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Abstract
This paper deals with the issue of finite-time observer-based H∞ control design of net-
worked switched systems (NSS) subject to external disturbances via an event-triggered
observation strategy. This triggering strategy is used to decide when the output mea-
surements are sent to the observer over the communication network. By incorporating
digital networks, the closed-loop system is modeled as a switched delayed system due
to network-induced delays. By using the average dwell time (ADT) switching method
with the Lyapunov–Krasovskii functional, several sufficient linear matrix inequalities
(LMIs) conditions for the observer-based control synthesis are developed to guarantee
the finite-time boundedness and the disturbance attenuation control performance of
the resulting switched delayed system. Finally, an example is given to illustrate the
effectiveness of the theoretical results.

Keywords Switched systems · Finite-time control · Event-triggered observer · Linear
matrix inequality · Network-induced delay

1 Introduction

Switched systems have received increasing investigations by scholars in the past two
decades [5, 7, 16] since they may describe a variety of physical plants in engineering
applications, such as chemical processes [29], aero-engine systems [28], and electric
circuits [19]. By far, many accomplishments have been conducted in the study of
switched systems in a non-networked context [30, 34].
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Modern industrial applications are usually controlled via communication networks
due to the advancement of spatially distributed systems. This class of control systems
termed NCS has attracted growing attention as they present various advantages [2,
12, 14], including low installation cost, reduced wiring, and ease of maintenance.
However, some severe issues, such as network-induced delay, transmission packet
loss, and cyber-attacks, arise and may affect the system’s performance and stability.
Formore details, see [8, 31] and references therein. Therefore, the study of the dynamic
behaviors and control design of switched systems in networked environments, known
as networked switched systems (NSS), brings more intriguing problems and requires
difficult mathematical formulation [13, 15]. In [15], authors have studied the resilient
optimal controller design of networked switched systems against denial-of-service
attack using dynamic programming principles. Also, a genetic algorithm is adopted to
search for the optimal switching signal, while [13] has proposed an adaptive sliding
mode controller to deal with actuator/sensor faults, in which the obtained results were
applied to a mechanical system example.

In the traditional control framework, transmitted data of switched systems over
digital communication channels are based on a time-triggered scheme with a fixed
sampling rate. Nevertheless, the periodic approach may lead to a waste of network
energy consumption since some unnecessary information updates are transmitted even
when they do not significantly change the systemdynamics. To overcome this problem,
an alternate scheme of control referred to as event-triggered control (ETC) has been
developed [6, 22]. This kind of aperiodic communication strategy can significantly
save power consumption and mitigate the obstacle of redundant data transmission
while achieving desirable closed-loop performance in terms of stability.

From an engineering point of view,mostmodern control systems deal with transient
behavior over finite-time intervals instead of traditional Lyapunov stability. This last
one is not satisfactory in some practical applications, where stability should be guar-
anteed in a short time [24]. The new idea of finite-time stability ensures that the system
trajectories do not exceed a given unacceptably large value during the prescribed fixed
finite-time interval, which is more practically meaningful than classical Lyapunov sta-
bility. In the past few years, many researchers have widely addressed the finite-time
event-driven control issue for numerous types of practical systems, including net-
worked systems [11] and switched systems [4]. Some interesting achievements have
also beenmade regarding the new-appearing class of NSS [3, 18, 23, 33]. The practical
limitation of exogenous disturbance is mainly found in most engineering switched and
networked systems, which necessitates specific analysis tools [4, 18, 23, 33]. In [4],
the event-triggered finite-time H∞ filtering of the time-varying delay switched linear
system was studied. Authors in [18] addressed the problem of finite-time bounded-
ness and input–output finite-time stability for networked switched linear systems with
asynchronous switching.Using the convex hull technique, [33]was concernedwith the
problem of finite-time H∞ control of state-saturated switched systems in the presence
of network-induced delays and external disturbances, where an event-driven policy
is used to reduce the transmission frequency. In addition, [23] presented a switched
time-delay system and discussed the relevant problem of event-based finite-time H∞
boundedness of the reformulated system under the quantization effect. The finite-
time extended dissipative problem of the closed-loop networked switched systems
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was studied in [3] by solving the H∞, L2 − L∞, passivity and (Q, S, R)-dissipativity
performance.

Generally, the above-mentioned studies do not consider that the full system state is
inaccessible. Therefore, an observer needs to be incorporated into the control loop to
generate an estimate of the unmeasured state. Furthermore, it should be noted thatmost
of the results of observer design use a time-triggered sampling approach and assume
that the sensor is collocatedwith the observer at the same node of the networked control
loop [10, 27]. Nevertheless, a novel event-triggered observer design idea is suggested
where the sampled-data output measurements are sent to the remote observer only
when an event condition is violated. As a consequence, redundant output transmissions
and observer energy consumption are reduced [20, 21]. This work provides additional
answers to the literature on networked switched systems and motivates our research
on the subject of event-triggered observer-based finite-time H∞ control. The main
contributions of this paper can be summarized as follows:

1. An event-triggered observation scheme is constructed, which involves Lyapunov
parameter to decidewhen theoutputmeasurements are sent over the communication
network.

2. The Lyapunov–Krasovskii functional technique and the average dwell time provide
several sufficient LMIs conditions for the observer-based finite-time boundedness
and the disturbance attenuation control performance.

3. We have shown the effect of the triggering threshold η on the transmission rate.
We have also verified the exclusion of the Zeno phenomenon.

This paper is organized as follows. In Sect. 2, the problem of finite-time event-
triggered observer design of network-based switched systems is formulated. Some
definitions and lemmas are also introduced. Section3 provides sufficient conditions
for the finite-time boundedness and H∞ control design. An illustrative example is
given in Sect. 4 to verify the proposed results. Finally, Sect. 5 presents the conclusion
of this study.

Notations. Throughout this paper, we denote by N the set of natural numbers. Given
a square matrix X , X−1 and XT are the inverse and the transpose of X , respectively.
λmax(X) andλmin(X) stand for itsminimumandmaximumeigenvalue. The symmetric
terms within a symmetric matrix are represented by the asterisk �, and the block-
diagonal matrix by diag{· · · }. L2[0,∞[ is the space of square-integrable functions
over the interval [0,∞[.

2 Problem Formulation

2.1 Switched System and Event-Triggered Observer

Consider the switched nonlinear system defined by:

⎧
⎨

⎩

ẋ(t) = Ai x(t) + Biu(t) + fi (x(t)) + Diω(t),
y(t) = Ci x(t),
z(t) = C1i x(t) + D1iω(t),

(1)
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Fig. 1 A network-based event-triggered observer architecture

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input, y(t) ∈ R
p

is the measurable output, z(t) ∈ R
q is the controlled output, w(t) ∈ R

m which
belongs to L2[0,∞[ is the external disturbance input satisfying ∫ T f

t0
wT(t)w(t)dt ≤

dw, dw ≥ 0, and
[
t0, T f

]
is the finite-time interval. The function σ : [t0,∞[→

I = {1, 2, . . . , N } denotes the switching signal where N stands for the num-
ber of subsystems. Its corresponding switching sequence can be given by � =
{(i0, t0) , (i1, t1) , . . . , (is, ts) . . . | is ∈ I, s ∈ N}, which means that the is-th subsys-
tem is activated when t ∈ [ts, ts+1[. For σ(t) = i ∈ I; Ai , Bi , Ci , C1i , Di , and
D1i are constant matrices with appropriate dimensions. Moreover, fi : Rn → R

n are
known Lipschitz nonlinear functions.

In practice, the state is not available. Therefore, a state observer needs to be
implemented. In this framework, an event-based Luenberger observer is designed
to obtain the state and synthesize the corresponding controller. In what follows, the
network-based event-triggered observer reported in [26] can be used:

{ ˙̂x(t) =Ai x̂(t) + Biu(t) + Li (ȳ(t) − Ci x̂(t)) + fi (x̂(t)),

ŷ(t) =Ci x̂(t),
(2)

where x̂(t) ∈ R
n is the observer state, and ŷ(t) ∈ R

p is the observer output, while
ȳ(t) is the event-triggered holded output between two consecutive events. Li is the
sub-observer gain matrix.

2.2 Event-Triggered Observation Scheme

Wepropose in this subsection a network-based event-triggered observation and control
scheme as depicted in Fig. 1. Therefore, we know the following:

1. The system output y(t) is sampled periodically as y(vh), v ∈ N and h > 0 being
the sampling period.
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2. An event generator will check a well-designed event-triggered condition to decide
when the output measurements should be transmitted.

3. ȳ(t) = y (tkh) is the triggered output to be transmitted to the observer via a zero-
order hold (ZOH) at time instants tkh, k ∈ N, {t0, t1, t2, . . . , tk} ⊆ N.

In networked environments, transmission delays are unavoidable. Then, success-
fully transmitted data reach the remote observer at time instants tkh + dk and remain
constant until the next event at tk+1h + dk+1, that is:

ȳ(t) = y (tkh) , t ∈ [tkh + dk, tk+1h + dk+1[ (3)

where dk is the network-induced delay.
The event-triggered observation condition proposed in this paper is relatively

inspired by [10, 17] as below:

tk+1h = tkh + min
v∈N

{
vh | eTk (t)�i ek(t) ≥ η yT (tkh + vh) y (tkh + vh)

}
(4)

where �i is a symmetric positive-definite matrix to be given and the parame-
ter η > 0 is a constant threshold, and ek(t) = y (tkh) − y (tkh + vh) , v ∈
{1, 2, · · · , tk+1 − tk − 1} is themeasurement error between the current sampled output
y (tkh + vh) and the last transmitted triggered output y (tkh) , t ∈ [tkh + dk, tk+1h +
dk+1[. We assume that t0 = 0. To control the switched system (1), an observer-based
control law is applied:

u(t) = Ki x̂(t), ∀ t ∈ [
0, T f

]
(5)

where Ki is the feedback gain of appropriate dimension.
Next, we partition the holding interval of the ZOH into subintervals,

[tkh + dk, tk+1h + dk+1[=
Tk⋃

v=0

[lk,v, lk,v+1[ (6)

where Tk = tk+1− tk −1, lk,v = [tkh+vh+dk,v[, and dk,v are the corresponding time
delays. Define d(t) = t − tkh − vh, t ∈ [lk,v, lk,v+1[, which satisfies min

{
dk,v

} =
dm < d(t) < dM = h +max

{
dk,v

}
. Resorting to the definition of ek(t) and d(t), the

triggered output (3) becomes:

ȳ(t) = y(t − d(t)) + ek (t) ∀t ∈ [lk,v, lk,v+1[ (7)

Remark 1 We can easily verify the exclusion of the Zeno behavior based on the event-
triggered scheme (4), where it is clear that the inter-event period is always greater than
the sampling period, tk+1h − tkh ≥ h.

Remark 2 In this paper, the results are developed under the assumption max
{
dk,v

}
<

h. However, when max
{
dk,v

} ≥ h, packet disorder may occur, which will necessitate
other modeling and analysis techniques.
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2.3 Modeling of the Networked Switched System

By defining x̃(t) = x̂(t) − x(t) as the observation error, and combining equations
(1)-(2), (5), and (7), we get the following system dynamics:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =(Ai + Bi Ki )x(t) + Bi Ki x̃(t) + fi (x(t)) + Diω(t)

˙̂x(t) =(Ai + Bi Ki )x̂(t) + LiCi (x(t − d(t)) − x̂(t)) + fi (x̂(t))

+ Liek(t)

˙̃x(t) =(Ai − LiCi )x̃(t) − LiCi x(t) + LiCi x(t − d(t) + fi (x̂(t))

− fi (x(t)) − Diω(t) + Liek(t)

x(s) =φ(s), s ∈ [−dM , 0]

(8)

where φ(s) is a continuous initial function on [−dM , 0].
From the above closed-loop system, an augmented time-delay switched system can
be established by using the same technique as in [18]:

{
ξ̇ (t) = Āiξ(t) + Ādiξ(t − d(t)) + f̄i (ξ(t)) + D̄iω(t) + L̄i ek(t)
z(t) = C̄1iξ(t) + D1iω(t)

(9)

where

ξ(t) =
[
x(t)
x̃(t)

]

, Āi =
[
Ai + Bi Ki Bi Ki

−LiCi Ai − LiCi

]

, Ādi =
[

0 0
LiCi 0

]

f̄i (ξ(t)) =
[

fi (x(t))
fi (x̂(t)) − fi (x(t))

]

, D̄i =
[

Di

−Di

]

, L̄i =
[
0
Li

]

, C̄1i = [
C1i 0

]

In the sequel, we will recall some assumptions, definitions, and technical lemmas,
which will facilitate the establishment of the major results.

Assumption 1 Given weighting matrices Fi ∈ R
n×n,∀i ∈ I, the known nonlinear

functions fi satisfy:

∥
∥ fi (x̂(t)) − fi (x(t))

∥
∥ ≤ ∥

∥Fi (x̂(t) − x(t))
∥
∥ ,

∀ x̂(t), x(t) ∈ R
n (10)

Assumption 2 For full-row rankmatricesCi , the singular value decomposition (SVD)
of Ci is defined as follows:

Ci = Ui
[
C0i 0

]
V T
i (11)

where Vi ∈ R
n×n and Ui ∈ R

p×p are unitary matrices and C0i ∈ R
p×p are diagonal

matrices with positive elements.

Definition 1 [4] For given constants c1, c2, T f , dM , and dw, where c1 < c2, a
positive-definite matrix R, and a switching signal σ , the closed-loop switched
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system (9) is observer-based finite-time bounded (OB-FTB) with respect to(
c1, c2, T f , dM , dw, R, σ

)
, if

max−dM≤s≤0

{
ξT(s)Rξ(s)

}
<c1 ⇒ ξ(t)TRξ(t) < c2, ∀t ∈ [

0, T f
]

(12)

When ω(t) = 0, the switched system (9) is said to be observer-based finite-time
stabilizable (OB-FTS).

Definition 2 [4] For given constants c1, c2, T f , dM , dω, and γ , where c1 < c2, a
positive-definite matrix R, and a switching signal σ , then under zero initial conditions,
the closed-loop system (9) is observer-based H∞ finite-time bounded (OB H∞ FTB)
with respect to

(
c1, c2, T f , dM , dw, γ, R, σ

)
, if the following conditions are verified:

1. Closed-loop switched system (9) is OB-FTB.
2. The output z(t) satisfies

∫ T f

0
zT(t)z(t)dt < γ 2

∫ T f

0
ωT(t)ω(t)dt, ∀t ∈ [

0, T f
]

(13)

where γ > 0 is a prescribed noise attenuation index.

Lemma 1 [9] For a given matrix C ∈ R
p×n with rank(C) = p, assume that X1 ∈

R
n×n is a symmetric matrix, then there exists a matrix X̂1 ∈ R

p×p such that CX1 =
X̂1C, if and only if

X1 = V

[
X̂11

X̂22

]

V T (14)

where X̂11 ∈ R
p×p and X̂22 ∈ R

(n−p)×(n−p). V is defined in Assumption 2.

3 Main Results

To guarantee the OB-FTB and H∞ control performance, we provide some sufficient
conditions for the control synthesis of the switched delayed system (9) under the above-
mentioned event-driven observation strategy (4), external disturbance, and network-
induced delays.

3.1 Observer-Based Finite-Time Boundedness

Firstly, we present sufficient conditions for the closed-loop switched system (9) to be
OB-FTB.

Theorem 1 Consider the time-delay closed-loop switched system (9), for given pos-
itive parameters c1, c2, T f , dM , dw, h, η, λ, μ ≥ 1, and symmetric positive-definite
matrices �i , R = diag {R1, R2}, if for any consecutive i, j ∈ I, i 
= j , there exist
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symmetric positive-definite matrices Xi > 0, Si > 0,Wi > 0, and matrices Yi , Zi of
appropriate dimensions such that:

�i =
[

�11
i �12

i
� �22

i

]

< 0 (15)

X j ≤ μXi , S j ≤ μSi (16)

c1 (ρ1 + ρ3ρM ) + ρωdω < c2ρ2e
−λT f (17)

then the system (9) is OB-FTB with respect to (c1, c2, T f , dM , dω, R, σ ), with
switchings satisfying:

τa > τ�
a = T f lnμ

ln (c2ρ2) − ln (c1ρ1 + c1ρ3ρM + ρωdω) − λT f
(18)

Moreover, the corresponding observer-based controller gains are given by:

Ki = Yi X
−1
1i , Li = ZiUiC0i X̂

−1
11iC

−1
0i U

T
i (19)

where

�11
i =

⎡

⎢
⎢
⎢
⎢
⎣

ψ11
i ψ12

i 0 0 Di

� ψ22
i ψ23

i 0 −Di

� � ψ33
i 0 0

� � � ψ44
i 0

� � � � −Wi

⎤

⎥
⎥
⎥
⎥
⎦

,

�12
i =

⎡

⎢
⎢
⎢
⎢
⎣

X1i X1i FT
i X1i 0 0 0 0

0 0 0 X1i X1i FT
i X1i 0

0 0 0 0 0 0
√

ηX1iCT
i

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

�22
i = diag {−S1i ,−I ,−I ,−S2i ,−I ,−I ,−I }

where

ψ11
i = Ai X1i + X1i A

T
i + BiYi + Y T

i BT
i − λX1i + I

ψ12
i = BiYi − CT

i Z
T
i

ψ22
i = Ai X1i + X1i A

T
i − ZiCi − CT

i Z
T
i − λX1i + I

ψ23
i = ZiCi

ψ33
i = eλdM S1i − 2eλdM X1i

ψ44
i = −eλdM S2i
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and

ρ1 = max
i∈I

{
λmax

(
X̄−1
i

)}
, ρ2 = min

i∈I

{
λmin

(
X̄−1
i

)}
,

ρ3 = max
i∈I

{
λmax

(
S̄−1
i

)}
, ρω = max

i∈I
{λmax (Wi )} , ρM = eλdM − 1

λ

X̄i = R1/2Xi R
1/2, S̄i = R1/2Si R

1/2,

Xi = diag {X1i , X1i } , Si = diag {S1i , S2i }
Ci X1i = X̂1iCi

Proof Wechoose the followingLyapunov–Krasovskii function for the i-th subsystem:

Vi (t) = ξT(t)Piξ(t) +
∫ t

t−d(t)
eλ(t−s)ξT(s)Qiξ(s)ds (20)

where Pi = diag {P1i , P1i }, Qi = diag {Q1i , Q2i } are symmetric positive-definite
matrices, and λ > 0 is a constant parameter. For t ∈ [ts, ts+1[, the derivative of (20)
along the trajectories of the system (9) can be obtained as below:

V̇i (t) − λVi (t) = ξT(t)Pi ξ̇ (t) + ξ̇T(t)Piξ(t)

− eλd(t)ξT(t − d(t))Qiξ(t − d(t))

− λξT(t)Piξ(t) + ξT(t)Qiξ(t)

(21)

Expanding (21) using the augmented closed-loop system (9), we can get

V̇i (t) − λVi (t) ≤ ξT(t)
(
Pi Āi + ĀT

i Pi + Qi − λPi
)

ξ(t)

+ ξT(t)Pi Ādiξ (t − d(t)) + ξT (t − d(t)) ĀT
di Piξ(t)

+ ξT(t)Pi f̄i (ξ(t)) + f̄ Ti (ξ(t))Piξ(t)

+ ξT(t)Pi D̄iω(t) + ωT(t)D̄T
i Piξ(t) + ξT(t)Pi L̄i ek(t)

+ eTk (t)L̄T
i Piξ(t) − eλdM ξT (t − d(t)) Qiξ (t − d(t))

(22)

By setting F̄i = diag {Fi , Fi }, then under Assumption 1, we obtain

ξT(t)Pi f̄i (ξ(t)) + f̄ Ti (ξ(t))Piξ(t) ≤ ξT(t)Pi Piξ(t) + f̄ Ti (ξ(t)) f̄i (ξ(t))

≤ ξT(t)(Pi Pi + F̄T
i F̄i )ξ(t)

(23)

Also, it is obvious that

ξT(t)Pi L̄i ek(t) + eTk (t)L̄T
i Piξ(t) ≤ξT(t)ξ(t) + eTk (t)L̄T

i Pi Pi L̄i ek(t) (24)
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Combining (23)–(24) with (22), we have

V̇i (t) − λVi (t) ≤ ξT(t)
(
Pi Āi + ĀT

i Pi + Qi − λPi + Pi Pi + F̄T
i F̄i + I

)
ξ(t)

+ ξT(t)Pi Ādiξ (t − d(t)) + ξT (t − d(t)) ĀT
di Piξ(t)

+ ξT(t)Pi D̄iω(t) + ωT(t)D̄T
i Piξ(t) + eTk (t)L̄T

i Pi Pi L̄i ek(t)

− eλdM ξT (t − d(t)) Qiξ (t − d(t))

(25)

Notice from (7) that y(tkh + vh) = y(t − d(t)) = Ci x(t − d(t)), and set �i =
LT
i P1i P1i Li in (4). Then, between two triggering instants, it holds that

eTk (t)LT
i P1i P1i L

T
i ek(t) < η xT (t − d(t))CT

i Ci x (t − d(t)) (26)

By substituting Āi , Ādi , D̄i , F̄, L̄i , Pi , Qi , equation (26) in (25), and subtracting
ωT(t)Wiω(t), we get

V̇i (t) − λVi (t) − ωT(t)Wiω(t) ≤ ζT(t)�iζ(t) (27)

where ζ(t) = [
xT(t) x̂T(t) xT(t − d(t)) x̂T(t − d(t)) ωT(t)

]T

and

�i =

⎡

⎢
⎢
⎢
⎢
⎣

�11
i �12

i 0 0 P1i Di

� �22
i �23

i 0 −P1i Di

� � �33
i 0 0

� � � �44
i 0

� � � � −Wi

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (28)

with

�11
i = P1i (Ai + Bi Ki ) + (Ai + Bi Ki )

TP1i − λP1i + Q1i + P1i P1i + FT
i Fi + I

�12
i = P1i Bi Ki − CT

i L
T
i P1i

�22
i = P1i (Ai − LiCi ) + (Ai − LiCi )

TP1i − λP1i + Q2i + P1i P1i + FT
i Fi + I

�23
i = P1i LiCi

�33
i = −eλdM Q1i + ηCT

i Ci

�44
i = −eλdM Q2i
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Setting � = diag
{
P−1
1i , P−1

1i , P−1
1i , Q−1

2i , I
}
, pre- and post-multiplying the matrix

inequality (15) by �T and �, we have

�̄i = �T � � =

⎡

⎢
⎢
⎢
⎢
⎣

�̄11
i �̄12

i 0 0 Di

� �̄22
i �̄23

i 0 Di

� � �̄33
i 0 0

� � � �̄44
i 0

� � � � −Wi

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (29)

where

�̄11
i = (Ai + Bi Ki )P

−1
1i + P−1

1i (Ai + Bi Ki )
T − λP−1

1i + P−1
1i Q1i P

−1
1i

+I + P−1
1i FT

i Fi P
−1
1i + P−1

1i P−1
1i

�̄12
i = Bi Ki P

−1
1i − P−1

1i CT
i L

T
i

�̄22
i = (Ai − LiCi )P

−1
1i + P−1

1i (Ai − LiCi )
T − λP−1

1i + P−1
1i Q2i P

−1
1i

+I + P−1
1i FT

i Fi P
−1
1i + P−1

1i P−1
1i

�̄23
i = LiCi P

−1
1i

�̄33
i = −eλdM P−1

1i Q1i P
−1
1i + ηP−1

1i CT
i Ci P

−1
1i

�̄44
i = −eλdM Q−1

2i

By defining Xi = P−1
i , Si = Q−1

i , Yi = Ki P
−1
1i , Zi = Li X̂1i , and resorting to

Lemma 1, the condition Ci X1i = X̂1iCi holds, if there exist matrices Vi such that:

X1i = Vi

[
X̂11i

X̂22i

]

V T
i (30)

Also, since X1i and S1i are positive-definite matrices, we can get

eλdM (S1i − X1i )
TS−1

1i (S1i − X1i ) ≥ 0 (31)

Therefore, we can deduce that

− eλdM X1i S
−1
1i X1i ≤ eλdM S1i − 2eλdM X1i (32)

It is easy to see that condition (29) is a nonlinear matrix inequality. Hence, by substi-
tuting (32) into (29) and applying the Schur complement lemma [1], the LMI (15) is
satisfied. Thus, we come into

V̇i (t) < λVi (t) + ωT(t)Wiω(t) (33)
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Employing the comparison lemma to (33) yields

Vi (t) < eλ(t−ts )Vi (ts) +
∫ t

ts
eλ(t−s)ωT(s)Wiω(s)ds (34)

Suppose that the state does not jump, that is, σ (ts) = is and σ
(
t−s

) = σ (ts−1) = is−1
at switching instants. Then, according to (16) and (20), it holds that

Vis (ts) ≤ μVis−1

(
t−s

)
, ∀is, is−1 ∈ I (35)

Then, based on (34), (35), with the average dwell definition in [7], it can be deduced
that

Vi (t) < μNσ (t,0)eλt Vi0(0) + μNσ (t,0)
∫ t1

0
eλ(t−s)ωT(s)Wi0ω(s)ds

+ μNσ (t,t1)
∫ t2

t1
eλ(t−s)ωT(s)Wi1ω(s)ds

+ · · · +
∫ t

ts
eλ(t−s)ωT(s)Wisω(s)ds

= μNσ (t,0)eλt Vi0(0) +
∫ t

0
μNσ (t,s)eλ(t−s)ωT(s)Wσ(s)ω(s)ds

(36)

It is easy to notice that Nσ (T f , 0) ≤ T f /τa , and then, we can get

Vi (t) < μNσ (T f ,0)eλT f

(

Vi0(0) + dω max
i∈I

{
λmax

(
Wσ(s)

)}
)

< eλT f μT f /τa
(
Vi0(0) + ρωdω

)
(37)

Additionally, it can be derived that

Vi (t) ≥ ξT(t)Piξ(t) ≥ min
i∈I

{
λmin

(
P̄i

)}
ξT(t)Rξ(t) = ρ2ξ

T(t)Rξ(t) (38)

Vi0(0) ≤ ξT(0)Pi0ξ(0) +
∫ 0

−dM
e−λsξT(s)Qi0ξ(s)ds

≤ λmax
(
P̄i0

)
ξT(0)Rξ(0) + eλdM − 1

λ
λmax

(
Q̄i0

)
max−dM≤s≤0

{
ξT(s)Rξ(s)

}

≤ (ρ1 + ρMρ3) c1
(39)
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Combining (37)–(39), we conclude that

ξT(t)Rξ(t) ≤ V (t)

ρ2
<

Vi0(0) + ρωdω

ρ2
eλT f μT f /τa

<
c1 (ρ1 + ρMρ3) + ρωdω

ρ2
eλT f μT f /τa

(40)

If μ = 1, then from (17), we obtain

ξT(t)Rξ(t) <
c1 (ρ1 + ρMρ3) + ρωdω

ρ2
eλT f < c2 (41)

If μ > 1, then from (18), we have

T f

τa
<

ln (c2ρ2) − ln (c1ρ1 + c1ρ3ρM + ρωdω) − λT f

lnμ
(42)

Substituting (42) into (40) yields

ξT(t)Rξ(t) < c2 (43)

According to the aforementioned change of variable, it can be obtained that Ki =
Yi X

−1
1i , Li = Zi X̂

−1
1i . In order to get the matrices X̂1i , we combine equations (11)

and (30) with the condition Ci X1i = X̂1iCi . Then, the matrices Li are achieved as
below:

Li = ZiUiC0i X̂
−1
11iC

−1
0i U

T
i (44)

Consequently, the observer-based controller gain matrices (19) are obtained.
Hence, in light of Definition 1, the closed-loop switched system (9) is OB-FTB

with respect to (c1, c2, T f , dM , dω, R, σ ). This ends the proof. �

Remark 3 The finite-time boundedness analysis could be obtained with Ki and Li

given in advance in such a way that Ai + Bi Ki and Ai − LiCi are Hurwitz, and the
remaining design variables are derived by solving a finite set of LMIs. This method
does not allow us to get an ideal design solution. In Theorem 1, more design freedom
was given,where the observer-based controller gainswere obtained for the closed-loop
switched time-delay system (9) to be OB-FTB under the event-triggered mechanism
(4).

3.2 Observer-Based Finite-Time H∞ Controller Design

This subsection provides sufficient conditions that ensure the prescribed finite-time
H∞ performance of the switched closed-loop time-delay system (9).
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Theorem 2 Consider the time-delay closed-loop switched system (9) under the event-
triggered observation scheme (4), for given positive parameters c1, c2, T f , dM , dw, h,
η, λ, γ, μ ≥ 1, and symmetric positive-definite matrices �i , R = diag {R1, R2}, if
for any consecutive i, j ∈ I, i 
= j , there exist symmetric positive-definite matrices
Xi > 0, Si > 0, and matrices Yi , Zi of appropriate dimensions such that:

�i =
[

�11
i �12

i
� �22

i

]

< 0, (45)

X j ≤ μXi , S j ≤ μSi (46)

γ 2dw < c2ρ2e
−λT f , (47)

then the system (9) is OB H∞ FTB with respect to (c1, c2, T f , dM , dω, γ, R, σ ), with
a prescribed performance index γ and switchings satisfying the following condition:

τa > τ�
a = T f lnμ

ln (c2ρ2) − ln
(
γ 2dw

) − λT f
(48)

The corresponding observer-based controller gains are given by (19) in Theorem 1.
where

�11
i =

⎡

⎢
⎢
⎢
⎢
⎣

χ11
i χ12

i 0 0 χ15
i

� χ22
i χ23

i 0 χ25
i

� � χ33
i 0 0

� � � χ44
i 0

� � � � χ55
i

⎤

⎥
⎥
⎥
⎥
⎦

,

�12
i =

⎡

⎢
⎢
⎢
⎢
⎣

X1i X1i FT
i X1i X1iCT

1i 0 0 0 0
0 0 0 0 X1i X1i FT

i X1i 0
0 0 0 0 0 0 0

√
ηX1iCT

i
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

�22
i = diag {−S1i ,−I ,−I ,−I ,−S2i − I ,−I ,−I }

where

χ11
i = Ai X1i + X1i A

T
i + BiYi + Y T

i BT
i − λX1i + I

χ12
i = BiYi − CT

i Z
T
i

χ15
i = Di + X1iC

T
1i D1i

χ22
i = Ai X1i + X1i A

T
i − ZiCi − CT

i Z
T
i − λX1i + I

χ23
i = ZiCi

χ25
i = −Di

χ33
i = eλdM S1i − 2eλdM X1i

χ44
i = −eλdM S2i
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χ55
i = −γ 2 I + DT

1i D1i

and

ρ2 = min
i∈I

{
λmin

(
X̄−1
i

)}
,

X̄i = R1/2Xi R
1/2, S̄i = R1/2Si R

1/2,

Xi = diag {X1i , X1i } , Si = diag {S1i , S2i }
Ci X1i = X̂1iCi

Proof The proof of Theorem 2 will not be covered since it is similar to the proof of
Theorem 1. Hence, we obtain

V̇i (t) − λVi (t) + zT(t)z(t) − γ 2ωT(t)ω(t) < 0 (49)

By letting Wi = γ 2 I and noticing that zT(t)z(t) > 0, the conditions of Theorem 1
and Theorem 2 are equivalent. Hence, the switched system (9) is FTB. We now show
that the condition (13) is satisfied. According to LMI (45), it is assumed that �i < 0.
By setting �(s) = γ 2ωT(s)ω(s) − zT(s)z(s), we integrate (49) from ts to t

Vi (t) < eλ(t−ts )Vi (ts) +
∫ t

ts
eλ(t−s)�(s)ds (50)

Using the same method as in (36), it holds that

Vi (t) < μT f /τa eλT f Vi0(0) + μT f /τa eλT f

∫ t

0
�(s)ds (51)

For zero initial conditions, Vi0(0) = 0, it follows that

0 ≤ Vi (t) < μT f /τa eλT f

∫ T f

0
�(s)ds (52)

Therefore, the condition (13) is verified. As a result, in light of Definition 2, the closed-
loop switched system (9) is OB H∞ FTBwith respect to

(
c1, c2, T f , dM , dw, γ, R, σ

)
,

with a prescribed performance index γ . This concludes our proof. �

4 Example

This section gives a simulation example to verify the theoretical results. We consider
the switched system (1) with the following matrices:
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Subsystem 1:

A1 =
[−1.5 −1

0.8 −2.5

]

, B1 =
[

1
0.5

]

, C1 =
[−1

2

]T

, D1 =
[

0
0.2

]

Subsystem 2:

A2 =
[−2 −1
1.5 −1.8

]

, B2 =
[
0.5
1

]

, C2 =
[−2

1

]T

, D2 =
[
0.1
0

]

The nonlinear functions fi (x(t)) are given as below:

f1(x(t)) =
[
0.1 sin (x1(t))

0.1x2(t)

]

, f2(x(t)) =
[

0.2x1(t)
0.2 sin (x2(t))

]

According to Assumption 1, the Lipschitz matrices are given by

F1 =
[
0.1 0
0 0.1

]

, F2 =
[
0.2 0
0 0.2

]

The initial state of the system and the observer is chosen as x(s) = [−0.15, 0.1]T,
x̂(s) = [−0.2, 0.15]T, s ∈ [−dM , 0], respectively. Set c1 = 0.1, c2 = 20, T f =
1 s, h = 1ms, dM = 1.9ms and R = diag {I , I }. Also, other adjustable parameters
are set as λ = 4, η = 5 × 10−3, and μ = 1.3. For a predefined external disturbance
input ω(t) = 0.2e−t , we choose dω = 0.03.

By solving LMIs of Theorem 1 using the MATLAB LMI control toolbox, we can
obtain the following feasible solutions:

K1 = [
0.2242 0.2825

]
, L1 =

[
0.0310

−0.1047

]

K2 = [
0.1537 0.2876

]
, L2 =

[
0.0999

−0.0485

]

Besides, based on (18), the average dwell time satisfies τa = 0.3 s > τ�
a = 0.28 s.

Figures 2, 3, 4, 5, 6 and 7 provide the simulation results of the closed-loop switched
system (9) for the given initial conditions. The system state and the observer state
time responses are plotted in Fig. 2. Therefore, we conclude that the real state can
successfully be estimated using the designed event-triggered observer. Figure3 shows
the switching signal with the event-based observation instants. Figure4 displays the
system output and the event-triggered output, while the evolution of the triggering
error norm ‖P1i Li ek(t)‖2 compared to the output-based bound η‖y(t − d(t))‖2 is
illustrated in Fig. 5. Meanwhile, under the event-triggered condition (4), the event-
triggered instants and the inter-event times are depicted in Fig. 6 with a minimum
inter-event interval MIET=0.033 s. Figure7 presents the trajectory of ξT(t)Rξ(t),
which indicates that under the designed event-triggered observer-based controller, the
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Fig. 2 State trajectories of the system and the observer

Fig. 3 Switching signal σ(t)
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Fig. 4 Output and event-triggered output signals

Fig. 5 The event-triggered condition evolution
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Fig. 6 Event-instants and inter-event time interval

Fig. 7 Trajectory of ξT(t)Rξ(t)
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Table 1 Comparison between number of events and MIET

η 10−5 10−4 10−3 5 × 10−3 0.01 10

Number of events 193 80 29 14 9 0

MIET (s) 0.002 0.003 0.007 0.033 0.029 N/A

condition ξT(t)Rξ(t) < c2 is satisfied in the finite-time interval [0, 1]. Thus, the
switched system is OB-FTB with respect to (0.1, 20, 1, 0.0019, 0.03, I , σ ).

The systemoutput generates 1000 sampled datawithin the finite-time interval [0, 1].
Meanwhile, under the event-triggered observation mechanism (4), only 14 triggered
data are sent to the observer for state reconstruction and control design. Accord-
ingly, just 1.5% of sensing information is transmitted over the communication network
whilemaintaining satisfactory finite-time control performance of the switched system.
Hence, the developed event-triggered observation strategy can effectively mitigate the
burden of communication networks and save a certain proportion of the observer’s
computational resources in the presence of practical limitations, that is to say, the
network-induced delays and the external disturbance input.

In order to review the effect of the triggering threshold on the transmission rate,
the comparison in Table 1 shows the number of event-based transmitted data and the
inter-event time intervals for different values of η. We remark that less output data
are triggered for a larger triggering parameter η. However, it is necessary to point out
that LMIs in Theorem 1 are not feasible for η = 10. Consequently, the system state
may exceed the prescribed bound and even be unstable. Additionally, Table 1 verifies
that any inter-event interval is strictly greater than the sampling interval h. Namely,
no Zeno behavior has occurred.

5 Conclusion

In this paper, we investigated the issue of robust finite-time observer-based control
for a class of networked switched systems with exogenous disturbances via an event-
triggered observation scheme. Owing to the network-based event-triggered output
measurements used to estimate the unmeasured state, the overall system is modeled
as a switched time-delay system. On the basis of Lyapunov–Krasovskii functions and
the average dwell time technique, novel LMI-based theorems have been developed
to obtain a restrictive average dwell time condition and to derive the observer-based
sub-controller gains in order to guarantee the finite-time H∞ boundedness of the
resulting closed-loop switched system. Finally, through a simulation example, we have
verified that the obtained results can reduce the communication network burden and
optimize the network resources while ensuring satisfactory finite-time event-triggered
control performance.With the help of [25, 32], additional investigations on the problem
of quantization and packet dropout may improve the effectiveness of the proposed
approach.
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