is stable iff there exist a symmetric
positive definite matrix P1 and a matrix Y1 such that

[
(2P1A11 + 2AT

11P1 + 2Y1A12 + 2AT
12Y

T
1 ) sin

(
α π

2

)
0

0
(2P1A11 + 2AT

11P1 + 2Y1A12 + 2AT
12Y

T
1 ) sin

(
α π

2

)] < 0. (32)

In this case, Z is determined by Z = P−1
1 Y1.

Proof Substituting (31) in (3) in Lemma 3 yields that

2∑
i=1

2∑
j=1

sym
{
σi j ⊗ Pi j Ā

}

=
2∑

i=1

2∑
j=1

sym
{
σi j ⊗ Pi j (A11 + ZA12)

}

=
2∑

i=1

2∑
j=1

sym
{
σi j ⊗ Pi jA11 + σi j Pi j ZA12

}

=
2∑

i=1

2∑
j=1

sym
{
σi j ⊗ Pi jA11

} +
2∑

i=1

2∑
j=1

sym
{
σi j ⊗ Pi j ZA12

}

To simplify the calculation, by setting P12 = P22 = 0, P11 = P21 = P1, we have

sym{σ11 ⊗ P1A11} + sym{σ21 ⊗ P1A11}
+ sym{σ11 ⊗ P1ZA12} + sym{σ21 ⊗ P1ZA12}

=
[

(P1A11 + A
T
11P1) sin

(
α π

2

)
(P1A11 − A

T
11P1) cos

(
α π

2

)
(−P1A11 + A

T
11P1) cos

(
α π

2

)
(P1A11 + A

T
11P1) sin

(
α π

2

)]

+
[
(P1A11 + A

T
11P1) sin

(
α π

2

)
(−P1A11 + A

T
11P1) cos

(
α π

2

)
(P1A11 − A

T
11P1) cos

(
α π

2

)
(P1A11 + A

T
11P1) sin

(
α π

2

) ]

+
[

(P1ZA12 + A
T
12Z

T P1) sin
(
α π

2

)
(P1ZA12 − A

T
12Z

T P1) cos
(
α π

2

)
(−P1ZA12 + A

T
12Z

T P1) cos
(
α π

2

)
(P1ZA12 + A

T
12Z

T P1) sin
(
α π

2

)]

+
[
(P1ZA12 + A

T
12Z

T P1) sin
(
α π

2

)
(−P1ZA12 + A

T
12Z

T P1) cos
(
α π

2

)
(P1ZA12 − A

T
12Z

T P1) cos
(
α π

2

)
(P1ZA12 + A

T
12Z

T P1) sin
(
α π

2

) ]

=
[
(2P1A11 + 2AT

11P1 + 2Y1A12 + 2AT
12Y

T
1 ) sin

(
α π

2

)
0

0
(2P1A11 + 2AT

11P1 + 2Y1A12 + 2AT
12Y

T
1 ) sin

(
α π

2

)] < 0
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where Y1 = P1Z , which completes the proof. ��

3.2.2 ˛ ∈ [1, 2)

Theorem 2 There exists a parameter matrix Z such that (31) is stable iff there exist a
symmetric positive definite matrix P2 and a matrix Y2 such that

[
(AT

11P2 + P2A11 − A
T
12Y

T
2 − Y2A12) sin

(
α π

2

)
(P2A11 − A

T
11P2 − Y2A12 + A

T
12Y

T
2 ) cos

(
α π

2

)
(AT

11P2 − P2A11 − A
T
12Y

T
2 + Y2A12) cos

(
α π

2

)
(AT

11P2 + P2A11 − A
T
12Y

T
2 − Y2A12) sin

(
α π

2

)] < 0. (33)

In such a case, Z is determined by Y2 = P−1
2 Z.

Proof Substituting (31) in Lemma 4, we have that

[[(A11 − ZA12)
T P2 + P2(A11 − ZA12)] sin

(
α π

2

)
[P2(A11 − ZA12) − (A11 − ZA12)

T P2] cos
(
α π

2

)
(AT

11P2 − P2A11 − A
T
12Z

T P2 + P2ZA12) cos
(
α π

2

)
[(A11 − ZA12)

T P2 + P2(A11 − ZA12)] sin
(
α π

2

) ]

=
[
(AT

11P2 − A
T
12Z

T P2 + P2A11 − P2ZA12) sin
(
α π

2

)
(P2A11 − P2ZA12 − A

T
11P2 − A

T
12Z

T P2) cos
(
α π

2

)
(AT

11P2 − P2A11 − A
T
12Z

T P2 + P2ZA12) cos
(
α π

2

)
(AT

11P2 − A
T
12Z

T P2 + P2A11 − P2ZA12) sin
(
α π

2

)]

=
[
(AT

11P2 + P2A11 − A
T
12Y

T
2 − Y2A12) sin

(
α π

2

)
(P2A11 − A

T
11P2 − Y2A12 + A

T
12Y

T
2 ) cos

(
α π

2

)
(AT

11P2 − P2A11 − A
T
12Y

T
2 + Y2A12) cos

(
α π

2

)
(AT

11P2 + P2A11 − A
T
12Y

T
2 − Y2A12) sin

(
α π

2

)]
< 0,

where Y2 = P2Z , which completes the proof. ��
Within the above results, we present the following design algorithm to determine

the desired fractional-order observer.

4 Simulation Results

The following numerical example is presented to verify the derived theoretical results.

Example 1 The parameters of fractional-order system (9) are chosen as

A =
⎡
⎣−2 1 2

0 −2 −1
0 0 −1

⎤
⎦ , B = 0, F =

⎡
⎣1 0
0 1
0 −1

⎤
⎦ , C =

[−1 1 0
0 0 1

]
, D =

[−1 0
0 1

]
,
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Algorithm 1 Fractional-Order Observer Design Algorithm
1: Select the matrix E according to (16);
2: Substitute E in (18) and (19), and determine T and K;
3: Substitute T derived in step 2 in (12b), and determine H;
4: Calculate U1, U2, V1 and V2 by (24a)-(24d);
5: Calculate U3 and U4 by (29) and (30);
6: By step 4, calculate R and S by (23c) and (23d), respectively;
7: Calculate Z in cases α ∈ (0, 1) and α ∈ [1, 2) by Theorems 1 and 2, respectively;
8: Based on step 7, determineM, G, O1 and O3;
9: Substitute V1, V2 and O1 derived in steps 4 and 8 in (23a) and (23b), determine P and Q;
10: Substitute V1, V2, U3, U4 and O3 obtained in steps 4, 5 and 8 in (28a) and (28b), determine N and J.

then we have that

A = [A F ] =
⎡
⎣−2 1 2 1 0

0 −2 1 0 1
0 0 −1 0 −1

⎤
⎦ , C = [C D] =

[−1 1 0 −1 0
0 0 1 0 1

]
.

Clearly, rank

[E
C

]
= 5, which satisfies Assumption 1.

Moreover, set

E =
⎡
⎣1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎦

such that rank

[
E

C

]
= n + r .

It follows from step 2 in Algorithm 1 that

T =
⎡
⎣ 1 0 0

0 0 1
−1 1 0

⎤
⎦ , K =

⎡
⎣ 0 0

0 0
−1 0

⎤
⎦ , H = 0.

According to step 4, we obtain that

U1 =

⎡
⎢⎢⎢⎢⎣
1 0 0
1 0 1
0 1 0
0 0 1
0 −1 0

⎤
⎥⎥⎥⎥⎦ , U2 =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0

−1 0
0 1

⎤
⎥⎥⎥⎥⎦ , V1 = 0, V2 = 0.

Furthermore, step 5 deduces that

U3 =
⎡
⎣−1 2 2

0 0 0
−1 −2 −4

⎤
⎦ , U4 =

⎡
⎣−1 0

0 −1
1 1

⎤
⎦ .
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Hence, by step 6, R = U1 and S = U2.
In the sequel, set d(t) = [0.2 0.2]T . In such a case, by Theorem 1, we achieve that

P1 = 106 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

0.4286 −0.1851 0.1509 0 0 0
−0.1851 3.3696 0.0399 0 0 0
0.1509 0.0399 0.2107 0 0 0

0 0 0 3.4796 0 0
0 0 0 0 3.4796 0
0 0 0 0 0 3.4796

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Y1 = 105 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −4.4038 0 0
0 0 0 0 −4.4038 0
0 0 0 0 0 −4.4038

⎤
⎥⎥⎥⎥⎥⎥⎦

,

As a consequence,

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −0.1266 0 0
0 0 0 0 −0.1266 0
0 0 0 0 0 −0.1266

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Therefore, M = O1 = O3 = 03×3, and

G =
⎡
⎣−0.1266 0 0

0 −0.1266 0
1 0 −0.1266

⎤
⎦ .

It is easy to see that by step 9, P = Q = 03×3. Finally, step 10 indicates that N = U3
and J = U4.

Based on the above calculations, the simulation results are presented as Figs. 1,
2 and 3 with α = 0.9 and the initial states (x1(t), x2(t), x3(t)) = (15,−5, 5),
(z1(t), z2(t), z3(t)) = (0, 5, 5) and (ψ1(t), ψ2(t), ψ3(t)) = (5,−10, 5). The sim-
ulation results show that the designed fractional-order observer can simultaneously
estimate both the states (see Figs. 1, 2) and the unknown inputs (see Fig. 3), effectively.
Furthermore, within the same initial states, the simulation results with α = 0.6 and
α = 0.8 are shown in Figs. 4 and 5, respectively. It follows from the simulation results
that the convergence rate is faster when the order is more and more big.
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Fig. 1 The estimation of state x1(t)

Fig. 2 The estimation of state x2(t)

5 Conclusion

In this paper, a fractional-order observer has been proposed to estimate both the states
and the unknown inputs for LTI-FOSs with 0 < α < 2. A necessary and sufficient
criterion has been derived to guarantee the stability of LTI-FOSs with 0 < α <

1. The parameterized matrices of the derived fractional-order observer have been
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Fig. 3 The estimation of unknown input d1(t)

Fig. 4 The estimation of x1(t), x2(t) and d1(t) with α = 0.6

solved on the basis of the stability theorems and the solution to the generalized inverse
matrix. The fractional-order observer design algorithm has been presented to verify
the correctness and effectiveness of the designed observer. Simulation results have
shown that the desired observer can estimate both the states and the unknown inputs,
simultaneously.
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Fig. 5 The estimation of x1(t), x2(t) and d1(t) with α = 0.8

For future investigations, we may consider the simultaneous estimations of both
states and unknown inputs for fractional-order nonlinear system and related fractional-
order observer-based controller designed problems.
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