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Abstract
This paper presents two super-Gaussian-based multimicrophone maximum a posteri-
ori (MAP) estimators which exploit both amplitude and phase of speech signal from
noisy observations. It is well known that super-Gaussian distributions model the sta-
tistical properties of speech signal more accurately. Under the independent Gaussian
statistical assumption for noise signals, which is usually valid in wireless acoustic sen-
sor networks, two jointmultimicrophone estimators are derivedwhile the speech signal
is modeled by super-Gaussian distribution. Since the microphones are distributed ran-
domly andmay also belong to different devices, the independency assumption of noise
signals is more reasonable in these networks. The performance of the proposed esti-
mators is compared to that of four baseline estimators; the first is the multimicrophone
minimummean square error (MMSE) estimation, where both amplitude and phase are
derived assuming Gaussian properties for speech signal. The second baseline is the
multimicrophone MAP-based amplitude estimator, that utilizes the super-Gaussian
statistics to just obtain the amplitude of speech and keeps the phase unchanged. As the
third one, we have considered a minimum variance distortion-less response filter fol-
lowed by a super-GaussianMMSE estimator.We have also compared the performance
of the proposed estimators with the centralizedmultichannelWiener filter. The simula-
tion experiments demonstrate remarkable ability of the proposed estimators to enhance
speech quality and intelligibility when the clean speech is degraded by a mixture of
both point source interference and additive noise in reverberant environments.
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1 Introduction

In speech-related applications, such as hearing aids, teleconferencing, and hands-free
devices, it is often crucial to reduce the effect of undesired background noise while
preserving the quality of clean speech signal.

Many noise reduction algorithms are implemented in the short-time Fourier trans-
form (STFT) domain by taking advantage of the well-known fast Fourier transform.
Considering the central limit theorem, a general trend in STFT-based speech enhance-
ment algorithms has been to model real and imaginary parts of discrete Fourier
transform (DFT) coefficients by independent Gaussian distributions [10, 48]. How-
ever, due to the limited DFT frame length, which is typically varied between 10 and
100 ms, the Gaussian assumption is not completely fulfilled [25, 29–31]. As a con-
sequence, other distributions have been examined and many researches have been
devoted to this topic [2, 4, 8, 11, 14, 25, 29–31, 43, 45].

InMartin [29], an analytical minimummean square error (MMSE) estimator for the
DFT coefficients was developed under the complex Gamma distribution of speech sig-
nals, while noise is modeled by either complex Gaussian or Laplacian distributions.
It was shown that this Gamma-based estimator can deliver a better signal to noise
ratio (SNR) compared to the Gaussian-based MMSE estimator presented in Ephraim
and Malah [10]. The work was later extended to one that considers Laplacian distri-
bution for speech DFT coefficients [31], and also speech presence probability [30].
Furthermore, based on some measured histograms, Lotter and Vary proposed a high-
accuracy two-parametric function for the probability density function (PDF) of the
speech signal amplitude [25]. They showed that in special cases, the two-parametric
super-Gaussian functions lead to theLaplacian orGammaassumption of complexDFT
coefficients [25]. Finally, they proposed two analytical maximum a posteriori (MAP)
spectral amplitude estimators. Compared to the MMSE criterion, MAP-based estima-
tors can be implemented more efficiently, since they do not require the computation
of expensive Bessel or confluent hypergeometric functions [25].

Non-Gaussian-based speech enhancement methods have received a great deal of
attention by using either the MAP or MMSE criterion due to the significant noise
reduction improvement [2, 4, 8, 11, 14, 25, 29–31, 43, 45]. In addition to thementioned
criteria, other cost functions such as β-order, weighted Euclidean, and the weighted
Cosh MMSE of spectral amplitude have been studied, too [43, 45]. Also, the joint
Bayesian estimations of both the clean speech amplitude and phase were proposed in
[14], utilizing the super-Gaussian assumption of speech DFT coefficients.

All previously mentioned algorithms have been introduced in the framework
of single-microphone speech enhancement. However, multimicrophone-based algo-
rithms, which enable us to benefit from spatial in addition to spectral information, lead
to higher degrees of freedom in order to reduce noise.

A Gaussian-based Bayesian estimation of clean speech signal has been introduced
in the multimicrophone framework by Balan and Rosca [5]. Using the well-known
Fisher–Neyman factorization, they demonstrated that the multimicrophone MMSE
Bayesian estimation can be decomposed to a minimum variance distortion-less
response (MVDR) filter followed by a single-microphone Ephraim andMalah-MMSE
estimator [10]. Based on the decomposition, they developed MMSE estimators for
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short-time spectral amplitude (STSA), log spectral amplitude (LSA), and speech phase
in the multimicrophone framework. An extension of this work was presented in [19],
where themagnitude ofDFT coefficients ismodeled by a generalizedGamma distribu-
tion. It has been shown that assumingGaussian distribution for noise DFT coefficients,
and generalized Gamma distribution for the clean speech magnitude, a multimicro-
phone MMSE estimator can again be decomposed into two subsequent estimators
(MVDR plus single-microphone MMSE). They also investigated the robustness of
the proposed multichannel MMSE estimator under the erroneous estimation of steer-
ing vectors in [18]. Furthermore, a direction-independent multimicrophone amplitude
estimator based on MAP was proposed in [24].

The impact of phase estimation was ignored for several years based on the per-
ceptual experiments reported in Wang and Lim [47]. However, the multimicrophone
MMSE phase estimation [44] andmore recent experiments [33] have shown that phase
enhancement plays a substantial role in reducing the background noise. Therefore in
the recent decade, many research works were devoted to the phase processing to
improve speech quality and intelligibility (see, e.g., [14], [7, 15, 21, 22, 36, 38, 40, 46,
49, 50]). A comprehensive survey of the most recent results was carried out in [13].

In this paper, we derive two statistically optimal multimicrophoneMAP algorithms
for joint estimation of amplitude and phase of clean speech signal. The algorithms are
developed utilizing the family of super-Gaussian distributions. The first part of this
contribution is an extension of the work presented by Lotter in [25] to the multimicro-
phone case. The second part employs another super-Gaussian distribution proposed in
Gerkmann [14], whichmodels the amplitude of speech signal using a shape parameter.

We should emphasize that in the proposed joint multimicrophone MAP estimators,
noise components are modeled by independent Gaussian distributions. This assump-
tion in wireless acoustic sensor networks (WASNs) sounds even more reasonable
compared to traditional microphone arrays. The microphones in WASNs, which are
randomly distributed in the room, communicate with each other via wireless links.
Hence, they cover a larger area and exploit more spatial information rather than
the traditional microphone arrays. This advantage becomes more significant when
some microphones are located closer to the desired speaker, providing signals with
higher SNRs. By sharing information between various microphones, considerable
improvement can be obtained [6, 9, 27, 28, 37, 39]. The possibility of using separately
manufactured devices (e.g., cell phones, laptops, etc.) along with the random loca-
tion of their microphones makes the independency assumption of noise signals more
reasonable in these networks.

The remaining of this paper is organized as follows. The statistical properties of
signals will be reviewed in Sect. 2. We will introduce the proposed joint multimicro-
phone MAP estimators in Sect. 3. Next, we will show the simulation results in Sect. 4,
comparing the noise reduction performance of the proposed estimators with the four
benchmarks. Finally, we will present some concluding remarks in Sect. 5.
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2 Statistical Properties of Speech Signal

Consider a WASN including N microphones. In the STFT domain, the noisy signal
of the n-th microphone at the m-th frame and the k-th discrete frequency indices,
Yn(m, k), is modeled as

Yn(m, k) = Xn(m, k) + Vn(m, k), n = 1, . . . , N , (1)

where Xn(m, k) and Vn(m, k) denote the desired speech signal and the additive noise
signal, respectively. For convenience, in the following, the frame and frequency indices
are only mentioned when referring to a specific time-frequency unit.

In vector representation, the vector consisting of noisy signal at different micro-
phones, namely as the noisy vector, is expressed as y = x+vwith y = [Y1, ..., YN ]T ,
where T denotes the transpose operation. x and v are defined similarly.

Since the speech and noise signals are usually generated from different sources,
it is common assumption to consider them as uncorrelated signals. Therefore, the
correlation matrix of noisy vector will be expressed as �y = E

{
yyH

} = �x + �v,
where �x and �v denote correlation matrices of speech and noise, respectively. In
the simulation section, we will explain in detail how to calculate these correlation
matrices.

In polar representation, Yn = Rne jϑn , n = 1, . . . , N , where Rn and ϑn denote
the spectral amplitude and phase of noisy signal, respectively, at the n-th microphone.
In a similar fashion, Xn = Ane jαn , n = 1, . . . , N , where An and αn denote the
spectral amplitude and phase of clean signal, respectively, at the n-th microphone.
The main goal of this contribution is to reduce the noise signal and preserve the clean
speech signal, i.e., estimate A1 and α1 from the noisy vector y. It should be noted
that, without loss of generality, we consider the first microphone as the reference and
correspondingly its clean speech signal as the desired signal.

3 Proposed Joint MultimicrophoneMAP Estimators

The first proposed estimator utilizes the super-Gaussian distribution proposed in [25],
which models the amplitude of speech signal using two parameters.

3.1 Two-Parametric Joint MultimicrophoneMAP (TPJMAP) Estimator Using
Super-Gaussian Statistics

In Lotter and Vary [25], based on some measured histograms, it has been shown
that the PDF of speech amplitude at the n-th microphone, can be modeled using a
high-accuracy two-parametric function, i.e., [25],

p(An) =

⎧
⎪⎨

⎪⎩

μν+1Aν
n

�(ν + 1)σ ν+1
x (n)

exp

(−μAn

σx (n)

)
, An > 0,

0, else,
(2)
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where σ 2
x (n) denotes the variance of clean speech signal at the n-th microphone, and

�(·) is the Gamma function. The parameters μ and ν are used to shape the PDF. It
has been seen that in special cases, e.g., μ = 2.5, ν = 1 and μ = 1.5, ν = 0.01 the
PDF function simplifies to the case where the real and imaginary parts of the clean
speech signal are modeled by Laplacian or Gamma distribution, respectively [25].
Also, considering uniform distribution for speech phase, the PDF of phase at the n-th
microphone is given by

p(αn) = 1

2π
, −π < αn < π. (3)

It is a common assumption to consider the amplitude and the phase of speech signal
as independent variables; hence, the joint PDF is written as follows [25]

p(An, αn) = μν+1Aν
n

2π�(ν + 1)σ ν+1
x (n)

exp

(−μAn

σx (n)

)
. (4)

Although the non-Gaussian property of speech signal has attracted lots of attention,
it is still a common assumption to model the noise signal properties by Gaussian
distribution. Therefore, the conditional PDF of noisy signal, Yn , given the amplitude
and phase of the clean speech signal at the n-th microphone, (An, αn), is given by
Lotter and Vary [25]

p(Yn | An, αn) = 1

πσ 2
v (n)

exp

(
−|Yn − Ane jαn |2

σ 2
v (n)

)
, (5)

and σ 2
v (n) denotes the variance of the noise signal at the n-th microphone.

Similar to [26] and also considering far-field propagation model, the speech ampli-
tudes at different microphones are modeled by a linear relation; also considering the
phase delay between different microphones, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y1 = A1e jα1 + V1,

Y2 = C2A1e j(α1−β2) + V2,
...

YN = CN A1e j(α1−βN ) + VN ,

(6)

where βn denotes the phase delay between the first and the n-th microphone, and Cn

is modeled as a real deterministic value, and given by (see proof in Appendix)

C2
n = E

{
XnX∗

n

}

E
{
X1X∗

1

} = σ 2
x (n)

σ 2
x (1)

, n = 1, · · · , N . (7)

As mentioned before, since in WASNs, microphones are distributed randomly and
may also belong to different devices, it is a reasonable assumption to consider the noise
signals at different microphones independent. Therefore, the conditional PDF of noisy
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vector, y, given the amplitude and phase of the clean speech signal at first microphone,
(A1, α1), is obtained by multiplying the conditional PDFs of noisy signals at different
microphones, Yn, n = 1, · · · , N , given the amplitude and phase of the desired clean
speech signal, i.e.,

p(y | A1, α1) =
N∏

n=1

p(Yn | A1, α1)

=
N∏

n=1

1

πσ 2
v (n)

exp

(

−
N∑

n=1

|Yn − Cn A1e j(α1−βn)|2
σ 2

v (n)

)

,

(8)

obviously C1 = 1 and β1 = 0. It should be noted that the variances of noise signals
σ 2

v (n), and clean signals σ 2
x (n) are easily computed as the diagonal elements of the

correlation matrices of speech and noise, respectively, i.e.,

{
σ 2

v (n) = �v(n, n), n = 1, · · · , N ,

σ 2
x (n) = �x(n, n), n = 1, · · · , N .

(9)

The main goal of the proposed two-parametric joint MAP (TPJMAP) estimator
is to compute both spectral amplitude and phase of the desired signal, considering
the maximum a posteriori criterion. In other words, by maximizing the posterior
distribution of A1 and α1 given the noisy vector y, as

Â1, α̂1 = arg max
A1,α1

p(A1, α1 | y)

= arg max
A1,α1

p(y | A1, α1) p(A1, α1)

p(y)
.

(10)

Considering that the denominator is independent of amplitude and phase, and plays
no role in maximization, we only need to maximize the numerator, so

Â1, α̂1 = arg max
A1,α1

p(y | A1, α1) p(A1, α1). (11)

Combining (8) and (4) yields

p(y | A1, α1) p(A1, α1)

=
N∏

n=1

1

πσ 2
v (n)

exp

(

−
N∑

n=1

|Yn − Cn A1e j(α1−βn)|2
σ 2

v (n)

)

μν+1Aν
1

2π�(ν + 1)σ ν+1
x (1)

exp

(−μA1

σx (1)

)
,

(12)

since ln(·) is a monotonically increasing function, the maximization of (11) can be
replaced by maximizing its natural logarithm. Omitting the terms that have no effect
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on optimization procedure, we continue with

arg max
A1,α1

ln p(y | A1, α1) p(A1, α1)

= −
N∑

n=1

|Yn − Cn A1e j(α1−βn)|2
σ 2

v (n)
+ ν ln A1 − μ

A1

σx (1)
.

(13)

3.1.1 Two-Parametric Joint Multimicrophone MAP Estimator to Extract the Phase of
Clean Signal

As mentioned before, phase enhancement plays a substantial role in reducing the
background noise. One of the main keys of this contribution is to compute the speech
signal phase and show its considerable importance in improving speech quality and
intelligibility. Hence, the first part of this work will be dedicated to find the statisti-
cally optimal phase solution regarding the MAP criterion. This is actually done by
maximizing (13) with respect to α1. After differentiating (13) with regard to α1 and
setting it equal to zero, we have

∂

∂α1
ln p(y | A1, α1) p(A1, α1)

=
N∑

n=1

[
Yn − Cn A1e j(α1−βn)

] [
jCn A1e− j(α1−βn)

]

σ 2
v (n)

+
N∑

n=1

[
Y ∗
n − Cn A1e− j(α1−βn)

] [− jCn A1e j(α1−βn)
]

σ 2
v (n)

= 0.

(14)

By substituting Yn = Rneϑn , we finally obtain the following expression

N∑

n=1

CnRn sin(ϑn + βn − α1)

σ 2
v (n)

=
N∑

n=1

mn sin(θn − α1) = 0, (15)

where θn = ϑn + βn and

mn = CnRn

σ 2
v (n)

= σx (n)

σx (1)

Rn

σ 2
v (n)

= 1

σx (1)

√
ζnγn . (16)

In (16), ζn and γn denote a priori and a posteriori SNRs, respectively, at the n-th
microphone. These values are easily computed as

ζn = σ 2
x (n)

σ 2
v (n)

, γn = R2
n

σ 2
v (n)

. (17)
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Using trigonometric identities [32], the sum of N sine terms can be written as one
term, i.e.,

N∑

i=1

di sin(θi − ω) = d sin(θ − ω), (18)

where d and θ are structured as [32]

⎧
⎨

⎩

d2 = ∑
i, j di d j cos(θi − θ j ),

θ = atan2

( ∑
i di sin(θi )∑
i di cos(θi )

)
,

(19)

the optimal TPJMAP estimator of the phase is obtained from (15) as

α1 = atan2

( ∑N
n=1mn sin(ϑn + βn)

∑N
n=1mn cos(ϑn + βn)

)

. (20)

We observe that in the case of single-microphone, corresponding to the N = 1, (20)
converges to phase of noise signal, which is in accordance with the results presented
in Lotter and Vary [25].

3.1.2 Two-Parametric Joint Multimicrophone MAP Estimator to Extract the
Amplitude of Clean Signal

In this subsection, the optimal estimation of the amplitude of the clean speech signal
is presented. For this purpose, first, we substitute (20) in (13), and subsequently, in a
similar fashion, the posterior distribution (13) is maximized with respect to A1. By
differentiating and setting the result equal to zero, we get

∂

∂A1
ln p(y | A1, α1) p(A1, α1)

= −
N∑

n=1

[Yn − Cn A1e j(α1−βn)][−Cne− j(α1−βn)]
σ 2

v (n)

−
N∑

n=1

[Y ∗
n − Cn A1e− j(α1−βn)][−Cne j(α1−βn)]

σ 2
v (n)

+ ν

A1
− μ

σx (1)
= 0,

(21)

as a result (21) becomes

N∑

n=1

Cne− j(α1−βn)Yn
σ 2

v (n)
+

N∑

n=1

Cne j(α1−βn)Y ∗
n

σ 2
v (n)

− 2
N∑

n=1

A1C2
n

σ 2
v (n)

+ ν

A1
− μ

σx (1)
= 0.

(22)



1500 Circuits, Systems, and Signal Processing (2024) 43:1492–1517

Substituting the amplitude and phase of the noisy signal at the n-th microphone, i.e.,
Yn = Rneϑn , the following expression is obtained:

2
N∑

n=1

CnRn cos(ϑn + βn − α1)

σ 2
v (n)

− 2A1

N∑

n=1

C2
n

σ 2
v (n)

+ ν

A1
− μ

σx (n)
= 0. (23)

Using (16), which represents that Cn Rn
σ 2

v (n)
= 1

σx (1)

√
ζnγn , and

N∑

n=1

C2
n

σ 2
v (n)

= 1

σ 2
x (1)

N∑

n=1

σ 2
x (n)

σ 2
v (n)

= 1

σ 2
x (1)

N∑

n=1

ζn, (24)

(23) is structured based on a priori and a posteriori SNRs as follows:

A2
1

(

2
N∑

n=1

ζn

)

+ A1

(

μσx (1) − 2σx (1)
N∑

n=1

√
ζnγn cos(ϑn + βn − α1)

)

− νσ 2
x (1) = 0,

(25)

which represents a quadratic function in terms of A1.
The TPJMAP estimator of amplitude (i.e., the solution of quadratic equation of

(25)), is obtained by multiplying a gain factor to the amplitude of noisy signal at the
first microphone, i.e., A1 = GT R1, where the gain GT is achieved as

GT = A1

R1
=

√
ζ1

γ1

4
∑N

n=1 ζn
Re

{
2� − μ +

√√√√μ2 + 4�2 − 4μ� + 8ν

(
N∑

n=1

ζn

)}
,

(26)

where � = ∑N
n=1

√
ζnγn cos(ϕn) and ϕn = ϑn + βn − α1.

Again, we observe that in the case of single-microphone, corresponding to the
N = 1, (26) is equal to joint MAP estimation of amplitude as presented in Lotter and
Vary [25]. Indeed, based on what was stated earlier, the first part of this contribution
is an extension of the work presented in Lotter and Vary [25] to the multimicrophone
case.

3.2 One-Parametric Joint MultimicrophoneMAP (OPJMAP) Estimator Using
Super-Gaussian Statistic

As Gerkmann [14], in this part, we consider another super-Gaussian distribution
which models the amplitude of speech signal using the shape parameter η as follows
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Gerkmann [14]

p(An) =

⎧
⎪⎨

⎪⎩

2

�(η)

(
η

σ 2
x (n)

)η

A2η−1
n exp

(−ηA2
n

σ 2
x (n)

)
, An > 0

0, else.
(27)

Assuming a uniform distribution for phase, the joint PDF is expressed as follows [14]

p(An, αn) = 1

π�(η)

(
η

σ 2
x (n)

)η

A2η−1
n exp

(−ηA2
n

σ 2
x (n)

)
, (28)

considering a Gaussian distribution for noise signal, it is easily seen that the steps to
obtain the optimal phase gain is similar to (20); so, here we only derive the optimal
amplitude.

3.2.1 One-Parametric Joint Multimicrophone MAP Estimator to Extract the
Amplitude of Clean Signal

Similar towhat we did in the case of the TPJMAP estimator, it is sufficient tomaximize

Â1 = argmax
A1

p(y | A1, α1) p(A1, α1). (29)

Substituting (28) into (29), we get

p(y | A1, α1) p(A1, α1)

=
N∏

n=1

1

πσ 2
v (n)

exp

(

−
N∑

n=1

|Yn − Cn A1e j(α1−βn)|2
σ 2

v (n)

)

1

π�(η)

(
η

σ 2
x (n)

)η

A2η−1
n exp

(−ηA2
n

σ 2
x (n)

)
,

(30)

based on what was explained before, after applying ln(·) and neglecting the terms that
play no role in optimization, we proceed with

argmax
A1

ln p(y | A1, α1) p(A1, α1)

= −
N∑

n=1

|Yn − Cn A1e j(α1−βn)|2
σ 2

v (n)
+ (2η − 1) ln A1

− η
A2
1

σ 2
x (1)

.

(31)
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Following differentiating and setting the result equal to zero, we get

∂

∂A1
ln p(y | A1, α1) p(A1, α1)

= −
N∑

n=1

[Yn − Cn A1e j(α1−βn)][−Cne− j(α1−βn)]
σ 2

v (n)

−
N∑

n=1

[Y ∗
n − Cn A1e− j(α1−βn)][−Cne j(α1−βn)]

σ 2
v (n)

+ 2μ − 1

A1
− 2μA1

σ 2
x (1)

= 0,

(32)

which leads to

N∑

n=1

Cne− j(α1−βn)Yn
σ 2

v (n)
+

N∑

n=1

Cne j(α1−βn)Y ∗
n

σ 2
v (n)

− 2
N∑

n=1

A1C2
n

σ 2
v (n)

+ 2μ − 1

A1
− 2μA1

σ 2
x (1)

= 0.

(33)

Substituting the amplitude and phase of the noisy signal at the n-th microphone, i.e.,
Yn = Rneϑn , the following equation can be found

2
N∑

n=1

CnRn cos(ϑn + βn − α1)

σ 2
v (n)

− 2A1

N∑

n=1

C2
n

σ 2
v (n)

+ 2μ − 1

A1
− 2μA1

σ 2
x (1)

= 0.

(34)

It readily follows that (34) represents a quadratic function in terms of A1 too, i.e.,

A2
1

(

2
N∑

n=1

ζn + 2μ

)

+ A1

(

−2σx (1)
N∑

n=1

√
ζnγn cos(ϑn + βn − α1)

)

− (2μ − 1)σ 2
x (1) = 0.

(35)

The solution of OPJMAP estimator of amplitude is computed by multiplying a gain
factor to the amplitude of noisy signal at the first microphone, i.e., A1 = GO R1, where
the gain GO is obtained as

GO = A1

R1
=

√
ζ1

γ1

2
∑N

n=1 ζn + 2μ
Re

{
� +

√√√√�2 + 2(2μ − 1)

(
N∑

n=1

ζn + μ

)}
,
(36)

where � = ∑N
n=1

√
ζnγn cos(ϕn) and ϕn = ϑn + βn − α1.
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4 Simulation Results

During these experiments, we implemented the STFT with 75%-overlapping frames
and Hamming analysis window. The sampling frequency is fs = 16 kHz. Also we
set μ = 1.74, ν = 0.126, and η = 0.5 as presented in Lotter and Vary [24] and
Gerkmann [14], respectively. To avoid the effect of the estimation error of phase
delay, we consider a perfect synchronization situation, when the accurate estimations
of βi are provided.

4.1 Computation of CorrelationMatrices

The correlation matrix of the noisy vector is commonly computed using a forgetting
factor, e.g., λy , and recursively estimating the matrix as a linear combination of the
correlation matrix at previous frames and the noisy vector at the current frame [41],
i.e.,

�̂y(m, k) = λy�̂y(m − 1, k) + (1 − λy)y(m, k)yH (m, k). (37)

To compute the correlation matrix of the noise signal, we use the speech presence
probability (SPP) as presented in Souden et al. [41]. In this case, using an SPP-
based forgetting factor, the correlation matrix of noise signal is recursively updated as
follows:

�̂v(m, k) = λv,spp�̂v(m − 1, k) + (1 − λv,spp)y(m, k)yH (m, k), (38)

with λv,spp = λv + (1 − λv)SPP(m, k), where SPP(m, k) represents the SPP at the
current frame and λv denotes the forgetting factor. As observed, we need the value of
SPP(m, k) to compute �̂v(m, k); on the other hand, �̂v(m, k) is required to compute
the SPP(m, k) [41]. Indeed, these values are dependent together. Thus, an iterative
algorithmwasproposed inSouden et al. [41]. First, using the correlationmatrix of noise
signal at the previous frame, an initial estimation of SPP(m, k) and correspondingly an
initial λv,spp will be obtained. In the second step, these initial values (SPP(m, k) and
λv,spp) are utilized to obtain an update of the correlation matrix of noise signal. It has
been shown in Souden et al. [41] that two repetitions are quite enough to obtain a good
estimation of both SPP and the correlation matrix of noise signal. In our simulations,
we used the first 10 silent-frames to obtain an initial estimation of the correlationmatrix
of the noise signal. During the experiments, to compute the SPP, we set q = 0.5 as
presented in Gerkmann et al. [17].

Since we assumed that the speech and noise signals are uncorrelated, the correlation
matrix of speech signal is computed as

�̂x(m, k) = �̂y(m, k) − �̂v(m, k). (39)

It should be noted that we set negative eigenvalues of �̂x(m, k) equal to zero to ensure
that the resultant matrix is positive semi-definite.
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Fig. 1 Description of the
simulated acoustic scenario

4.2 Performance in Simulated Scenarios

Toevaluate the noise reductionperformanceof the considered estimators,we simulated
a rectangular room with dimensions 4.5× 4.5× 3 m3 (width×length×height). Also,
we set the reverberation time as RT60 = 200 ms.

Emphasizing that the proposed algorithms are not dependent on the geometry and
arrangement of the microphones, we performed 30 randomized trials. In each trial,
we randomly chose the position of microphones, clean source signal, and interference
signal. Also, the number of microphones is varied between M = 3, . . . , 8. Figure1
depicts an example of these configurations.

We have assessed the noise reduction performance of the considered estimators for
a coverage of speakers includingmale, female, young and old speakers. The utterances
of eight male and eight female speakers from the TIMIT database [12] were used as
the clean source signals. We have presented the simulation results as the average on
four randomized samples and 30 trials.

To generate the noisy signals, we assume that the received clean speech signals
at different microphones are degraded by additive white Gaussian noise at full-band
input SNRs ranging from −10 dB to 15 dB. The full-band input SNRs is defined

as = 10 log

∑|x1(t)|2∑|v1(t)|2 .
1 Also, the microphone signals are corrupted by interfering

noises, including stationary pink, and non-stationary babble noises (see Fig. 1) at
full-band input signal to interference ratio (SIR) = 5 dB. We have utilized the well-
known imagemethod [3] to generate a good approximation of room impulse responses
between the sources of the signals (speech and interference) and the microphones.

1 The input full-band SNRs are computed for the first microphone since we considered it as the reference
one.
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Fig. 2 Performance of the proposed estimators in terms of a PESQ and b SegSNR improvement for
different forgetting factors, in the case of stationary pink interference signal when SIR= 5 dB and the SNR
for additive white Gaussian noise is 5 dB

We first show how the performance of the proposed estimators (named TPJMAP-
Super andOPJMAP-Super) varieswith forgetting factors,λy andλv . These parameters
are required to compute the correlation matrices of noisy (37) and noise signal (38),
respectively. Figure2 illustrates the performance of the proposed estimators in terms of
perceptual evaluation of speech quality (PESQ) [23] and segmental SNR (SegSNR)
[16] improvement between the enhanced signal and the noisy reference signal. As
mentioned earlier, we consider the clean speech signal at the first microphone as the
reference signal. The PESQ value is one of the most well-known measures to assess
the quality of speech. To consider both noise reduction as well as speech distortion,
we also show the SegSNR improvement, which represents the average of SNR over
speech-activated segments. During this experiment, we implemented the STFT whit
the number of fast Fourier transform (NFFT) points= 512, fixed the SNR for additive
white Gaussian noise = 5 dB, and the SIR = 5 dB for stationary pink interference
signal. It should also be noted that, as mentioned in Huang and Benesty [20], and
to capture the same tracking characteristics for correlation matrices, we made λy =
λv = λ.

We observe that although the TPJMAP-Super performs slightly better, both algo-
rithms follow the same trend and obtain the best performance with λ = 0.92. Indeed,
due to the averaging process, we usually achieve a reliable estimation of correlation
matrices by selecting large λ, emphasizing on the previous samples. However, on the
other hand, with a large λ, we are not able to trace the short-term variation of the
speech signal. It is well known that speech signals are inherently non-stationary sig-
nals. So, as expected, a moderate λ results in the best performance in terms of PESQ
and SegSNR.

In Fig. 3, we examine how the NFFT affects the performance of the proposed algo-
rithms. NFFT represents the sampling resolution in frequency domain. As mentioned
earlier, the proposed algorithms have been derived and developed in frequency domain.
In this experiment, we fixed λy = λv = 0.92, the SNR for additive white Gaussian
noise = 5 dB, and the SIR = 5 dB for stationary pink interference signal. It is well
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Fig. 3 Performance of the proposed estimators in terms of a PESQand bSegSNR improvement for different
NFFTs, in the case of stationary pink interference signal when SIR = 5 dB and the SNR for additive white
Gaussian noise is 5 dB

known that the higher FFT resolution, the larger gap between two consecutive frames
in time. We observe that the best performance is achieved by selecting a moderate
NFFT = 512.

Therefore, in the next experiments, we fix λy = λv = 0.92 and implement the
STFT using NFFT= 512.

Figure4 illustrates the spectrograms of the reference clean speech signal, the noisy
signal along with the enhanced signals using the proposed estimators in the presence
of stationary pink interference signal when SIR = 5 dB and the SNR for additive
white Gaussian noise is 5 dB. The spectrograms validate the merits of both proposed
estimators in reducing noise signal while the clean speech signal has considerably
been preserved. It seems that the TPJMAP-Super provides better estimation of the
amplitude of the clean speech signal than the OPJMAP-Super, leading to more noise
reduction. It is consistent with the previous experiments.2

In the following, we also report the experiments in which we compared the noise
reduction performance of the proposed joint multimicrophone MAP estimators with
four baseline methods: (1) the super-Gaussian MAP-based amplitude estimation [24],
where the super-Gaussian statistics are only utilized to developmultimicrophoneMAP
estimation of amplitude, and keep the phase unchanged (namedAMAP-Super), (2) the
MMSE estimator presented by Trawicki and Johnson, in [44], where both amplitude
and phase of speech signal were derived assuming Gaussian properties for speech
signal (named MMSE-Gaussian), (3) when the enhanced signal is obtained using a
MVDRfilter followed by a super-GaussianMMSE estimator (namedMVDR-MMSE-
Super) [11, 19], and (4) the centralized multichannel Wiener filter (named CMWF) as
presented in Bertrand and Moonen [6].

We also compare the noise reduction performance of the considered estimators in
terms of two more measures, short-time objective intelligibility (STOI) [42], and log-
spectral distortion (LSD) [1]. To evaluate the intelligibility of speech [35], we have

2 The simulation codes are available at https://pws.yazd.ac.ir/sprl/Ranjbaryan-CSSP/Codes.rar.

https://pws.yazd.ac.ir/sprl/Ranjbaryan-CSSP/Codes.rar
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Fig. 4 a Spectrogram of the reference clean speech signal, b the noisy signal, c enhanced signal using the
proposed TPJMAP-Super estimator, and d enhanced signal using the proposed OPJMAP-Super, in the case
of stationary pink interference signal when SIR = 5 dB and the SNR for additive white Gaussian noise is
5 dB

utilized the STOI measure. The LSD value is a measure to define speech distortion;
the lower LSD, the lower speech distortion.

Figures5 and 6 illustrate the performance of the considered estimators in terms of
PESQ, STOI, SegSNR improvement, and LSDwhen the SNR for additive white Gaus-
sian noise ranges from−10 dB to 15 dB,whilemaintaining SIR= 5 dB in the presence
of stationary pink and non-stationary babble interference signals, respectively.

It is seen that the PESQ improvements obtained by the proposed estimators are
considerably larger than the others for all input SNRs. Indeed, proposed estimators
present superior performance unifying the advantages of phase estimation and more
accurate super-Gaussian speech model. It is also observed that the TPJMAP-Super
estimator, which uses the PDF function in [24], provides a higher approximation
accuracy compared to the OPJMAP-Super, which uses the PDF function in [14], and
consequently yields more improvement.

Compared to the AMAP-Super, which also considers super-Gaussian statistics, the
proposed estimators benefit from the important effect of phase estimation on speech
quality improvement. On the other hand, and compared to theMMSE-Gaussian, which
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Fig. 5 Performance of the considered estimators in terms of a PESQ, b STOI, c SegSNR improvement,
and d LSD, in the case of stationary pink interference signal when SIR = 5 dB and the SNR for additive
white Gaussian noise ranges from −10 dB to 15 dB

estimates both amplitude and phase using MMSE criterion, the proposed estimators
take advantage of more accurate super-Gaussian modeling of the speech signal. It
should also be noted that, compared to the MMSE criterion, MAP-based estimators
can be implemented more efficiently, since they do not require the computation of
expensive Bessel or confluent hypergeometric functions. Indeed, based on (25) and
(35), we observe that the proposed JMAP estimators are easily obtained by solving
quadratic functions. Besides, Wolfe and Godsill [48] have shown that MAP-based
estimators could be considered an excellent alternative to theMMSE-based estimations
according to their comparative performance. The poor performance of the MVDR-
MMSE-Super estimator can be justified from different view points: first, the MVDR
filter is highly sensitive to the estimation errors of the correlationmatrix of noise. Also,
this estimator needs to compute the inverse of the N×N dimensional correlationmatrix
of noise. This problem becomes more acute when the number of microphones in the
network increases, allowing estimation errors. Besides, this estimator utilizes the one-
parametric super-Gaussian function to model the statistical properties of the speech
signal. As mentioned before, it seems that the two-parametric model provides a higher
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Fig. 6 Performance of the considered estimators in terms of a PESQ, b STOI, c SegSNR improvement,
and d LSD, in the case of non-stationary babble interference signal when SIR = 5 dB and the SNR for
additive white Gaussian noise ranges from −10 dB to 15 dB

approximation accuracy in comparison with the one-parametric model. Compared to
theCMWF,we also observed that the proposed estimators provide larger improvement.
Indeed, like to the MVDR-MMSE-Super, CMWF needs to compute inverse of the
correlation matrix of noise. As mentioned, this issue results in estimation errors in
the case of large number of microphones. In addition, the inverse of a square N × N
dimensional matrix is of quadratic complexity (O(N 2)), while the complexity of the
proposed estimators grows linearly with the number of microphones (O(N )).

Concerning STOI, in Figs. 5b and 6b, we observe that the proposed methods sig-
nificantly increase the STOI and, consequently, speech intelligibility. This result can
be supported by Kazama et al. [21], emphasizing the perceptual importance of phase.
Phase estimation is one of the key factors in the context of speech enhancement. In
Kazama et al. [21], it has been shown that the enhanced phase plays a substantial role
in improving speech intelligibility. Indeed, our proposed estimators incorporate both
super-Gaussian and phase estimation concepts together.
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Regarding SegSNR, Figs. 5c and 6c indicate that TPJMAP-Super outperforms the
rest for all input SNRs. Next is the OPJMAP-Super. These results demonstrate that the
proposed estimators are able to make a good trade-off between two measures, noise
reduction and speech distortion allowing higher SegSNR improvement.

In terms of LSD, we observe that following the TPJMAP-Super, the MVDR-
MMSE-Super performs slightly better than the others in low SNRs. In mid and high
SNRs, the compared estimators deliver approximately similar results.

Also, a brief comparison between considered algorithms is summarized in Table 1.

4.3 Performance in Realistic Scenarios

To compare the performance of estimators in realistic scenario, we use the data
recorded in a laboratory located at the University of Oldenburg [39]. The dimen-
sion of laboratory is (x = 7 m, y = 6 m, z = 2.7 m). The reverberation time of the
room is RT60 � 350 ms. The considered WASN contains 4 microphones; two micro-
phones, corresponding to each side of a hearing aid, are located in the middle of the
room. One microphone is placed at (x = 4.64 m, y = 2.63 m, z = 2 m), and the next
one is at (x = 2.36 m, y = 2.63 m, z = 2 m). The source speech signal originating
from a male speaker, located at (x = 4.64 m, y = 4.63 m, z = 2 m), received by
microphones. The length of this source speech signal is 24 seconds. The microphones
receive the signals at sampling frequency fs = 16 kHz. Besides, two different types of
noise signals, either factory or babble, are considered to produce diffuse and additive
noise signals. These signals are generated by four speakers located in the four corners
of the room and are collected in different SNRs together with the clean signal.

Figures7 and 8 illustrate the performance of the considered estimators in terms of
PESQ, STOI, SegSNR improvement, and LSDwhen the SNR for additive noise ranges
from −10 dB to 15 dB in the presence of factory and babble noises, respectively.

Concerning PESQ, Figs. 7a and 8a depict that although at SNR = −10 dB consid-
ered estimators fail to improve the PESQ value, the proposed joint multimicrophone
MAP estimators deliver considerable improvement at other SNRs, emphasizing their
ability to improve the quality of speech in realistic scenarios. It is also observed that,
in low SNRs, the MMSE-Gaussian, which estimates both amplitude and phase under
the Gaussian distribution assumption, provides more improvement compared with
the AMAP-Super, which considers super-Gaussian statistics and estimates only the
amplitude of the clean signal and keeps the phase unchanged. However, in high SNRs,
it is seen that the AMAP-Super outperforms the MMSE-Gaussian.

In terms of STOI and SegSNR, we observe a similar trend; proposed estimators
achieve larger STOI and SegSNR improvement than the others for all SNRs. Also,
while the MMSE-Gaussian achieves better results than AMAP-Super at low SNRs,
the AMAP-Super achieves a larger improvement at high SNRs.

RegardingLSD,we observe that the TPJMAP-Super produces the best performance
in low SNRs. In mid and high SNRs, all estimators perform about the same.



Circuits, Systems, and Signal Processing (2024) 43:1492–1517 1511

Ta
bl
e
1

C
om

pa
ri
so
n
of

th
e
co
ns
id
er
ed

al
go

ri
th
m
s
fo
r
no

is
e
re
du

ct
io
n
in

w
ir
el
es
s
ac
ou

st
ic
se
ns
or

ne
tw
or
ks

Ph
as
e
es
tim

at
io
n

St
at
is
tic
s

C
om

pl
ex
ity

D
om

ai
n

T
PJ
M
A
P-
Su

pe
r

�
Su

pe
r-
G
au
ss
ia
n

O
(N

)
Fr
eq
ue
nc
y

O
PJ
M
A
P-
Su

pe
r

�
Su

pe
r-
G
au
ss
ia
n

O
(N

)
Fr
eq
ue
nc
y

A
M
A
P-
Su

pe
r
[2
4]

×
Su

pe
r-
G
au
ss
ia
n

O
(N

)
Fr
eq
ue
nc
y

M
M
SE

-G
au
ss
ia
n
[4
4]

�
G
au
ss
ia
n

M
od
ifi
ed

B
es
se
lf
un
ct
io
ns

ar
e
re
qu
ir
ed

Fr
eq
ue
nc
y

M
V
D
R
-M

M
SE

-S
up
er

[1
9]

�
Su

pe
r-
G
au
ss
ia
n

O
(N

2
)

Fr
eq
ue
nc
y

C
M
W
F
[6
]

�
N
on
-B
ay
es
ia
n

O
(N

2
)

Fr
eq
ue
nc
y



1512 Circuits, Systems, and Signal Processing (2024) 43:1492–1517

Fig. 7 Performance of the considered estimators in terms of a PESQ, b STOI, c SegSNR improvement,
and d LSD for several full-band input SNRs, in the presence of factory noise, RT60 = 350 ms

5 Conclusion

In this work, we proposed twomultimicrophone estimators that exploit both amplitude
and phase of clean speech signal considering the MAP criterion. Proposed estimators
work based on two existing PDF functions which model the amplitude of clean speech
signal by super-Gaussian statistical properties. Considering the MAP criterion, we
provided closed-form solutions for both amplitude and phase of clean speech signal.

The performance of the proposed multimicrophone MAP estimators for different
kinds of noise was investigated in terms of PESQ, STOI, segmental SNR improvement
and also LSD values. The superiority of both proposed estimators in all situations was
confirmed by the simulation results. Taking advantages of phase estimation and more
accurate super-Gaussian speech model, the proposed estimators result in remarkable
PESQ and STOI improvement. Also, bymaking a good trade-off between noise reduc-
tion and speech distortion, proposed algorithms achieve higher output segmental SNR
compared to the benchmarks in both simulated and realistic scenarios.

In this work, the proposed estimators were derived under the assumption of uni-
form distribution for speech spectral phase. Although the proposed estimators were
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Fig. 8 Performance of the considered estimators in terms of a PESQ, b STOI, c SegSNR improvement,
and d LSD for several full-band input SNRs, in the presence of babble noise, RT60 = 350 ms

able to enhance the speech signal significantly, investigating the applicability of other
distribution, especially theVonMises distribution [14], is worthwhile for futureworks.
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Appendix A

A generalized form of (9) has been presented in Example 1 of Chapter 5 of [34], that
expresses the probability distribution of random variable Y , which is a function of
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variable X as follows:
Y = aX + b, (A1)

where a and b represent deterministic variables. In the case of b = 0, this equation is
simplified to our case. Although in general, the division of two random variables X
and Y , i.e., Y/X yields a random variable, however, in special case like the current

situation, (a = Y

X
) represents a deterministic value. In the problem at hand

{
Y ←− Am

X ←− A1
(A2)

where random variables are with Rayleigh distribution, and

{
a ←− Cm

b ←− 0
(A3)

so, Cm represents a deterministic value (the ratio of two standard deviations) as
explained in the manuscript.

Based on [34], the distribution function of Fy(y) is computed as follows:

⎧
⎪⎨

⎪⎩

Fy(y) = P{X ≤ y − b

a
} = Fx (

y − b

a
), a > 0,

Fy(y) = P{X ≥ y − b

a
} = 1 − Fx (

y − b

a
), a < 0,

(A4)

and the PDF is computed as

fy(y) = 1

| a | fx (
y − b

a
). (A5)

In our problem the amplitude A1 has the super-Gaussian distribution

p(A1) =

⎧
⎪⎨

⎪⎩

μν+1Aν
1

�(ν + 1)σ ν+1
x (1)

exp

(−μA1

σx (1)

)
, A1 > 0,

0, else,
(A6)

hence, the PDF of Am = Cm A1 is given by

p(Am) = 1

Cm
p(

Am

Cm
), (A7)

consequently:

p(Am) =
⎧
⎨

⎩

μν+1Aν
m

�(ν + 1)(Cmσx (1))ν+1 exp

( −μAm

Cmσx (1)

)
, Am > 0,

0, else,
(A8)
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which again represents super-Gaussian distribution with variance σ 2
x (m) = C2

mσ 2
x (1)

as mentioned in the manuscript.
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