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Abstract
This paper addresses the problem of synthesizing an H∞ static output feedback con-
troller for linear parameter-varying (LPV) time delay systems subject to time-varying
delay. The motivation for this research stems from the challenges associated with
designing controllers for such systems. In addition to considering the static output
feedback controller design, we also explore the design of a dynamic output feed-
back controller within the context of H∞ control. This is achieved by augmenting
the system dynamics with the inclusion of the dynamic controller state and formu-
lating the dynamic output feedback controller in an equivalent form of static output
feedback control for the overall system. To tackle the synthesis problem, a quadratic
Lyapunov–Krasovskii functional is selected, and a sufficient matrix inequality con-
dition is developed by utilizing the well-known Jensen-type integral inequality. This
approach enhances the robustness of the controller design and accounts for the time-
varying delay characteristics of the system. An iterative algorithm is introduced to
efficiently search for a potential feasible solution set of the synthesis problem. The
effectiveness of the proposed controller design methods is demonstrated through sev-
eral numerical examples. The application of the proposed approaches is showcased,
and a comparative analysis is performed. Specifically, the results are compared with
the existing approaches in the literature, considering both dynamic output feedback
controllers and static output feedback controllers for H∞ control. This comparison
highlights the advantages and differences of the proposed methodology. Overall, this
research contributes to the field by offering systematic methodologies for synthesiz-
ing H∞ static output feedback controllers for LPV time delay systems subject to
time-varying delay. The incorporation of dynamic output feedback controller design
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provides additional insights and flexibility. The numerical examples validate the appli-
cability of the proposed methods and underscore their potential advantages in terms
of robustness and performance.

Keywords Time delay systems · Uncertainty · Static output feedback · H∞ control ·
Iterative approaches

1 Introduction

Time delay systemswith time-varying delay and external disturbances pose significant
challenges in control design due to their inherent complexity anduncertainty. The delay
phenomena which inevitably exist in dynamical systems are usually the source of
instability and poor performance of the system [6]. The synthesis of robust controllers
that can ensure stability and performance in the presence of these challenges remains
a critical research area. For several decades, the stabilization of systems has been
studied in the literature, see [2–25] and the references therein. In this context, the
design of H∞ static output feedback controllers for linear parameter-varying (LPV)
time delay systems has gained considerable attention. It appears that often output
feedback based controller structures are reasonably preferred and the performance of
the system under external disturbances is evaluated with the minimization of the H∞
norm for the disturbance attenuation problem.

The motivation for synthesizing an H∞ static output feedback controller for LPV
systems with time-varying delays stems from the need to address control design
challenges in practical applications. Many real-world systems exhibit time-varying
dynamics due to changing operating conditions, environmental factors, or system
configurations. Time delays are often present in these systems, and they can introduce
performance degradation, stability issues, or even system failure if not adequately
accounted for in the control design. Hence, developing effective control strategies for
LPV systems with time-varying delays is of paramount importance.

The problem of synthesizing an H∞ static output feedback controller for LPV
systems with time-varying delays has broad practical applications. These applications
span various domains such as aerospace, automotive, process control, robotics, and
more. For example, in aerospace systems, time delays can arise from communication
delays between aircraft components or sensors. In automotive applications, delays can
occur in electronic control units (ECUs) or data transmission in vehicular networks.
Industrial process control systems often face transport delays in pipelines or feedback
loops. Robotics applications involve delays in control signals and sensory feedback.
Addressing time-varying delays in these applications is crucial to achieving stability,
robustness, and optimal performance.

Designing an H∞ static output feedback controller for LPV systems with time-
varying delays presents several challenges. First, time-varying delays introduce
uncertainties that can degrade the system’s performance and stability. The control
design must account for these uncertainties and provide robustness against them.
Second, the synthesis process needs to ensure that the control objectives, such as dis-
turbance rejection, tracking performance, or stability margins, are met under varying
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operating conditions and parameter variations. Third, the control design should be
computationally efficient, as practical implementation requires real-time or near-real-
time computation capabilities. Finally, the control solution needs to strike a balance
between complexity and performance, ensuring practical feasibility and ease of imple-
mentation.

We now provide a comprehensive review of the related literature, highlighting the
advancements and limitations of existing control design techniques for LPV time
delay systems. The simultaneous static output feedback low gain H∞ control prob-
lem is investigated in Wu et al. [23] for a collection of linear systems subject to state
and input delays. Kong et al. [12] study a non-fragile static output feedback con-
trol problem for linear uncertain time delay systems using a linear matrix inequality
(LMI) optimization and a hybrid particle swarm optimization algorithm. Choi et al.
[5] develop an output feedback H∞ controller for active half-vehicle suspension sys-
tems with time-varying input delay, employing an auxiliary function-based integral
inequality method and the reciprocally convex combination approach. Hu et al. [9]
design a class of parameter-dependent state feedback controllers for LPV systems sub-
ject to time-varying delay and external disturbances within the context of uniformly
finite-time boundedness. Cardeliquio et al. [1] introduce an output feedback controller
for time delay systems that depends on the output at the present time and the maxi-
mum delay, as well as an arbitrary number of intermediate values in between, aiming
to minimize the H∞ norm and maximize the allowed delay. Shao et al. [19] design
a robust output feedback H∞ controller for active suspension systems with actuator
faults and time delay, satisfying specific performance constraints. Nejem et al. [15]
utilize the LMI dilation approach to design an H∞ dynamic output feedback controller
for linear parameter-varying delayed systems. Nazargah et al. [14] develop both state
feedback and dynamic output feedback controllers for suppressing vibration in seis-
mically excited building structures under the effect of time delay. Redondo et al. [17]
propose an LMI-based H∞ output feedback controller to compensate for input and
output delays in a roll stability control system. Tlili [22] addresses the design of an H∞
dynamic output feedback decentralized controller for nonlinear distributed time delay
systems through an optimization problem subject to LMI constraints. Parlakci and
Jafarov [16] develop a robust delay-dependent guaranteed optimal cost PID multivari-
able output feedback controller for linear uncertain time delay systems with nonlinear
parameter perturbations using an LMI approach. Finally, Shahbazzadeh and Sadati
[18] handle the H∞ control problem for LPV time-delay systems subject to L2-norm
disturbances by employing a dynamic output feedback controller. They appropriately
transform the design conditions into LMIs. While the existing literature has made
significant contributions to the control design for LPV time delay systems, there are
still limitations that need to be addressed. Some works focus on specific aspects such
as input delays, actuator faults, or vibration suppression, while others consider either
static or dynamic output feedback controllers. In this paper, we aim to overcome these
limitations by proposing a comprehensive framework that addresses the synthesis of
both H∞ static and dynamic output feedback controllers for LPV time delay systems
subject to time-varying delays and external disturbances. The proposed approachoffers
enhanced robustness, reduced computational complexity, and improved performance
compared to existing techniques. By providing a thorough review of the literature
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and identifying the gaps and limitations in previous studies, we highlight the novelty
and significance of our work. Our research contributes to the development of more
effective control strategies for LPV time delay systems, with practical applications in
various domains, including engineering, automation, and robotics.

This paper addresses the problem of synthesizing H∞ static output feedback con-
trollers for LPV time delay systems subject to time-varying delays. The objective is
to develop control strategies that can effectively handle the uncertainties and distur-
bances associated with these systems while guaranteeing robust stability and optimal
performance. The contributions of this work are motivated by the need for practical
and efficient control solutions for real-world applications. The first contribution of
this paper lies in the development of a novel synthesis approach for H∞ static output
feedback controllers. By formulating a sufficient matrix inequality condition based
on a quadratic Lyapunov–Krasovskii functional and utilizing the well-known Jensen-
type integral inequality, a set of design guidelines are established. These guidelines
enable the synthesis of static output feedback controllers that simplify the control
structure, reduce computational complexity, and offer improved robustness in the face
of uncertainties and disturbances. Furthermore, we extend the scope by including
the synthesis of an H∞ dynamic output feedback controller for LPV systems with
time-varying delays. This comprehensive approach allows for a unified control design
framework that incorporates both static and dynamic output feedback controllers. By
defining an augmented system dynamics and formulating the dynamic output feed-
back controller in an equivalent form of static output feedback control, we provide a
flexible and versatile control strategy that leverages the advantages of both approaches.
The second contribution of this work is the introduction of an iterative algorithm to
search for a potential feasible solution set of the synthesis problem. This algorithm
enables the practical implementation of the proposed controller design methods and
facilitates the exploration of various control strategies based on system requirements
and constraints. The effectiveness of the proposed approach is demonstrated through
numerical examples and comparison analyses, showcasing the superiority of the static
output feedback controller over existing techniques.

2 Problem Statement

Let us consider a class of linear parameter-varying time delay systems defined as

ẋ(t) � A(ρ)x(t) + Ah(ρ)x(t − h(t)) + Bw(ρ)w(t) + Bu(ρ)u(t)

z(t) � Cz(ρ)x(t) + Du(ρ)u(t) + Dzw(ρ)w(t)

y(t) � Cy(ρ)x(t) + Dyw(ρ)w(t)

x(t) � ϕ(t), tε[−hmax, 0] (1)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

q is the exogeneous disturbance input
with finite energy in the space L2[0,∞], u(t) ∈ R

m is the control input, y(t) ∈ R
p is

the measured output, z(t) ∈ R
r is the controlled output and ϕ(t) represents the initial

condition function. The systemmatrices of appropriate dimensions are continuous and
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bounded affine functions of a time-varying parameter vector,

ρ(t) � [
ρ1(t), ρ2(t), · · · ρN (t)

]T ∈ R
N

The time-varying delay function, h(t) and its derivative are bounded and satisfy

0 < h(t) ≤ hmax (2a)

0 ≤ ḣ(t) ≤ d (2b)

where hmax and d are positive scalars.

Assumption 1 [18] The parameter-varying function, ρ(t) vary in a polytope L of
vertices ρ1, ρ2, …, ρN such that

ρ(t) ∈ L � [
ρ1(t), ρ2(t), · · · , ρN (t)

]T �

⎧
⎪⎪⎨

⎪⎪⎩

N∑

i�1
αi (t)ρi , αi (t) ≥ 0,

N∑

i�1
αi (t) � 1

⎫
⎪⎪⎬

⎪⎪⎭
(3)

then the LPV system (1) can be reexpressed according to the following polytopic
model:

⎡

⎣
A(ρ) Ah(ρ) Bw(ρ) Bu(ρ)

Cz(ρ) 0 Dzw(ρ) Du(ρ)

Cy(ρ) 0 Dyw(ρ) 0

⎤

⎦ �
N∑

i�1

αi (t)

⎡

⎣
A(ρi ) Ah(ρi ) Bw(ρi ) Bu(ρi )

Cz(ρi ) 0 Dzw(ρi ) Du(ρi )

Cy(ρi ) 0 Dyw(ρi ) 0

⎤

⎦

(4)

A static output feedback (SOF) control law is chosen for system (1) as follows:

u(t) � Fy(t) (5)

where F ∈ R
m×p denotes the SOF gain matrix to be selected appropriately. Substi-

tuting (5) into (1) gives the closed-loop system dynamics

ẋ(t) � Acl(ρ)x(t) + Ah(ρ)x(t − h(t)) + Bwc(ρ)w(t)

z(t) � Czc(ρ)x(t) + Dwc(ρ)w(t) (6)

where Acl(ρ) � A(ρ)+Bu(ρ)FCy(ρ), Bwc(ρ) � Bw(ρ)+Bu(ρ)FDyw(ρ),Czc(ρ) �
Cz(ρ) + Du(ρ)FCy(ρ), Dwc(ρ) � Dzw(ρ) + Du(ρ)FDyw(ρ).

The objective of the present work is to find a stabilizing H∞ controller (5) such
that the closed-loop system (6);

(1) is asymptotically stable when w(t) � 0,
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(2) has a prescribed level of γ for H∞ disturbance attenuation, i.e., under the zero
initial conditions that is x(0) � 0, the inequality

∞∫
0
zT (t)z(t)dt ≤ γ 2

∞∫
0

wT (t)w(t)dt (7)

is guaranteed for any nonzero w(t) ∈ L2(0,∞).

3 Main Results

In this section,wewill developboth static anddynamicoutput feedbackH∞ controllers
for linear parameter-varying time delay systems subject to external disturbances.

3.1 Design of Static Output Feedback H∞ Controller

The synthesis condition for the existence of a robust stabilizing static output feedback
H∞ controller is summarized in the following theorem.

Theorem 1 Given the positive scalars γ > 0, hmax > 0, d > 0, if there exist real and
symmetric positive definite matrices 0 < PT � P ∈ R

n×n , 0 < QT � Q ∈ R
n×n ,

0 < RT � R ∈ R
n×n , 0 < ST � S ∈ R

n×n and F ∈ R
m×p satisfying.

� �

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

�11 �12 0 PBwc(ρ) hmaxAT
c (ρ)S CT

zc(ρ)

∗ �22 S 0 hmaxAT
h (ρ)S 0

∗ ∗ −R − S 0 0 0
∗ ∗ ∗ γ 2I hmaxBT

wc(ρ)S DT
wc(ρ)

∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

< 0 (8)

where �11 � AT
cl(ρ)P + PAcl(ρ) + Q + R − S, �12 � PAh(ρ) + S, �22 �

−(1 − d)Q − 2S, with I(0) representing an identity(zero) matrix with appropriate
dimensions, respectively, and * denotes the symmetry, then the controller in (5) with
F becomes a static output feedback H∞ controller for system (1), (2).

Proof Let us choose a candidate Lyapunov–Krasovskii functional as follows:

(9)

V (x (t) , t) � xT (t) Px (t) +
t∫

t−h(t)
xT (s) Qx (s) ds +

t∫
t−hmax

xT (s) Rx (s) ds

+ hmax
t∫

t−hmax

(s − t + hmax) ẋ
T (s) Sẋ (s) ds

then calculating the time-derivative of V (x(t), t) along the state trajectory of system
(6) yields

V̇ (x(t), t) � 2xT (t)Pẋ(t) + xT (t)Qx(t)
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− [
1 − ḣ(t)

]
xT (t − h(t))Qx(t − h(t)) + xT (t)Rx(t)

− xT (t − hmax)Rx(t − hmax) + h2max ẋ
T (t)Sẋ(t)

− hmax
t∫

t−hmax

ẋ T (s)Sẋ(s)ds (10)

Employing the Jensen integral inequality [6, 16] for the quadratic integral term in
(10) enables us to rewrite it in the following form

− hmax
t∫

t−hmax

ẋ T (s)Sẋ(s)ds � −hmax
t∫

t−h(t)
ẋ T (s)Sẋ(s)ds

− hmax

t−h(t)∫
t−hmax

ẋ T (s)Sẋ(s)ds ≤ −h(t)
t∫

t−h(t)
ẋ T (s)Sẋ(s)ds

− [hmax − h(t)]
t−h(t)∫
t−hmax

ẋ T (s)Sẋ(s)ds ≤ −
(

t∫
t−h(t)

ẋ(s)ds

)

S
t∫

t−h(t)
ẋ(s)ds

(
t−h(t)∫
t−hmax

ẋ(s)ds

)

S
t−h(t)∫
t−hmax

ẋ(s)ds � [x(t) − x(t − h(t))]T S[x(t) − x(t − h(t))]

− [x(t − h(t)) − x(t − hmax)]
T S[x(t − h(t)) − x(t − hmax)] (11)

Substituting (11) into (10), we shall calculate the following quadratic expression
as follows:

V̇ (x(t), t) + zT (t)z(t)dt − γ 2wT (t)w(t) ≤ χT (t)�0χ(t) (12)

where χ(t) � [
xT (t) xT (t − h(t)) xT (t − hmax) wT (t)

]T
and

�0 �

⎡

⎢
⎢
⎣

�0(1, 1) �0(1, 2) 0 �0(1, 4)
∗ �0(2, 2) S h2maxA

T
h (ρ)SBwc(ρ)

∗ ∗ −R − S 0
∗ ∗ ∗ �0(4, 4)

⎤

⎥
⎥
⎦,

�0(1, 1) � AT
cl(ρ)P + PAcl(ρ) + Q + R + h2maxA

T
cl(ρ)PAcl(ρ) − S + CT

zc(ρ)Czc(ρ),

�0(1, 2) � PAh(ρ) + h2maxA
T
cl(ρ)SAh(ρ) + S,

�0(2, 2) � −(1 − d)Q + h2maxA
T
h (ρ)SAh(ρ) − 2S,

�0(1, 4) � PBwc(ρ) + h2maxA
T
c (ρ)PBwc(ρ) + CT

zc(ρ)Dwc(ρ),

�0(4, 4) � h2maxB
T
wc(ρ)SBwc(ρ) + DT

wc(ρ)Dwc(ρ) − γ 2I.

,

If the following matrix inequality

�0 < 0 (13)

holds true, then we obtain

V̇ (x(t), t) + zT (t)z(t)dt − γ 2wT (t)w(t) ≤ χT (t)�0χ(t) < 0 (14)
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Applying Schur complement to (13) allows to obtain the bilinear matrix inequality
(BMI) defined in (8). Hence, when w(t) � 0 once (8) is ensured, V̇ (x(t), t) is guar-
anteed to be negative definite implying that the closed-loop system is asymptotically
stable and thus the first condition of the objective of this work is satisfied. Integrating
both sides of (14) from 0 to ∞ leads to obtain

∞∫
0
V̇ (x(t), t)dt +

∞∫
0

[
zT (t)z(t)dt − γ 2wT (t)w(t)

]
dt

� lim
t→∞ V (x(t), t) − V (x(0), 0) +

∞∫
0
zT (t)z(t)dt − γ 2

∞∫
0

wT (t)w(t)dt < 0 (15)

It follows from the fact that V (x(0), 0) � 0 and lim
t→∞ V (x(t), t) > 0, we obtain

∞∫
0
zT (t)z(t)dt < γ 2

∞∫
0

wT (t)w(t)dt (16)

which indicates that the second condition of the objective of the present work is also
satisfied. This completes the proof.

Now we first assume that system (1) is free of any polytopic type of uncertainties,
that is

A(ρ) ≡ A, Ah(ρ) ≡ Ah, Bw(ρ) ≡ Bw, Bu(ρ) ≡ Bu, Cz(ρ) ≡ Cz, Du(ρ) ≡ Du,

Dzw(ρ) ≡ Dzw, Cy(ρ) ≡ Cy, Dyw(ρ) ≡ Dyw (17)

Second, we suppose that the time-varying delay is either non-differentiable or its
upper bound is not known, that is only Eq. (2a) holds for the time-varying delay, while
Eq. (2b) is simply dismissed, then the closed-loop system dynamics can be expressed
as

ẋ(t) � Acl x(t) + Ahx(t − h(t)) + Bwcw(t)

z(t) � Czcx(t) + Dwcw(t) (18)

where Acl � A + BuFCy , Bwc � Bw + BuFDyw, Czc � Cz + DuFCy ,
Dwc � Dzw + DuFDyw. We then present the following corollary.

Corollary 1 Given the positive scalars γ > 0, hmax > 0 if there exist real and sym-
metric positive definite matrices 0 < PT � P ∈ R

n×n , 0 < RT � R ∈ R
n×n ,

0 < ST � S ∈ R
n×n and F ∈ R

m×p satisfying

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

AT
cl P + PAcl + R − S P Ah + S 0 PBwc hmaxAT

c S CT
zc

∗ −2S S 0 hmaxAT
h S 0

∗ ∗ −R − S 0 0 0
∗ ∗ ∗ γ 2I hmaxBT

wcS DT
wc

∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

< 0 (19)
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with I(0) representing an identity (zero) matrix with appropriate dimensions, respec-
tively, and * denotes the symmetry, then the controller in (5) with F becomes a static
output feedback H∞ controller for the nominal form of system (1), (2a), (18).

Proof We choose a candidate Lyapunov–Krasovskii functional similar to that given

in (9) by eliminating the quadratic term of
t∫

t−h(t)
xT (s)Qx(s)ds. The rest of the proof

is done in a similar manner as that of Theorem 1; thus, it is omitted.

3.2 Design of a Dynamic Output Feedback H∞ Controller

We now consider the design of a dynamic output feedback controller of the following
form

ẋc(t) � Acxc(t) + Bcy(t)

u(t) � Ccxc(t) + Dcy(t) (20)

where xc(t) ∈ R
nc is the dynamic state vector, Ac ∈ R

nc×nc , Bc ∈ R
nc×p, Cc ∈

R
m×nc and Dc ∈ R

m×p are dynamic output feedback gain matrices. We introduce an
augmented state vector defined as follows:

η(t) � [
xT (t) xTc (t)

]T
(21)

Then, we compute

η̇(t) �
[
ẋ(t)
ẋc(t)

]

�
[
A(ρ)x(t) + Ah(ρ)x(t − h(t)) + Bw(ρ)w(t) + Bu(ρ)u(t)
Acxc(t) + Bcy(t)

]

�
⎡

⎣
A(ρ)x(t) + Ah(ρ)x(t − h(t)) + Bw(ρ)w(t) + Bu(ρ){Ccxc(t)
+Dc

[
Cy(ρ)x(t) + Dyw(ρ)w(t)

]}

Acxc(t) + Bc
[
Cy(ρ)x(t) + Dyw(ρ)w(t)

]

⎤

⎦

�
[
A(ρ) + Bu(ρ)DcCy(ρ) Bu(ρ)Cc

BcCy(ρ) Ac

][
x(t)
xc(t)

]

+

[
Ah(ρ) 0
0 0

][
x(t − h(t))
xc(t − h(t))

]
+

[
Bw(ρ) + Bu(ρ)DcDyw(ρ)

BcDyw(ρ)

]
w(t)

� Ã(ρ)η(t) + Ãh(ρ)η(t − h(t)) + B̃w(ρ)w(t) (22a)

where Ã(ρ) �
[
A(ρ) + Bu(ρ)DcCy(ρ) Bu(ρ)Cc

BcCy(ρ) Ac

]
, Ãh(ρ) �

[
Ah(ρ) 0
0 0

]
,
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B̃w(ρ) �
[
Bw(ρ) + Bu(ρ)DcDyw(ρ)

BcDyw(ρ)

]
. We shall similarly reexpress z(t) as fol-

lows:

z(t) � Cz(ρ)x(t) + Du(ρ)
{
Ccxc(t) + Dc

[
Cy(ρ)x(t) + Dyw(ρ)w(t)

]}
+ Dzw(ρ)w(t)

� [
Cz(ρ) + Du(ρ)DcCy(ρ)

]
x(t) + Du(ρ)Ccxc(t)

+
[
Dzw(ρ) + Du(ρ)DcDyw(ρ)

]
w(t)

� [
Cz(ρ) + Du(ρ)DcCy(ρ) Du(ρ)Cc

][ x(t)
xc(t)

]

+
[
Dzw(ρ) + Du(ρ)DcDyw(ρ)

]
w(t)

� C̃z(ρ)η(t) + D̃w(ρ)w(t) (22b)

where C̃z(ρ) � [
Cz(ρ) + Du(ρ)DcCy(ρ) Du(ρ)Cc

]
, D̃w(ρ) � Dzw(ρ) +

Du(ρ)DcDyw(ρ). We shall first decompose Ã(ρ) and B̃w(ρ) as follows:

Ã(ρ) �
[
A(ρ) 0
0 0

]
+

[
Bu(ρ)DcCy(ρ) Bu(ρ)Cc

BcCy(ρ) Ac

]

�
[
A(ρ) 0
0 0

]
+

[
Bu(ρ) 0
0 I

][
DcCy(ρ) Cc

BcCy(ρ) Ac

]

�
[
A(ρ) 0
0 0

]
+

[
Bu(ρ) 0
0 I

][
Dc Cc

Bc Ac

][
Cy(ρ) 0
0 I

]

� A(ρ) + Bu(ρ)F Cy(ρ),

and B̃w(ρ) �
[
Bw(ρ) + Bu(ρ)DcDyw(ρ)

BcDyw(ρ)

]
�
[
Bw(ρ)

0

]
+

[
Bu(ρ) 0
0 I

][
DcDyw(ρ)

BcDyw(ρ)

]
�

[
Bw(ρ)

0

]
+

[
Bu(ρ) 0
0 I

][
Dc Cc

Bc Ac

][
Dyw(ρ)

0

]
� Bw(ρ) + Bu(ρ)F Dyw(ρ)

where A(ρ) �
[
A(ρ) 0
0 0

]
, Bu(ρ) �

[
Bu(ρ) 0
0 I

]
, F �

[
Dc Cc

Bc Ac

]
, Cy(ρ) �

[
Cy(ρ) 0
0 I

]
, Bw(ρ) �

[
Bw(ρ)

0

]
, Dyw(ρ) �

[
Dyw(ρ)

0

]
. In a similar manner, we

shall also decompose C̃z(ρ) and D̃w(ρ) step by step as

C̃z(ρ) � [
Cz(ρ) + Du(ρ)DcCy(ρ) Du(ρ)Cc

]

� [
Cz(ρ) 0

]
+
[
Du(ρ) 0

][ DcCy(ρ) Cc

BcCy(ρ) Ac

]

� [
Cz(ρ) 0

]
+
[
Du(ρ) 0

]
[
Dc Cc

Bc Ac

][
Cy(ρ) 0
0 I

]

� Cz(ρ) + Du(ρ)F Cy(ρ)
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and D̃w(ρ) � Dzw(ρ) + Du(ρ)DcDyw(ρ) � Dzw(ρ) +
[
Du(ρ) 0

][ DcDyw(ρ)

BcDyw(ρ)

]
�

Dzw(ρ) +
[
Du(ρ) 0

][ Dc Cc

Bc Ac

][
Dyw(ρ)

0

]
� Dzw(ρ) + Du(ρ)F Dyw(ρ) where

Cz(ρ) � [
Cz(ρ) 0

]
, Du(ρ) � [

Du(ρ) 0
]
, Dzw(ρ) � Dzw(ρ). Consequently, we

conclude that a closed-loop system under dynamic output feedback can be recast as
the connection of the augmented system

η̇(t) � A(ρ)η(t) + Ah(ρ)η(t − h(t)) + Bw(ρ)w(t) + Bu(ρ)u(t)

y(t) � Cy(ρ)η(t) + Dyw(ρ)w(t)

z(t) � Cz(ρ)η(t) + Du(ρ)u(t) + Dzw(ρ)w(t) (23)

where Ah(ρ) � Ãh(ρ), in feedback with the static output feedback controller

u(t) � Fy(t) (24)

Therefore, the method proposed in Sect. 3.1 can be also utilized to design the
dynamic output feedback H∞ controller which is summarized in the following theo-
rem.

Theorem 2 Given the positive scalars γ > 0, hmax > 0, d > 0, if there exist real and

symmetric positive definite matrices 0 < P
T � P ∈ R

(n+nc)×(n+nc),

0 < Q
T � Q ∈ R

(n+nc)×(n+nc), 0 < R
T � R ∈ R

(n+nc)×(n+nc), 0 < S
T � S ∈

R
(n+nc)×(n+nc) and F ∈ R

(m+nc)×(p+nc) satisfying

� �

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

�11 �12 0 P Bw(ρ) hmaxA
T
(ρ)S C

T
z (ρ)

∗ �22 S 0 hmaxA
T
h (ρ)S 0

∗ ∗ −R − S 0 0 0

∗ ∗ ∗ γ 2I hmaxB
T
w(ρ)S D

T
w(ρ)

∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

< 0 (25)

where �11 � A
T
(ρ)P + P A(ρ) + Q + R − S, �12 � P Ah(ρ) + S,

�22 � −(1 − d)Q − 2S, with I(0) representing an identity(zero) matrix with
appropriate dimensions, respectively, and * denotes the symmetry, then the controller

in (20) with Ac � [
0nc×m Inc

]
F

[
0p×nc
Inc

]
, Bc � [

0nc×m Inc
]
F

[
Ip
0nc×p

]
, Cc �

[
Im 0m×nc

]
F

[
0m×nc
Inc

]
, Dc � [

Im 0m×nc

]
F

[
Ip
0nc×p

]
becomes a dynamic output

feedback H∞ controller for system (1), (2).

Proof The proof can be done similarly to that of Theorem 1, thus it is omitted.
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We now reconsider the nominal form of system (1) with (17) subject to (2a) and
(20) for which the closed-loop augmented system dynamics can be reduced to the
following equation

η̇(t) � Aη(t) + Ahη(t − h(t)) + Bww(t) + Buu(t)

y(t) � Cyη(t) + Dyww(t)

z(t) � Czη(t) + Duu(t) + Dzww(t) (26)

where A �
[
A 0
0 0

]
, Bu �

[
Bu 0
0 I

]
, F �

[
Dc Cc

Bc Ac

]
, Cy �

[
Cy 0
0 I

]
, Bw �

[
Bw

0

]
,

Dyw �
[
Dyw

0

]
, Cz � [

Cz 0
]
, Du � [

Du 0
]
, Dzw � Dzw with the static output

feedback control law of (24). Then we present the following corollary for the synthesis
of a dynamic output feedback controller.

Cortollary 2 Given the positive scalars γ > 0, hmax > 0, if there exist real and

symmetric positive definite matrices 0 < P
T � P ∈ R

(n+nc)×(n+nc), 0 < R
T � R ∈

R
(n+nc)×(n+nc), 0 < S

T � S ∈ R
(n+nc)×(n+nc) and F ∈ R

(m+nc)×(p+nc) satisfying

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

A
T
P + P A + R − S P Ah + S 0 P Bw hmaxA

T
S C

T
z

∗ −2S S 0 hmaxA
T
h S 0

∗ ∗ −R − S 0 0 0

∗ ∗ ∗ γ 2I hmaxB
T
wS D

T
w

∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

< 0 (27)

with I(0) representing an identity(zero) matrix with appropriate dimen-
sions, respectively, and * denotes the symmetry, then the controller in (20)

with Ac � [
0nc×m Inc

]
F

[
0p×nc
Inc

]
, Bc � [

0nc×m Inc
]
F

[
Ip
0nc×p

]
, Cc �

[
Im 0m×nc

]
F

[
0m×nc
Inc

]
, Dc � [

Im 0m×nc

]
F

[
Ip
0nc×p

]
becomes a dynamic output

feedback H∞ controller for system (1), (2a), (26).

4 Linearization Approach for the Synthesis of the Output Feedback
Controllers

Note that the synthesis conditions for a stabilizing static/dynamic output feedback H∞
controller given in (8), (19), (25), (27), respectively, are not convex. However, once
P
(
P
)
and S

(
S
)
are specified, they become linear, hence convex in Q

(
Q
)
, R
(
R
)
, and

F
(
F
)
. Conversely, when F

(
F
)
is specified, it is linear in P

(
P
)
, Q

(
Q
)
, R
(
R
)
and

S
(
S
)
. Based on this observation, it is possible to introduce iterative approaches to find



Circuits, Systems, and Signal Processing (2024) 43:843–864 855

a feasible solution set for the design problem.Moreover, we also wish to maximize the
decay rate of system (1) over the output feedback matrix F

(
F
)
subject to an Euclidean

norm constraint on F
(
F
)
of the following form

trance
(
FT F

)
< α or trace

(
F̄T F̄

)
< α (28)

where α is positive scalar to be selected. Without loss of generality, we now develop
an iterative scheme for the linearization of the BMI given in (8) which can also be
utilized as a generic form for the BMI obtained in (19), (25) and (27) appropriately.
In particular, the decay rate of system (1) exceeds λ if and only if there exist P such
that (8) and

AT
cl(ρ)P + PAcl(ρ) < λP (29)

are satisfied. We again notice that for fixed P and S in (8), the inequalities can be
rewritten as LMI’s in Q, R, F and λ. Moreover, for fixed F and λ, they are LMI’s in
P , Q, R and S. Therefore, we shall now consider utilizing an iterative algorithm to
find a feasible solution set satisfying (8), (28) and (29).

5 Algorithm 1

Step 1. Set k � 1 and set F0 � 0, λ0 � 104.

Step 2. Solve the following LMI problem with respect to P , Q, R and S satisfying

� �

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

�(1, 1) PAh(ρ) + S 0 �(1, 4) �(1, 5) �(1, 6)
∗ −(1 − d)Q − 2S S 0 hmaxAT

h (ρ)S 0
∗ ∗ −R − S 0 0 0
∗ ∗ ∗ −γ 2I �(4, 5) �(4, 6)
∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

< 0

where �(1, 1) � [
A(ρ) + Bu(ρ)Fk−1Cy(ρ)

]T
P + P[A(ρ)+ Bu(ρ)Fk−1Cy(ρ)+ Q +

R− S−λk−1P , �(1, 4) � P
[
Bw(ρ)+ Bu(ρ)Fk−1Dyw(ρ)

]
, �(1, 5) � hmax

[
A(ρ)+

Bu(ρ)Fk−1Cy(ρ)
]T

S, �(1, 6) � [
Cz(ρ) + Du(ρ)Fk−1Cy(ρ)

]T , �(4, 5) �
hmax

[
Bw(ρ) + Bu(ρ)Fk−1Dyw(ρ)

]T
S, �(4, 6) � [

Dzw(ρ) + Du(ρ)Fk−1Dyw(ρ)
]T .

Let Pk � P and Sk � S.

Step 3. Fix P and S and solve the following optimization problem with respect to Q,
R, F and λ.

minimize λ subject to

[−αI FT

F −I

]
< 0
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� �

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

�(1, 1) Pk Ah(ρ) + Sk 0 �(1, 4) �(1, 5) �(1, 6)
∗ −(1 − d)Q − 2Sk Sk 0 hmaxAT

h (ρ)Sk 0
∗ ∗ −R − Sk 0 0 0
∗ ∗ ∗ −γ 2I �(4, 5) �(4, 6)
∗ ∗ ∗ ∗ −Sk 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

< 0

where �(1, 1) � [
A(ρ) + Bu(ρ)FCy(ρ)

]T
Pk + Pk[A(ρ) + Bu(ρ)FCy(ρ),

�(1, 4) � Pk
[
Bw(ρ) + Bu(ρ)FDyw(ρ)

]
, �(1, 5) � hmax

[
A(ρ) +

Bu(ρ)FCy(ρ)
]T

Sk ,

�(1, 6) � [
Cz(ρ) + Du(ρ)FCy(ρ)

]T , �(4, 5) � hmax
[
Bw(ρ) + Bu(ρ)FDyw(ρ)

]T
Sk ,

�(4, 6) � [
Dzw(ρ) + Du(ρ)FDyw(ρ)

]T . Let Fk � F and λk � λ. If λk ≤ −λ∗
where λ∗ is a prescribed maximum decay rate then set Poptimal � Pk , Qoptimal � Q,
Roptimal � R, Soptimal � S, Foptimal � F , koptimal � k and STOP.

Step 4. If λk > −λ∗ then set k � k + 1 and go to Step 2 and repeat.
Step 5. If λk ≤ −λ∗ can NOT be achieved within a number of kmax iterations then

there exists NO feasible solution set and EXIT.

6 Numerical Examples

In this section, in order to exhibit the application of the proposed methodology, we
consider three numerical examples from the literature.

Example 1 We consider a numerical example with polytopic type of uncertainties
defined for system (1) as follows (Nejem et al. [15]), (Shahbazzadeh and Sadati [18]).

A1 �
(
0 0.8
−2 −3.1

)
, A2 �

(−0.2 0.1
−0.3 −0.3

)
, Ah1 �

(
0 1.2
−2 −2.9

)
, A2 �

(
0.2 0.1
−0.1 −0.3

)
.

Bw1 �
(
0.2
0.2

)
, Bw2 � Bw1, Bu1 �

(
0.2
0.2

)
, Bu2 � Bu1, Cz1 �

(
0 10
0 0

)
,

Cz2 � Cz1,

Dzu1 �
(
0
0.1

)
, Dzu2 � Dzu1, Dzw1 � 0, Dzw2 � 0, Cy1 �

(
0 1
0.5 0

)
, Cy2 �

Cy1,
Dyw1 � 0, Dyw2 � 0.We set d � 0.5 and search for an allowable maximum upper

bound of the time-varying time delay, hmax and for an allowable minimum attenuation
rate of γ . We iteratively have solved for a feasible solution set of Theorem 1 and after
2455 iterations we have obtained the following decision variables for hmax � 1.21
and
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γ � 0.1001 as

P �
(
372.3171 257.9657
257.9657 750.9341

)
, Q �

(
2.5722 4.0927
4.0927 6.5118

)
· 103

R �
(
2.1333 −2.1732
−2.1732 2.2176

)
, S �

(
64.5823 −65.8301
−65.8301 67.1108

)
,

F � [−1.9760 −2.4689
] · 104

We have calculated the stable closed-loop eigenvalues of the time delay system (1)
under static output feedback control as follows:

eig
(
A1 + Bu1FCy1

) �
{
−0.2687,−6.4237 · 103

}

eig
(
A2 + Bu2FCy2

) � {−0.0923,−6.4213 · 103}
In a similar manner, after 4125 iterations, we have obtained a feasible solution set of

Theorem 2 for hmax � 1.35 and γ � 0.1001 yielding the following decision variables

P �

⎛

⎜
⎜
⎝

277.8377 322.0942 0 0
322.0942 727.6967 0 0
0 0 5.4913 · 108 0
0 0 0 5.4913 · 108

⎞

⎟
⎟
⎠,

Q �

⎛

⎜
⎜
⎝

2.6398 · 103 4.0472 · 103 0 0
4.0472 · 103 6.2051 · 103 0 0
0 0 1.6876 · 108 0
0 0 0 1.6876 · 108

⎞

⎟
⎟
⎠,

R �

⎛

⎜
⎜
⎝

0.1068 0.1499 0 0
0.1499 0.2595 0 0
0 0 2.5455 · 108 0
0 0 0 2.5455 · 108

⎞

⎟
⎟
⎠,

S �

⎛

⎜
⎜
⎝

47.5225 −47.8571 0 0
−47.8571 48.2436 0 0
0 0 3.2071 · 108 0
0 0 0 3.2071 · 108

⎞

⎟
⎟
⎠,

F �
⎛

⎝
−2.0832 · 104 −2.3791 · 104 0 0
0 0 −0.9395 0
0 0 0 −0.9395

⎞

⎠

yielding the gains of the dynamic output feedback controller as

Ac �
[−0.9395 0
0 −0.9395

]
, Bc �

[
0 0
0 0

]
, Cc � [

0 0
]
, Dc �

[−2.0832 −2.3791
] · 104.
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Table 1 H∞ norm bounds and maximum allowable delay bounds for Example 1

Methods Minimum attenuation rate,γ hmax

Nejem et al. [15] 0.466 0.5

Shahbazzadeh and Sadati [18] 0.1021 0.5

Theorem 1 (SOF) 0.1001 1.21

Theorem 2 (DOF) 0.1001 1.35

The stable closed-loop eigenvalues under dynamic output feedback control for the
polytopes of time-delay system (1) are calculated as

eig
(
A1 + Bu1F Cy1

) �
{
−0.1447,−6.5484 · 103,−0.9395,−0.9395

}

eig
(
A2 + Bu2F Cy2

) � {−0.0817,−6.5459 · 103,−0.9395,−0.9395
}

The numerical results on the maximum delay bound and minimum attenuation rate
are shown in Table 1 along with those reported in the literature. It can be seen from
Table 1 that the proposed method yields less conservative results compared to those
of [15, 18].

Example 2 We now consider a nominal form of numerical example with the following
system parameters which has been presented by Shen et al. [20]

A �
(
0 1
−0.5 −1.5

)
, Ah �

(−0.5 0
0 −1

)
, Bu �

(
1
1

)
, Bw �

(
1
1

)
, Cy �

(
0.2 0.2
1 0

)
, Dyw �

(
0
0

)
, Cz �

(
1 0
0 1

)
, Du �

(
1
−1

)
, Dzw �

(
1
1

)
. Utilizing

Corollary 1 to design a static output feedback controller, we have obtained a feasible
solution set after 1609 iterations for hmax � 0.51 and γ � 2.09 with the following
decision variables

P �
(
16.6090 −29.8275
−29.8275 92.0923

)
, R �

(
9.0493 −31.4174
−31.4174 109.6194

)
,

S �
(
198.4362 −183.3015
−183.3015 176.7864

)
, F � [−151.5769 36.6976

]

We have then applied Corollary 2 to synthesize a dynamic output feedback con-
troller and provided a feasible solution set after 11141 iterations for hmax � 0.57 and
γ � 2.09 yielding the following decision variables

P �

⎛

⎜⎜
⎝

14.8688 −24.8477 0 0
−24.8477 76.1154 0 0
0 0 4.5076 · 108 0
0 0 0 4.5076 · 108

⎞

⎟⎟
⎠,
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Table 2 H∞ norm bounds and
maximum allowable delay
bounds for Example 2

Methods Minimum attenuation rate,γ hmax

Shen et al. [20] 14.2673 0.5

Corollary 1 (SOF) 2.09 0.51

Corollary 2 (DOF) 2.09 0.57

R �

⎛

⎜⎜
⎝

8.2970 −26.7538 0 0
−26.7538 86.2681 0 0
0 0 2.9978 · 108 0
0 0 0 2.9978 · 108

⎞

⎟⎟
⎠,

S �

⎛

⎜⎜
⎝

132.9524 −120.5047 0 0
−120.5047 115.2434 0 0
0 0 3.8006 · 108 0
0 0 0 3.8006 · 108

⎞

⎟⎟
⎠,

F �
⎛

⎝
−129.8254 −31.0559 0 0
0 0 −3.6504 0
0 0 0 −3.6504

⎞

⎠

and the feedback gains of the dynamic output feedback controller are obtained from
F as follows:

Ac �
[−3.6504 0
0 −3.6504

]
, Bc �

[
0 0
0 0

]
, Cc � [

0 0
]
, Dc �

[−129.8254 31.0559].
We have listed the numerical results on the maximum delay bound and minimum

attenuation rate in Table 2 together with those reported in the literature. Table 2 reveals
that both Corollaries 1 and 2 developed in this note succeed to result in tolerating larger
delay bounds and smaller disturbance rejection rates in comparison with [20].

Example 3 We take into account another nominal form of numerical example from the
literature (Hao and Dao [7]) for which the system parameters are defined as follows:

A �

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 1
−1 1 0 0
1 −1 0 0

⎞

⎟⎟
⎠, Ah �

⎛

⎜⎜
⎝

0 0 0.1 0
0 0 0 0.1
−0.1 0.1 0 0
0.1 −0.1 0 0

⎞

⎟⎟
⎠, Bu �

⎛

⎜⎜
⎝

0
0
1
0

⎞

⎟⎟
⎠, Bw �

⎛

⎜⎜
⎝

0
0
0
1

⎞

⎟⎟
⎠,

Cy �
(
0 1 0 0
0 0 1 0

)
, Dyw �

(
0
0

)
, Cz � (

0 1 0 0
)
, Du � 0, Dzw � 0. With hmax

set to 0.5, we look for an acceptable minimum attenuation rate, γ . After 412 rounds
of iteratively solving for a set of feasible solutions to Corollary 1, we have got the
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following choice variables for γ � 2.75 as

P �

⎛

⎜⎜
⎝

14.6608 −7.0922 13.9554 8.0359
−7.0922 4.9263 −7.0190 −2.9149
13.9554 −7.0190 17.4019 7.1990
8.0359 −2.9149 7.1990 6.4829

⎞

⎟⎟
⎠,

R �

⎛

⎜⎜
⎝

0.2186 −0.1542 0.3436 0.1421
−0.1542 0.1141 −0.2291 −0.0973
0.3436 −0.2291 0.6338 0.2320
0.1421 −0.0973 0.2320 0.1175

⎞

⎟⎟
⎠,

S �

⎛

⎜⎜
⎝

12.8074 −9.4733 22.9834 9.2830
−9.4733 7.6071 −17.8490 −7.0107
22.9834 −17.8490 45.1403 17.2475
9.2830 −7.0107 17.2475 7.2606

⎞

⎟⎟
⎠,

F � [−0.3704 −1.2470
]

We then used Corollary 2 to generate a dynamic output feedback controller, and
after 291 iterations for γ � 2.75, we offered a workable solution set that produced
the following decision variables

P �
(
P11 0
0 P12

)
, P11 �

⎛

⎜⎜
⎝

14.8021 −7.0923 13.8397 8.0664
−7.0923 4.8843 −6.8266 −2.8731
13.8397 −6.8266 16.7939 7.0350
8.0664 −2.8731 7.0350 6.4871

⎞

⎟⎟
⎠,

P22 � 3.2118 · 108 ·

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠, R

(
R11 0
0 R12

)
,

R11 �

⎛

⎜⎜
⎝

0.2094 −0.1023 0.4125 0.1139
−0.1023 0.0575 −0.1855 −0.0515
0.4125 −0.1855 0.8647 0.2507
0.1139 −0.0515 0.2507 0.0841

⎞

⎟⎟
⎠,

R22 � 2.2821 · 108 ·

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠,

S �
(
S11 0
0 S12

)
, S11 �

⎛

⎜⎜
⎝

25.4145 −16.2044 41.4562 17.5270
−16.2044 11.1824 −27.6749 −11.3911
41.4562 −27.6749 72.1744 29.2721
17.5270 −11.3911 29.2721 12.6365

⎞

⎟⎟
⎠
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Table 3 H∞ norm bounds for Example 3

Methods Minimum attenuation rate,γ Number of iterations

Hao and Duan [7] 4.8 –

Corollary 1 (SOF) 2.75 412

Corollary 2 (DOF) 2.75 291

S22 � 2.7722 · 108 ·

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠,

F �

⎛

⎜⎜⎜⎜
⎜
⎝

−0.3691 −1.2517 0 0 0 0
0 0 −4.6340 0 0 0
0 0 0 −4.6340 0 0
0 0 0 0 −4.6340 0
0 0 0 0 0 −4.6340

⎞

⎟⎟⎟⎟
⎟
⎠
, and the feed-

back gains of the dynamic output feedback controller are obtained from F as follows:

Ac �

⎡

⎢⎢
⎣

−4.6340 0 0 0
0 −4.6340 0 0
0 0 −4.6340 0
0 0 0 −4.6340

⎤

⎥⎥
⎦, Bc �

⎡

⎢⎢
⎣

0 0
0 0
0 0
0 0

⎤

⎥⎥
⎦,

Cc � [
0 0 0 0

]
, Dc � [−0.3691 −1.2517

]

In Table 3, we include the numerical findings for the minimum attenuation rate
together with those that have been documented in the literature. Table 3 shows that,
compared to [7], both Corollaries 1 and 2 successfully lead to tolerating decreased
disturbance rejection rates.

Remark 1 The values of Bc and Cc that remain consistently at zero signify that the
characteristics of the dynamic output feedback controller have collapsed. As a result,
the controller becomes a static output feedback controller, which is a simpler form of
controller. With Bc and Cc both equaling zero, the control input u(t) is solely depen-
dent on the measured output u(t). The relationship between the control input and the
dynamic state vector xc(t) is no longer relevant to the control design. This reduc-
tion to a static output feedback controller can lead to a simplified controller structure
with practical advantages such as reduced computational complexity and improved
robustness. However, it is important to carefully evaluate the outcome of Bc and Cc

becoming consistently zero in light of the control objectives, system requirements, and
practical considerations. The loss of dynamic state dependency, indicated by the con-
sistently zero Bc, implies that the control input u(t) is not dependent on the dynamic
state vector xc(t). Similarly, the consistently zero Cc suggests that the dynamic state
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vector xc(t) does not influence the control input. It is crucial to ensure that the con-
trol design adequately captures the desired dependencies and relationships between
the control input, measured output, and dynamic state vector. In summary, when Bc

and Cc consistently become zero, the dynamic output feedback controller collapses
into a static output feedback controller, where the control input u(t) becomes solely
dependent on the measured output y(t). This simplification in the controller structure
can offer benefits, but it is essential to ensure that the control design aligns with the
desired system behavior and control objectives.

7 Conclusions

In this paper, we have addressed the problem of synthesizing H∞ static output feed-
back controllers for linear parameter-varying (LPV) time delay systems subject to
time-varying delays. Our objective was to develop control strategies that effectively
handle uncertainties and disturbances while ensuring robust stability and optimal per-
formance. Our contributions in this work were motivated by the need for practical and
efficient control solutions in real-world applications. Firstly, we proposed a novel syn-
thesis approach for H∞ static output feedback controllers. By formulating a sufficient
matrix inequality condition based on a quadratic Lyapunov–Krasovskii functional
and utilizing the well-known Jensen-type integral inequality, we established design
guidelines for the synthesis of static output feedback controllers. These guidelines sim-
plify the control structure, reduce computational complexity, and enhance robustness
against uncertainties and disturbances. Moreover, we extended the scope by including
the synthesis of an H∞ dynamic output feedback controller for LPV systems with
time-varying delays. Our comprehensive approach allows for a unified control design
framework that incorporates both static and dynamic output feedback controllers. By
formulating the dynamic output feedback controller in an equivalent form of static
output feedback control through the augmentation of system dynamics, we provided a
flexible and versatile control strategy that leverages the advantages of both approaches.
To facilitate the practical implementation of the proposed controller design methods,
we introduced an iterative algorithm to search for a potential feasible solution set of the
synthesis problem. This algorithm enables the exploration of various control strategies
based on system requirements and constraints. Through numerical examples and com-
parison analyses, we demonstrated the effectiveness and superiority of the static output
feedback controller over existing techniques. The proposed approach offers enhanced
robustness, reduced computational complexity, and improved performance. Conse-
quently, this paper has presented a comprehensive framework for synthesizing H∞
static output feedback controllers for LPV time delay systems subject to time-varying
delays. By addressing the challenges associated with uncertainties and disturbances,
our approach provides practical and efficient control solutions. The contributions of
this work open up avenues for further research and development in the field of control
design for LPV systems, with potential applications in engineering, automation, and
robotics.
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