
Circuits, Systems, and Signal Processing (2024) 43:593–614
https://doi.org/10.1007/s00034-023-02493-1

Hardware Architectures for Computing
Eigendecomposition-Based Discrete Fractional Fourier
Transforms with Reduced Arithmetic Complexity

Breno C. Bispo1 · José R. de Oliveira Neto2 · Juliano B. Lima1

Received: 9 January 2023 / Revised: 14 August 2023 / Accepted: 16 August 2023 /
Published online: 1 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The fractional Fourier transform (FrFT) is a useful mathematical tool for signal and
image processing. In some applications, the eigendecomposition-based discrete FrFT
(DFrFT) is suitable due to its properties of orthogonality, additivity, reversibility and
approximation of continuous FrFT. Although recent studies have introduced reduced
arithmetic complexity algorithms for DFrFT computation, which are attractive for
real-time and low-power consumption practical scenarios, reliable hardware architec-
tures in this context are gaps in the literature. In this paper, we present two hardware
architectures based on the referred algorithms to obtain N-point DFrFT (N = 4L,
L is a positive integer). We validate and compare the performance of such architec-
tures by employing field-programmable gate array implementations, co-designed with
an embedded hard processor unit. In particular, we carry out computer experiments
where synthesis, error and latency analyses are performed, and consider an application
related to compact signal representation.

Keywords Field programmable gate array · Discrete fractional Fourier transform ·
Hardware implementation · Arithmetic complexity

J. R. de Oliveira Neto and Juliano B. Lima are contributed equally to this work.

B Juliano B. Lima
juliano.lima@ufpe.br

Breno C. Bispo
breno.bispo@ufpe.br

José R. de Oliveira Neto
joserodrigues.oliveiraneto@ufpe.br

1 Department of Electronics and Systems, Federal University of Pernambuco, Recife, Pernambuco,
Brazil

2 Department of Mechanical Engineering, Federal University of Pernambuco, Recife, Pernambuco,
Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-023-02493-1&domain=pdf
http://orcid.org/0000-0002-6927-3854
http://orcid.org/0000-0002-3104-8985
http://orcid.org/0000-0002-1474-1147

594 Circuits, Systems, and Signal Processing (2024) 43:593–614

1 Introduction

The fractional Fourier transform (FrFT) corresponds to a generalization of the ordinary
Fourier transform, where noninteger powers of the respective operator are admitted.
The FrFT was first exploited in quantum mechanics [18] and further used in several
application scenarios, such as image encryption, optical signal processing, velocity
estimation and vibration on SAR imagery, filtering, biomedical signal and image pro-
cessing [6, 7, 9, 16, 20, 29]. Hardware FrFT implementations are frequently required in
some of the aforementioned scenarios. Such implementations are normally designed
from discrete versions of the transform (DFrFT), which should satisfy the follow-
ing requirements: (i) numerical approximation of the continuous FrFT; (ii) unitarity;
(iii) additivity; (iv) reduction to discrete Fourier transform (DFT) when the fractional
order equals one. Additionally, it is expected that a DFrFT can be computed using
some efficient algorithm [27].

Among the DFrFT approaches documented in the literature, the
eigendecomposition-based DFrFT (ED-DFrFT) fulfills all the above listed require-
ments. On the other hand, the computational complexity of a N -point ED-DFrFT is
O(N 2). The sampling-type DFrFT involves less computational complexity than ED-
DFrFT, but they cannot satisfy additivity criterion (iii); this is critical, for example, in
applications related to signal recovery, as demonstrated in [27]. Therefore, the scope
of this work is restricted to ED-DFrFT implementations, due to the preservation of
most requirements of a legitimate DFrFT.

Although subquadratic computational complexity algorithms for computing ED-
DFrFT are still a shortcoming in the literature, recent studies promote reduced
arithmetic complexity approaches [8, 17]; such a reduction can be achieved, for
instance, by choosing suitable HGL DFT (Hermite–Gaussian-like) eigenbases that
provide significant number of entries equal (or approximately) to zero in the eigen-
vectors [8]. In particular, HGL DFT eigenbases generated by closed-form expressions
can perform the computation of ED-DFrFT with reduced1 arithmetic complexity [7,
8, 14, 15]. On the other hand, eigenvectors based on matrices commuting with the
DFTmatrix operator generated by nonclosed-form procedures are not suitable for this
task [3, 4, 10, 19, 25].

The scarce number of publications related to hardware architectures for ED-DFrFT
computations does not address the development of dedicated hardware for generalized
cases. For example, Sinha et al. [26], Acharya and Mukherjee [1] suggested similar
architectures for computing the DFrFT of real-valued input vector. Cariow et al. [5]
proposed processing unit structures for small size N -point DFrFTs (N < 8). Although
Prasad et al. [21] andRay et al. [22] propose N -pointsDFrFT (N is odd or even positive
integer) and 2m-points DFrFT (m is a positive integer) architectures, respectively,
they do not exploit properly the error analysis of the proposed architectures and the
arithmetic hardware complexity scales up as the number of points increase. Moreover,
the method in [22] employs a simplified version of the DFrFT matrix, which may

1 The term “reduced”, in the title of our paper and throughout its text, refers to the algorithms proposed
in [8], which are used as a starting point for the hardware architectures to be presented. Therefore, the use
of such a term does not indicate that, in this paper, an algorithm with even lower arithmetic complexity is
being proposed, compared to the cited reference.

Circuits, Systems, and Signal Processing (2024) 43:593–614 595

compromise theDFrFT accuracy. Therefore, the current literature still lacks of reliable,
low complexity and no constrain hardware architectures for general cases of ED-
DFrFT. In this paper, we intend to address this issue by introducing two different
architectures for computing the DFrFT of a N -length complex-valued vector x, where
N = 4L and L is a positive integer, based on recent studies of ED-DFrFTwith reduced
arithmetic complexity [8]. We consider N = 4L or N = 2m cases, m ∈ {2, 3, 4, . . .},
due to their practical usage in signal processing. However, without loss of generality,
the proposed DFrFT architectures can also cover N �= 4L cases with slight hardware
changes.

We propose an architecture for DFrFT computation and then consider the imple-
mentation of this architecture using two different HGL DFT eigenbases. More
precisely, we consider a DFrFT computation method that exploits symmetry and spar-
sity properties of HGLDFT eigenvectors used to define the DFrFT [8]. The considered
HGLDFT eigenbases are those proposed in [3] and [15], which are, respectively, iden-
tified asHGL1 andHGL2. Thus,we refer to the considered implementation alternatives
by means of the acronyms HGL1 and HGL2.

In this context, it is relevant to emphasize that our work does not constitute a direct
hardware implementation of existing methods, but involves a series of decisions and
architecture choices to achieve the results documented throughout our text. In particu-
lar, we confirm that the potential computational benefits suggested in the references we
consider have repercussions on a practical implementation, which takes into account
not only complexity in terms of numbers of arithmetic operations, but memory /reg-
isters, logic elements, percentage consumption of reconfigurable hardware resources,
best datapath optimization, etc.Moreover, compared to other papers focused on imple-
menting DFrFT in hardware, our proposal has the smallest footprint, whose value is
also constant, regardless of the transform length.

The next sections of this paper are summarized as follows:

• In Sect. 2, we describe the basic fixed-point arithmetic modules and the hardware
architecture for computing an eigenvalue used in the proposed architectures;

• In Sect. 3, we describe the HGL1 and HGL2 architectures for computing a N -point
DFrFT, for N = 4L (L is a positive integer);

• InSect. 4,wevalidate the proposedhardware architectures bymeans of several tests
for N ∈ {8, 16, 32, 64, 128, 256}. We carry out a comparative analysis taking into
account software/hardware requirements, evaluating implementation complexity,
latency and performance of the architectures when applied to signal compaction.
In the analyzed scenarios, we verify that the HGL2 architecture achieved the best
memory usage and speed performance among the proposed architectures.

2 Basic Modules

In the implemented architectures, we adopt the 32-bit two’s complement fixed-point
number representation, where the first and the second most significant bits (MSB)
are the signed integer part and the 30 lowest significant bits (LSB) are the fractional
part of the number. The resolution is given by δ = 2−30. In this manner, a real-

596 Circuits, Systems, and Signal Processing (2024) 43:593–614

valued number y represented as a 32-bit fixed-point number is limited by the range
−2.0 ≤ y ≤ 2.0 − δ and has its fractional part given by the sum of negative powers
of 2. This approach aims to reduce the hardware complexity usually associated with
floating-point operations. We evaluate the approximation error propagation of each
architecture in Sect. 4.

In what follows, we present the fixed-point arithmetic modules and a module to
compute an eigenvalue used in the architectures.

2.1 Fixed-Point Arithmetic Modules

We describe the fixed-point arithmetic modules as follows:

• Adder/subtractor: the sum/subtraction operation between 32-bit two’s com-
plement fixed-point numbers is equivalent to sum/subtraction between 32-bit
integers;

• Fixed-point multiplier and bit shifting: the multiplier module performs the multi-
plication of two two’s complement 32-bit fixed-point numbers, whose output also
gives a two’s complement 32-bit fixed-point number. Although the multiplication
of two 32-bit numbers can generate a 64-bit number, the multiplier output provides
a 32-bit two’s complement fixed-point number. Right/left-bit shifting represents
multiplication/division by two in fixed-point;

• RCM (real-complex multiplier) module: this module consists of two fixed-point
multipliers, which perform two real multiplications between a real number repre-
sented as a 32-bit fixed-point number, x , and real/imaginary parts of a complex
number represented as two 32-bit fixed-point numbers, u and v. Let z = x(u+ jv),

j
�= √−1 , the outputs of the RCM module are two 32-bit fixed-point numbers,

�(z) = xu and �(z) = xv;
• CCM (complex-complex multiplier) module: this module consists of three fixed-
point multipliers, two subtractors and three adders. This module is based on [2],
where a low complexity complexmultiplication algorithm is described; it performs
three realmultiplications between sums/subtractions of real/imaginary parts of two
complex numbers represented as 32-bit fixed-point numbers, x , y, u and v. Let
z = (x + j y)(u + jv) , the outputs of CCM module are two 32-bit fixed-point
numbers, �(z) = (x − y)v + x(u − v) and �(z) = (x − y)v + y(u + v).

• CORDIC module: this module consists of a lookup table, adders and shift registers
(based onVolder’s algorithm [11, 28]). It computes cosine and sine of a fixed-point
angle θ , 0 ≤ θ < π/2 rad. In this work, we use the CORDIC module imported
from Altera IP core library ALTERA_CORDIC IP core [12].

2.2 Computation of an Eigenvalue �a
n

Let a ∈ R, −2.0 ≤ a < 2.0, be the fractional order and �a =
[λa0, λa1, λa2, . . . , λaN−1]T be a column vector formed by the eigenvalues of the cor-
responding DFrFT matrix (the superscript T denotes row-column transposition of the

Circuits, Systems, and Signal Processing (2024) 43:593–614 597

Fig. 1 Lambda module that computes an eigenvalue λan : a architecture; b FSM

argument). The Lambda module computes an eigenvalue

λan = e− j π
2 α = cos

(π

2
α
)

− j sin
(π

2
α
)

, (1)

n ∈ {0, 1, 2, . . . , N − 1}, α ∈ {0, a, 2a, . . . , (N − 2)a, Na} [8], by means of a
fixed-point multiplier, one adder, a CORDIC module (see Fig. 1a) and a finite state
machine (FSM)with 3 states (see Fig. 1b). From this point forward, in order to visually
simplify the proposed architectures, in the figures, the labeled arrows containing the
same name or symbol are physically connected and the [·; ·] notation means physical
bit-array concatenation of two fixed-point numbers. The output data are two fixed-
point numbers, �(λan) and �(λan), n ∈ {0, 1, 2, . . . , N − 1}. A controller external to
this module loads the input a and enables/disables the start pin. In particular, the
following states are specified:

• State S1: if start pin is enabled, disable done pin and accumulate the a bus value
to the α-register accumulator. After (N − 3) cycles of the state machine shown in
Fig. 1b, the accumulated value will correspond to (N − 2)a;

• State S2: verify trivial eigenvalue possibilities. If yes, update the λan bus output
according to α-register value, enable done pin and the next state is S1. Otherwise
multiply the α-register value by π/2 and the next state is S3;

• State S3: after 15 clock cycles, route theCORDICmodule outputs to λan bus output.
Enable done pin and the next state is S1.

598 Circuits, Systems, and Signal Processing (2024) 43:593–614

3 DFrFT Hardware Architectures

In this section, we describe two architectures for computing the N -point DFrFT (N =
4L , L is a positive integer). We consider the DFrFT computation method proposed
in [8] using the HGL eigenbases proposed in [3, 15]: (i) Architecture HGL1; (ii)
Architecture HGL2, whose memory block structures, data path and FSM of each
architecture are presented.

3.1 Architecture HGL1

Considering the method proposed in [8], we can compute the DFrFT of a vector
x ∈ C

N through right-to-left matrix multiplications between x, VT , diag(�a) and V,
that is,

Xa = (Vdiag(�a)VT)x, (2)

with reduced arithmetic complexity by generating intermediate vectors

x′ = VT x, (3)

x′′ = �a ◦ x′, (4)

Xa = Vx′′, (5)

where diag() is a diagonal matrix, whose main diagonal consists of the argument
elements [23].

3.1.1 Memory Blocks

In order to synthesize a hardware architecture based on the method described in [8]
using the HGL eigenbasis proposed in [3], we design 6 memory blocks aiming to
optimize the memory usage, memory access and latency, during the computation of
the intermediate vector x′ and output Xa :

• Two memory blocks store nonzero distinct absolute elements of the matrix VT : (i)
the memory block sram-V T consists of (N/2 − 1)N memory addresses, where
each address stores a fixed-point number, VT

n,i , n ∈ {0, 1, 2, . . . , N − 1}, i ∈
{1, 2, 3, . . . , N/2−1}; and (ii) thememory block sram-V T

0|N/2 consists of N/2+1

memory addresses, where each address stores two fixed-point numbers, VT
p,0 and

VT
p,N/2 , p ∈ {0, 2, 4, . . . , N − 2, N − 1};

• Two memory blocks store elements of x and Xa : (i) the memory block sram-x
consists of N/2 memory addresses, where the content of the first memory address
stores four fixed-point numbers,�(x0), �(x0),�(xN/2), �(xN/2), and the remain-
ing addresses store�(xi), �(xi),�(xN−i), �(xN−i), i ∈ {1, 2, . . . , N/2−1}; and
(ii) a memory block with the same structure as sram-x, sram-Xa , stores the ele-
ments ofXa , where the content of the first memory address stores four fixed-point
numbers, �(Xa

0), �(Xa
0), �(Xa

N/2), �(Xa
N/2), and the remaining addresses store

�(Xa
i), �(Xa

i), �(Xa
N−i), �(Xa

N−i), i ∈ {1, 2, . . . , N/2 − 1};

Circuits, Systems, and Signal Processing (2024) 43:593–614 599

Control

[mac-real ; mac-imag]

clock
reset

+

m
ux

mac-real-register

m
u

x
[1

]

mux[1..5]

m
u
x
[4

]

y

u

x

v

CCM

u

v

x
RCM

re
g
is

te
r

re
g
is

te
r

sram-x-readdata

m
u
x
[2

]
m

u
x
[3

]

m
ux

mac-imag-register

m
u
x
[5

]

mac-real

mac-imag

out[1]-real

out[1]-imag

mac-real

out[1]-real

out[1]-real

mac-imag

out[1]-imag

out[1]-imag

out[2]-real

out[2]-imag

sram-x-address

0

out[2]-real

out[2]-imag

+

+

+

+

+

+

+

m
ux

m
ux

m
ux

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

S1 S2 S3

UPDATE

mac-registers

MULTIPLY

x-registers

UPDATEUPDATE

sram-x-address

WRITE ENABLE

Fig. 2 Module for computing the intermediate vector x′: a architecture; b FSM

• Two memory blocks store elements of x′ and x′′: two memory blocks, sram-x’ and
sram-x”, consist of N memory addresses, where each memory address stores two
fixed-point numbers,�(x′

n) and�(x′
n),�(x′′

n) and�(x′′
n), n ∈ {0, 1, 2, . . . , N−1},

respectively.

3.1.2 Computation of the Intermediate Vector x′

In this section, we describe the synthesized module that executes the arithmetic opera-
tions in (3). For optimization purposes, we take into account the symmetry properties
of HGL1 eigenvectors (rows of matrix VT). We implement a RCM module, a CCM
module and 8 adders, as shown in Fig. 2a. We adopt �(· | ·) or �(· | ·) notations to
label a bus/register that is assigned to either the first or the second argument according
to the memory address of the respective memory block structures of each variable as
described in Sect. 3.1.1.

A FSMwith 3 states, orchestrated by theControlmodule, computes the elements of
x′, as shown inFig. 2b. Through the sram-V T -address, sram-V T

0|N/2-address and sram-
x-address output buses, the Control module recursively selects the respective memory

600 Circuits, Systems, and Signal Processing (2024) 43:593–614

block addresses to be read; and they are loaded in the sram-V T -readdata, sram-
V T
0|N/2-readdata, sram-x-readdata input buses according to machine states routines.

Moreover, after the recursive computation of each x′ component, the Control module
selects the respective memory address, sram-x’-address, and writes into it through the
sram-x’-writedata bus. In particular, the following states are specified:

• State S1: set the write/read enable pin to low. Update the RCM and CCM inputs
with elements of VT and sum/subtraction of x0 or xN/2, and xi or xN−i , i ∈
{1, 2, 3.., N/2−1} (according to the current value of sram-x’-address) stored into
their respective registers. Update the sram-x-address and sram-V T -address buses.
The next state is S2;

• State S2: update the x-registers and V T -registers. If the sram-x-address value is
zero, themac-registers accumulators initializewith the sumofRCM andCCM out-
puts. Otherwise accumulate the RCM outputs in the mac-registers. If the Control
module reads the last sram-x memory address, then the next state is S3. Otherwise
the next state is S1;

• State S3: route the mac-registers values to the sram-x’-writedata buffer of the
sram-x’ current address and set the write/read enable pin to high. Clear the mac-
registers. If the current value of sram-x’-address is N − 1, then the computation
of x′ is finished. Otherwise the next state is S1;

3.1.3 Computation of the Intermediate Vector x′′ and the Elements Xa0 and X
a
N/2

In this section, we describe the synthesized module that executes the arithmetic oper-
ations in (4), where the computation of each element of �a and the element-wise
multiplication between the elements of�a and x′ are performed.Moreover, for latency
optimization purpose, this module also computes the elements Xa

0 and Xa
N/2 using

the elements stored in the memory block sram-V T
0|N/2 described in Sect. 3.1.1. We

implement a Lambda module, RCM and CCM modules (shared with the architecture
explored in Sect. 3.1.2), 4 adders and a left-bit shift register, as shown in Fig. 3a.

A FSM with 5 states, orchestrated by Control module, computes the elements of
x′′,Xa

0 andX
a
N/2, as shown in Fig. 3b. Through the sram-x’-address and sram-V

T
0|N/2-

address output buses, the Control module recursively selects the respective memory
block addresses to be read; and they are loaded in the sram-x’-readdata and sram-
V T
0|N/2-readdata input buses according to machine states routines. Moreover, after

the recursive computation of each element of �a , followed by the computation of
each element of x′′, the Control module selects the respective memory address, sram-
x”-address, and writes into it through the sram-x”-writedata bus. Furthermore, the
Control module selects the first address of the memory block sram-Xa and write into
it through the sram-Xa-writedata bus. As the selected fractional order a is constant
during the computation of a DFrFT, the value stored in a-register remains the same.
In particular, the following states are specified:

• State S1: if the current value of sram-x’-address is equal to N − 1, then load 2a to
the a input port of Lambda module. Otherwise, load a. Enable start pin. The next
state is S2;

Circuits, Systems, and Signal Processing (2024) 43:593–614 601

Control

clock

reset

mux[1..8]

y

u

x

v

CCM

u

v

x
RCM

m
u
x
[2

]

m
u

x

m
ux

m
u
x
[4

]

[out-real ; out-imag]

+

m
u

x
m

u
x

[3
]

re
g
is

te
r

a-registersram-a-readdata
start
Lambda

a

m
u
x

[6
]

m
u
x
[7

]

x2

m
u
x
[1

]

done

done donestart

start

out-real

out-imag

m
u
x
[5

]

0
out-real

out-real

out-real

out-imag

out-imag

out-imag

+

+

+

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

re
g
is

te
r

re
g

is
te

r
re

g
is

te
r

m
u

x

m
u

x
m

u
x

m
u
x

re
g

is
te

r
re

g
is

te
r

m
u
x

m
u
x
[8

]

(a)

S1 S2 S3 S4 S5

WRITE ENABLE

UPDATE

WRITE ENABLE

UPDATE
UPDATE

Lambda module inputs

EIGENVALUE

COMPUTATION

MULTIPLY

(b)

Fig. 3 Module for computing the intermediate vector x′′: a architecture; b FSM

• State S2: compute an eigenvalue λan and store it in the λan-registers. Update the
CCM inputs with the values of λan-registers and x’n-registers. The next state is S3;

• State S3: route the values stored in the V T
p,0-register, V

T
p,N/2-register and CCM

outputs to the RCM and CCM inputs. Route the CCM outputs to the sram-x”-
writedata buffer for writing into the current address sram-x”-address and set the
write/read enable pin to high. The next state is S4;

• State S4: set the write/read enable pin to low. Accumulate the RCM and CCM
output values in the Xa

0 -registers and Xa
N/2-registers. Update sram-x’-address

and sram-x”-address. If the current value of sram-x”-address is N − 1, then the
computation of x′′ is finished and the next state is S5. Otherwise the next state is
S1;

• State S5: route the Xa
0 -registers and Xa

N/2-registers values to the sram-Xa-
writedata buffer for writing into the first address of sram-Xa and set the write
/ read enable pin to high.

602 Circuits, Systems, and Signal Processing (2024) 43:593–614

Control

clock
reset

re
g
is

te
r

mux[1..2]
out-real

out-imag

+

m
uxout-imag

out-real

m
u

x
[1

]
m

uxout-imag

out-real

m
u
x
[2

]

u

v

x
RCM

+

+

+

+

+
re

g
is

te
r

re
g
is

te
r re

g
is

te
r

re
g

is
te

r
re

g
is

te
r

re
g
is

te
r

(a)

S1 S2 S3

MULTIPLY

UPDATE

WRITE ENABLE

VERIFY

end of scalar product
UPDATE

UPDATE

end of

update

VERIFY

(b)

Fig. 4 Module for computing the Xa : a architecture; b FSM

3.1.4 Computation of Vector Xa

In this section, we describe the synthesized module that executes the arithmetic oper-
ations in (5), except for the elementsXa

0 andX
a
N/2, which are computed in the module

described in Sect. 3.1.3. Thus, this module recursively and simultaneously computes
each element of Xa

i and Xa
N−i , i ∈ {1, 2, . . . , N/2 − 1}. We implement 6 adders and

a RCM module (shared with the architectures explored in Sects. 3.1.2 and 3.1.3) for
arithmetic operations in (5) regarding the computation of Xa , as shown in Fig. 4a.

A FSM with 3 states, orchestrated by the Control module, computes the remaining
elements of Xa , as shown in Fig. 4b. Through the sram-V T -address and sram-
x”-address output buses, the Control module selects recursively the respective
memory block addresses to be read; and they are loaded in the sram-V T -readdata,
sram-x”-readdata input buses according to machine states routines. Moreover, after
the recursive computation of each Xa component, the Control module selects

Circuits, Systems, and Signal Processing (2024) 43:593–614 603

the respective memory address, sram-Xa-address, and writes into it through the
sram-Xa-writedata bus. In particular, the following states are specified:

• State S1: update the RCM inputs with the values of x”n-registers and V T
n,i -register.

Update the addresses sram-x”-address and sram-V T -address. The next state is S2;
• State S2: if the current value of sram-x”-address is equal to N − 1, then route the
values of Xa

i -registers and Xa
N−i -registers to the sram-X

a-writedata bus for writ-
ing into the current memory address sram-Xa-address, set the write/read enable
pin to high and the next state is S3. Otherwise accumulate the values provided
in the RCM outputs positively or negatively (for odd or even values of sram-x”-
address, respectively) to the Xa

i -registers and Xa
N−i -registers and the next state is

S1;
• State S3: set the write/read enable pin to low. If sram-Xa-address value is equal to

N/2−1, then the computation ofXa is finished. Otherwise clear the accumulators
Xa
i -registers and Xa

N−i -registers, update the sram-X
a-address and the next state

is S1.

3.2 Architecture HGL2

The architecture proposed in this section is also based on the DFrFT computation
method given in [8] method, which employs intermediate vectors. Therefore, it is
similar to the architecture described in Sect. 3.1. However, in the current case, the
eigenbasis proposed in [15] is used. The changes resulting from this choice are detailed
below.

3.2.1 Memory Blocks

In order to minimize the memory usage and the memory access during the DFrFT
computation, we design three memory blocks that store nonzero distinct absolute ele-
ments ofVT : (i) the memory block sram-V T stores nonzero distinct absolute elements
of VT

m,i , m ∈ {0, 1, 2, . . . , N − 3}, i ∈ {1, 2, 3, . . . , N/2 − 1}, where each address

stores a fixed-point number; (ii) the memory block sram-V T
N/2 consists of N/2 − 1

memory addresses, where each memory address stores a fixed-point number, VT
q,N/2,

q ∈ {0, 2, 4, . . . , N − 4}; and (iii) the memory block sram-V T
�N−2|�N−1

stores four

fixed-point numbers,VT
N−2,0,V

T
N−1,0,V

T
N−2,1 andV

T
N−1,2, that represent the distinct

absolute elements of the eigenvectors �N−2 and �N−1 [8].
Furthermore, we implement the same memory block structures described in

Sect. 3.1 for x, x′, x′′ and Xa storage, but with slight changes of x and Xa indexes as
described in the following steps.

3.2.2 Computation of the Intermediate Vectors x′

The computation of the intermediate vector x′ employs an architecture and FSM
similar to those explored in Sect. 3.1.2, where the elements x0 , xN/2 become xN/2−1 ,

604 Circuits, Systems, and Signal Processing (2024) 43:593–614

xN−1, respectively, and xi , xN−i , i ∈ {1, 2, 3, . . . , N/2 − 1}, become xi , xN−2−i ,
i ∈ {0, 1, 2, . . . , N/2 − 2}, respectively.

Moreover, we increment two accumulators and a second CCM module for a
fast computation of x′

N−2 and x′
N−1. Due to repeated components of eigenvectors

�N−2 and �N−1 [8], we can compute x′
N−2 and x′

N−1 through positive/negative
accumulation of the x elements and four multiplications.

3.2.3 Computation of the Intermediate Vector x′′ and the Elements XaN/2−1 and X
a
N−1

The computation of the intermediate vector x′′ follows the same architecture and FSM
explored in Sect. 3.1.3. However, the elements Xa

0 , Xa
N/2 become Xa

N/2−1 , X
a
N−1 ,

respectively. Using two CCM modules, we recursively compute the elements of x′′,
Xa

N/2−1 and Xa
N−1.

3.2.4 Computation of Xa

The computation of Xa employs an architecture and a FSM similar to those explored
in Sect. 3.1.4. However, the elements Xa

i , X
a
N−i , i ∈ {1, 2, 3, . . . , N/2− 1}, become

Xa
i , X

a
N−2−i , i ∈ {0, 1, 2, . . . , N/2 − 2}, respectively.

4 Implementation and Results

We design the hardware architectures in Verilog on the Intel Cyclone V field-
programmable gate array (FPGA) SoC 5CSEMA5F31C6 [13], using Quartus Prime
18.1 Standard Edition. The FPGA has 32,070 logic elements and 4,065,280 bits of on-
chip SRAM. The 5CSEMA5F31C6 chip also includes a hard processor unit (HPS),
represented by a Dual-Core ARM Cortex-A9 processor. A Linux-distributed oper-
ational system (OS) runs in the HPS, where programs (written in C programming
language) establish Ethernet/UDP communication between computer and HPS. The
HPS also exchanges data with the FPGA architectures through a shared dual-port
on-chip SRAM.

In particular, for test purposes of each architecture, the HPS stores once into the
shared on-chip SRAM the elements of the matrixVT of eigenvectors through memory
mapping; it receives the complex-valued vector x and fractional order a from the com-
puter; performs vector normalization and floating-point to fixed-point conversions;
stores a and x into the shared on-chip SRAM; and enables the DFrFT computation of
the respective values of a and x. Later, the HPS performs fixed-point to floating-point
conversions; sends the output vector Xa and FPGA latency (in clock cycles) to the
computer. Additionally, in the application related to compact representation in frac-
tional Fourier domain (see details in Sect. 4.4), the HPS also executes an optimum
fractional order searching algorithm; sends the optimum fractional order,measurement
of compactness and searching time delay (in seconds) to the computer.

In this way, we can validate the proposed architectures using a high level program-
ming language. In this work, we use the MATLAB to perform such a task. Figure5

Circuits, Systems, and Signal Processing (2024) 43:593–614 605

Fig. 5 Hardware setup for testing the implemented designs and communication between computer, HPS
and FPGA

Table 1 Synthesis results for the proposed DFrFT architectures

Architecture Number of components
LE Registers Adder/subtractor Multiplier

HGL1 7848 (24%) 6695 42 6

HGL2 9131 (28%) 7773 68 9

Table 2 Memory usage (bits)
for the proposed DFrFT
architectures

N Required SRAM (bits)
HGL1 HGL2

8 3392 (0.1%) 3296 (0.1%)

16 8512 (0.2%) 7520 (0.2%)

32 24,896 (0.6%) 20,576 (0.5%)

64 82,240 (2.0%) 65,120 (1.6%)

128 295,232 (7.3%) 227,936 (5.6%)

256 1,114,432 (27.4%) 848,480 (20.9%)

illustrates the hardware setup designed to validate the architectures and applications.
The computer USB terminal performs debugging procedures and sends commands to
the HPS.

4.1 Synthesis Results

In Table 1, the synthesis results of the architectures described in Sect. 3 are presented;
it provides the number of logical elements (LE), number of registers, number of 32-
bit Adders/Subtractors and 32-bit fixed-point multipliers used in each architecture.
We observe that the HGL2-based architecture requires a larger number of hardware
elements than the HGL1-based architecture. This is in line with the fact that, due to the
distinct symmetry and outperforming sparsity of HGL2 eigenbasis compared to HGL1
eigenbasis [8], we enhance the memory access and parallel arithmetic operations of
HGL2-based architecture aiming to optimize the latency performance.

Table 2 provides the number of memory bits used by the architectures in the
Cyclone V and their usage percentages (in parentheses) provided by Quartus for

606 Circuits, Systems, and Signal Processing (2024) 43:593–614

N = 8, 16, 32, 64, 128, 256. We remark that the HGL2-based architecture requires
smaller memory allocation than the HGL1-based architecture due to the smaller num-
ber of nonzero distinct absolute elements of HGL2 eigenbasis matrix VT stored in
SRAM and required to compute a DFrFT.

For test purposes, we generate in MATLAB a set of 1000 random input vectors
x ∈ C

N , where each element of x, xn , is bounded by −1.0 ≤ �(xn) ≤ 1.0 and
−1.0 ≤ �(xn) ≤ 1.0, and a set of 1000 random fractional orders a, −2.0 ≤ a < 2.0.
In order to compare the architectures in termsof accuracy,we compute 1000 N -DFrFTs
of x for N ∈ {8, 16, 32, 64, 128, 256} in MATLAB with double-precision floating-
point number representation, using the HGL1 and HGL2 eigenbases, and consider the
obtained results as a reference.

On the HPS side, a program stores once nonzero distinct absolute elements of
eigenvectors matrix VT in 32-bit fixed-point format into the shared SRAM mem-
ory blocks, according to the DFrFT architecture. For each DFrFT computation, the
computer sends to the HPS a respective input vector x and a fractional order a in
double-precision floating-point number format.

Before each DFrFT computation procedure, the HPS normalizes each input vector
x, converts the 64-bit floating-point elements of a and x to 32-bit fixed-point numbers,
stores into the sram-x memory block and enables the DFrFT computation according
to the respective DFrFT architecture. The normalization approach avoids fixed-point
overflows during arithmetic operations performed by the FPGA.

TheHPS reads the sram-Xa memory block and converts theXa elements (computed
by the FPGA running at a clock frequency of 100 MHz) from fixed to floating-point
and multiplies the Xa by the norm of the input vector x. The HPS sends the DFrFT of
a respective input vector x and latency in clock cycles (counted by the FPGA) to the
computer. The computer then performs the latency and accuracy analysis.

In Table 3, the root mean squared error (RMSE) and latency (in clock cycles) of
each DFrFT architecture computed by the HPS-FPGA are shown. The DFrFT latency
of integer fractional orders a = 0, 1,−1,−2 is shown in parentheses. We observe that
the HGL2-based architecture achieved better accuracy and latency than HGL1-based
architecture to compute a N -point DFrFT. We suggest that this fact is caused by the
lowest required number of arithmetic operations to calculate a DFrFT [8].

During this research, we also synthesized a DFrFT computation architecture based
on the method proposed in [17] using the HGL1 and HGL2 eigenbases. We observed
that such an architecture requires a larger number of hardware elements and is signifi-
cantly slower than the proposed architecture. This is in linewith the fact that, according
to the method given in [17], the N ×N DFrFTmatrix can be decomposed into two (for
an odd N) or three (for an even N) matrices. Then, the DFrFT of an input vector can
be written as sums of low complexity matrix products. However, the elements of these
complex-valued matrices need to be computed. Therefore, the hardware requirements
and timing performance for the DFrFT computation are compromised.

Circuits, Systems, and Signal Processing (2024) 43:593–614 607

Ta
bl
e
3

R
M
SE

an
d
la
te
nc
y
of

ea
ch

pr
op
os
ed

D
Fr
FT

ar
ch
ite
ct
ur
e

N
R
M
SE

L
at
en
cy

(c
lo
ck

cy
cl
es
)

H
G
L
1

H
G
L
2

H
G
L
1

H
G
L
2

8
(1

.4
6

±
0.
23

).
10

−8
(1

.0
2

±
0.
18

).
10

−8
26

9
(1
43

)
23

5
(1
11

)

16
(3

.6
0

±
0.
41

).
10

−8
(2

.5
1

±
0.
27

).
10

−8
80

9
(5
39

)
68

7
(4
19

)

32
(9

.3
7

±
0.
75

).
10

−8
(6

.8
6

±
0.
46

).
10

−8
26

57
(2
,0
99

)
21

67
(1
61

1)

64
(2

.2
2

±
0.
15

).
10

−7
(1

.9
2

±
0.
08

).
10

−7
94

25
(8
,2
91

)
74

31
(6
29

9)

12
8

(5
.8
1

±
0.
24

).
10

−7
(5

.3
7

±
0.
16

).
10

−7
35

,2
49

(3
2,
96

3)
27

,1
75

(2
4,
89

1)

25
6

(1
.4
9

±
0.
04

).
10

−6
(1

.5
0

±
0.
03

).
10

−6
13

6,
04

9
(1
31

,4
59

)
10

3,
52

7
(9
8,
93

9)

608 Circuits, Systems, and Signal Processing (2024) 43:593–614

(a) (b)

(c) (d)

Fig. 6 Comparison of normalized absolute values of continuous FrFT (computed in MATLAB), HGL1 and
HGL2 architectures (computed by HPS-FPGA) for N = 256 points: a a = 0.25; b a = 0.50; c a = 0.75;
d a = 1.00

4.2 Comparative Analysis

In order to compare the results obtained by the proposed DFrFT architectures, we also
compute in MATLAB the continuous FrFT of the rectangular pulse [7, 18]. In Fig. 6,
we use N = 256 and plot the DFrFT magnitudes (computed by the HPS-FPGA) and
sampled versions of continuous FrFT magnitudes of the rectangular pulse. Inspecting
Fig. 6a–c, one can observe that the graphs have similar visual aspects. In Fig. 6d, the
graphs overlap each other, assuming, in all cases, the aspect of a sync function.

In order to evaluate the accuracy of DFrFTs compared to continuous FrFT of the
rectangular pulse, we vary the fractional order a at a step of 0.01 and compute the
RMSE. The result is shown in Fig. 7, where we observe no significant differences
between the DFrFTs computed by the architectures.

Due to similar odd/even symmetry patterns of the matrices VT of eigenvectors,
verified in [3, 15], the strategies described in Sect. 3 are fully applicable to DFrFT for
N �= 4L , L is a positive integer. We just have to modify the variable indexes of the
memory blocks and FSM to adapt the memory accesses based on strategies mentioned
in [8].

Circuits, Systems, and Signal Processing (2024) 43:593–614 609

Fig. 7 RMSE of HGL1 and HGL2-based DFrFTs compared to continuous FrFT for N = 256

Table 4 Comparison of hardware complexity and latency of the proposed architectures with the existing
architectures for 256-point DFrFT

Hardware requirement Number of components
[21] [22] HGL1 HGL2

16-bit Multiplier 1029 516 0 0

32-bit Multiplier 0 0 6 9

32-bit Adder/subtrator 1072 606 42 68

Memory usage (bits) 2,097,152 33,024 1,114,432 848,480

1-bit Register ≈ 90,400 ≈ 102,614 6695 7773

Latency (clock cycles) 516 667 1,114,432 848,480

4.3 Comparison with RelatedWorks

Except the implementations presented in [5],which covers small sizeDFrFTs (N < 8),
and [1, 26], which are discussed in [22] and cover DFrFTs of real-valued input vectors,
we can compare the proposed architectures with approaches given in [21, 22]. The
hardware complexity and latency details of the proposed and existing architectures [21,
22] are presented inTable 4 for 256-pointDFrFTcase.Other cases covered in this paper
can be compared by means of hardware requirement formulas presented in [21, 22].
The arithmetic hardware complexity (number of adders/subtractors andmultipliers) of
our architectures is constant and significantly lower (at least, a 96% and 88% reduction
of multipliers and adders/subtractors, respectively, for 256-point DFrFT computation)
than the increasing complexity of [21, 22] architectures (limited toO(4N) andO(2N),
respectively). Although the memory usage of our architectures is higher than [22] and
lower than [21] architectures, the number of registers is significantly lower than [21,
22] methods. Due to pipelined approaches proposed in [21, 22], they achieved higher

610 Circuits, Systems, and Signal Processing (2024) 43:593–614

throughput. However, the existing ED-DFrFT architectures in the literature do not
provide detailed error analysis (similar to those discussed in Sects. 4.1 and 4.2) to
compare the accuracy of their methods with ours regarding a paramount feature of a
DFrFT, the numerical approximation of the continuous FrFT. They also do not carry
out tests with distinct values of N , complex-valued input vector x and fractional order
a. In view of the above, a complete comparison, in terms of accuracy, between our
proposal and those presented in the cited papers is not feasible, considering the scope
of the current paper.

In summary, comparing our architectures with similar existing architectures (i.e.,
no input constrains nor limited values of N) in the literature [21, 22] regarding the
hardware requirements, we conclude that the appropriate architecture depends on the
application priority. If timing optimization is required, then [22] reaches the best
latency. Otherwise, if a circuit area minimal solution is required, our architectures are
more suitable.

We can also compare our architectures with that proposed in [30]. In this context,
it is relevant to point out that, in the cited paper, a sampling-type DFrFT is considered
(please, see the second paragraph of Sect. 1). Moreover, in [30], the architecture
is restricted to the computation of a 256-point DFrFT, without a report of how the
hardware complexity behaves for general N -point transforms, nor numerical error
analysis (only a qualitative architecture error analysis for a small set of input signal
and parameters is provided). A fair comparison of latency in clock cycles between
[30] and our architectures is unfeasible, because, although the cited paper provides the
latency in microseconds (= 2.819μs), it does not inform the running clock frequency.
The proposed HGL2 architecture has memory requirements (in bits) similar to those
given in [30], ≈ 848 kbits and 828 kbits, respectively [31]. Although the arithmetic
hardware complexity is not properly detailed (numbers of adders and multipliers) in
[30], according to the FPGA documentation used in the referred work [31], we can
deduce that the number of required arithmetic hardware component is significantly
higher than that required in our architectures. Finally, the number of registers used in
the referred architecture is, at least, 7 times greater than ours. In brief, even taking into
account the caveats outlined above and the incompleteness of some experiments and
records in [30], our preliminary conclusion is that, in terms of hardware complexity,
our architectures outperform that described in the cited paper.

4.4 Compact Fractional Fourier Domains

In order to analyze the searching performance of an optimum fractional order for
compact fractional Fourier domain, aopt ., and measurement of compactness, l1-norm,
of each DFrFT architecture, we apply the minimum norm method (MNM) proposed
in [24] considering the same synthetic bi-component chirp signal used in [8] for
N = 256. A program runs theMNM algorithm in the HPS, while the FPGA computes
the DFrFTs through the proposed DFrFT architectures.

Based on the method given in [8], we can search the aopt . using the same interme-
diate vector x′. Therefore, the proposed architectures compute x′ only once, saving

Circuits, Systems, and Signal Processing (2024) 43:593–614 611

Table 5 Application of theMNMto a bi-component chirp signal by using theHGL1 andHGL2 architectures

Architecture aopt. l1-norm Time (s) Number of DFrFTs

HGL1 1.181494 206.369750 0.051616 59

HGL2 1.110355 194.556843 0.041657 59

Fig. 8 Magnitude squared of chirp signal in original (time) and fractional Fourier domains encountered by
using the MNM algorithm

approximately 40% of computational arithmetic operations of the remaining DFrFTs
before the algorithm convergence.

InTable 5, one canobserve the respectiveaopt ., l1-norm, number ofDFrFTs required
to find aopt . and algorithm time-convergence according to each DFrFT architectures.
We observe that the optimal fractional orders achieved by the proposed architectures
are close to the results obtained in [8]. Additionally, the HGL2-based architecture
reached the lowest l1-norm, i.e., the greatest compactness performance.Due to inherent
errors of floating-point to fixed-point conversions (and vice-versa) and fixed-point
arithmetic operations used in the DFrFT architectures, we believe that the proposed
method requires 4 additional DFrFTs for convergence of the MNM algorithm, when
compared to the results given in [8].

The results can be visually compared by using Fig. 8, where the squared magnitude
of the original chirp signal (black line) and the corresponding compact representation in
fractional Fourier domain computed by the DFrFT architectures are plotted. Although
the HGL1-based DFrFT (blue line) have a central portion narrower than that of the
HGL2-based DFrFT (red line), side fluctuations contribute to higher l1-norm [8].

612 Circuits, Systems, and Signal Processing (2024) 43:593–614

5 Conclusion

We presented two hardware architectures for computing ED-DFrFTs of N -length
complex-valued vectors, where N = 4L and L is a positive integer. The pro-
posed architectures can be generalized for N �= 4L with slight changes of variable
indexes of the memory blocks. By means of comparative analyses, we demonstrated
that reliable DFrFTs can be achieved with low error through fixed-point numeri-
cal representations and appropriate conversions, instead of floating-point numerical
representations. Among the proposed architectures in this study, the HGL2-based
architecture achieved better speed performance and memory usage than HGL1-based
architecture, but additional arithmetic hardware elements are required. Moreover, the
HGL2-based architecture achieved a smaller l1-norm, i.e., a greater compactness per-
formance associatedwith a lower latency,when compared toHGL1-based architecture.
Although pipelined architectures presented in the literature outperform HGL2 archi-
tecture regarding latency performance, the proposed architectures have the lowest
arithmetic hardware complexity among the existing architectures. Therefore, choos-
ing a specific architecture depends on the application and involves aspects related to
area and timing performance.

We are currently investigating the possibility of decreasing the latency of the HGL2
architecture through pipelined approaches and implementing rounding strategies in
HGL2 eigenbasis, as proposed in [8], in order to reduce the number of arithmetic
operationswithout significantly compromising the accuracy of theDFrFTarchitecture.

The proposed methods are also suitable for application-specific integrated circuit
(ASIC) design, which can be considered to achieve speed performance in real-time
applications with low hardware complexity, i.e., minimal circuit area, such as filtering
in the fractional domain, time–frequency analysis, chirp-rate estimation, compressive
sensing, velocity and vibration estimation on SAR imagery and similar applications.

Author Contributions BCB, JRDON and JBL were involved in conceptualization; BCB, JRDON and JBL
helped in methodology; BCB and JRDON contributed to formal analysis and investigation; BCB was
involved in writing—original draft preparation; BCB, JRDON and JBL helped in writing—review and
editing; JRDON and JBL contributed to resources; JRDON and JBL helped in supervision. All authors read
and approved the final manuscript.

Funding This work was supported in part by Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq) under Grants 310142/2020-2, 409543/2018-7 and 140151/2022-2, Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Ciência e Tecnologia
do Estado de Pernambuco (FACEPE) under Grant APQ-1226-3.04/22.

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

Ethics approval Not applicable.

Circuits, Systems, and Signal Processing (2024) 43:593–614 613

References

1. A. Acharya, S. Mukherjee, Designing a re-configurable fractional Fourier transform architecture using
systolic array. Int. J. Comput. Sci. Issues 7, 159 (2010)

2. R.E. Blahut, Fast Algorithms for Signal Processing (Cambridge University Press, Cambridge, 2010).
https://doi.org/10.1017/cbo9780511760921

3. C. Candan, M. Kutay, H. Ozaktas, The discrete fractional Fourier transform. IEEE Trans. Signal
Process. 48(5), 1329–1337 (2000). https://doi.org/10.1109/78.839980

4. C. Candan, On higher order approximations for Hermite–Gaussian functions and discrete fractional
Fourier transforms. IEEE Signal Process. Lett. 14(10), 699–702 (2007). https://doi.org/10.1109/LSP.
2007.898354

5. A. Cariow, J. Papliński, D. Majorkowska-Mech, Some structures of parallel VLSI-oriented processing
units for implementation of small size discrete fractional Fourier transforms. Electronics 8(5), 509
(2019). https://doi.org/10.3390/electronics8050509

6. G. Cincotti, T. Murakawa, T. Nagashima et al., Enhanced optical communications through joint time-
frequency multiplexing strategies. J. Lightwave Technol. 38(2), 346–351 (2020). https://doi.org/10.
1109/JLT.2019.2942452

7. J.R. de Oliveira Neto, J.B. Lima, Discrete fractional Fourier transforms based on closed-formHermite–
Gaussian-like DFT eigenvectors. IEEE Trans. Signal Process. 65(23), 6171–6184 (2017). https://doi.
org/10.1109/TSP.2017.2750105

8. J.R. de Oliveira-Neto, J.B. Lima, G.J. da Silva et al., Computation of an eigendecomposition-based
discrete fractional Fourier transform with reduced arithmetic complexity. Signal Process. 165, 72–82
(2019). https://doi.org/10.1016/j.sigpro.2019.06.032

9. A. Gómez-Echavarría, J.P. Ugarte, C. Tobón, The fractional Fourier transform as a biomedical signal
and image processing tool: a review. Biocybern. Biomed. Eng. 40(3), 1081–1093 (2020). https://doi.
org/10.1016/j.bbe.2020.05.004

10. M.T. Hanna, N.P.A. Seif, W.A. El-Maguid-Ahmed, Discrete fractional Fourier transform based on
the eigenvectors of tridiagonal and nearly tridiagonal matrices. Digit. Signal Process. 18(5), 709–727
(2008). https://doi.org/10.1016/j.dsp.2008.05.003

11. Y. Hu, CORDIC-based VLSI architectures for digital signal processing. IEEE Signal Process. Mag.
9(3), 16–35 (1992). https://doi.org/10.1109/79.143467

12. Intel, ALTERA_CORDIC IP core user guide (Intel, 2017). https://www.intel.com/content/www/us/en/
docs/programmable/683808/current/altera-cordic-ip-core-user-guide.html

13. Intel,Cyclone VDeviceDatasheet (Intel, 2019). https://www.intel.com/programmable/technical-pdfs/
683801.pdf

14. A. Kuznetsov, Explicit Hermite-type eigenvectors of the discrete Fourier transform. SIAM J. Matrix
Anal. Appl. 36(4), 1443–1464 (2015). https://doi.org/10.1137/15M1006428

15. A. Kuznetsov, M. Kwaśnicki, Minimal Hermite-type eigenbasis of the discrete Fourier transform. J
Fourier Anal. Appl. 25, 1053–1079 (2019). https://doi.org/10.1007/s00041-018-9600-z

16. J. Lima, L. Novaes, Image encryption based on the fractional Fourier transform over finite fields. Signal
Process. 94, 521–530 (2014). https://doi.org/10.1016/j.sigpro.2013.07.020

17. D. Majorkowska-Mech, A. Cariow, A low-complexity approach to computation of the discrete frac-
tional Fourier transform. Circuits Syst. Signal Process. 36(10), 4118–4144 (2017). https://doi.org/10.
1007/s00034-017-0503-z

18. V. Namias, The fractional order Fourier transform and its application to quantum mechanics. IMA J.
Appl. Math. 25(3), 241–265 (1980). https://doi.org/10.1093/imamat/25.3.241

19. S. Pei, W. Hsue, J. Ding, Discrete fractional Fourier transform based on new nearly tridiagonal com-
mutingmatrices. IEEE Trans. Signal Process. 54(10), 3815–3828 (2006). https://doi.org/10.1109/TSP.
2006.879313

20. R. Pelich, N. Longépé, G. Mercier et al., Vessel refocusing and velocity estimation on SAR imagery
using the fractional Fourier transform. IEEE Trans. Geosci. Remote Sens. 54(3), 1670–1684 (2016).
https://doi.org/10.1109/TGRS.2015.2487378

21. M. V. N. V. Prasad, K. C. Ray, A. S. Dhar, FPGA implementation of discrete fractional Fourier
transform. In: 2010 International Conference on Signal Processing and Communications (SPCOM)
(2010), pp. 1–5. https://doi.org/10.1109/SPCOM.2010.5560491

https://doi.org/10.1017/cbo9780511760921
https://doi.org/10.1109/78.839980
https://doi.org/10.1109/LSP.2007.898354
https://doi.org/10.1109/LSP.2007.898354
https://doi.org/10.3390/electronics8050509
https://doi.org/10.1109/JLT.2019.2942452
https://doi.org/10.1109/JLT.2019.2942452
https://doi.org/10.1109/TSP.2017.2750105
https://doi.org/10.1109/TSP.2017.2750105
https://doi.org/10.1016/j.sigpro.2019.06.032
https://doi.org/10.1016/j.bbe.2020.05.004
https://doi.org/10.1016/j.bbe.2020.05.004
https://doi.org/10.1016/j.dsp.2008.05.003
https://doi.org/10.1109/79.143467
https://www.intel.com/content/www/us/en/docs/programmable/683808/current/altera-cordic-ip-core-user-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683808/current/altera-cordic-ip-core-user-guide.html
https://www.intel.com/programmable/technical-pdfs/683801.pdf
https://www.intel.com/programmable/technical-pdfs/683801.pdf
https://doi.org/10.1137/15M1006428
https://doi.org/10.1007/s00041-018-9600-z
https://doi.org/10.1016/j.sigpro.2013.07.020
https://doi.org/10.1007/s00034-017-0503-z
https://doi.org/10.1007/s00034-017-0503-z
https://doi.org/10.1093/imamat/25.3.241
https://doi.org/10.1109/TSP.2006.879313
https://doi.org/10.1109/TSP.2006.879313
https://doi.org/10.1109/TGRS.2015.2487378
https://doi.org/10.1109/SPCOM.2010.5560491

614 Circuits, Systems, and Signal Processing (2024) 43:593–614

22. K.C. Ray, M.V.N.V. Prasad, A.S. Dhar, An efficient VLSI architecture for computation of discrete
fractional Fourier transform. J. Signal Process. Syst. 90(11), 1569–1580 (2018). https://doi.org/10.
1007/s11265-017-1281-3

23. G.A.F. Seber, A Matrix Handbook for Statisticians, 1st edn. (Wiley, Hoboken, 2007)
24. A. Serbes, Compact fractional Fourier domains. IEEE Signal Process. Lett. 24(4), 427–431 (2017).

https://doi.org/10.1109/LSP.2017.2672860
25. A. Serbes, L. Durak-Ata, Efficient computation of DFT commuting matrices by a closed-form infinite

order approximation to the second differentiation matrix. Signal Process. 91(3), 582–589 (2011).
https://doi.org/10.1016/j.sigpro.2010.05.002

26. P. Sinha, S. Sarkar, A. Sinha et al., Architecture of a configurable centered discrete fractional Fourier
transform processor. In: 2007 50thMidwest Symposium on Circuits and Systems (2007), pp. 329–332.
https://doi.org/10.1109/MWSCAS.2007.4488600

27. X. Su, R. Tao, X. Kang, Analysis and comparison of discrete fractional Fourier transforms. Signal
Process. 160, 284–298 (2019). https://doi.org/10.1016/j.sigpro.2019.01.019

28. J.E. Volder, The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. 8(3),
330–334 (1959). https://doi.org/10.1109/TEC.1959.5222693

29. Q. Wang, M. Pepin, R.J. Beach et al., SAR-based vibration estimation using the discrete fractional
Fourier transform. IEEE Trans. Geosci. Remote Sens. 50(10), 4145–4156 (2012). https://doi.org/10.
1109/TGRS.2012.2187665

30. R. Wang, P. Chen, D. Wang, FPGA-based implementation of discrete fractional Fourier transform
algorithm. In: 2022 14th International Conference onWireless Communications and Signal Processing
(WCSP) (2022), pp. 511–515. https://doi.org/10.1109/WCSP55476.2022.10039232

31. Xilinx, Xilinx 7 Series FPGAs Data Sheet: Overview (Xilinx, 2020). https://docs.xilinx.com/v/u/en-
US/ds180_7Series_Overview

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1007/s11265-017-1281-3
https://doi.org/10.1007/s11265-017-1281-3
https://doi.org/10.1109/LSP.2017.2672860
https://doi.org/10.1016/j.sigpro.2010.05.002
https://doi.org/10.1109/MWSCAS.2007.4488600
https://doi.org/10.1016/j.sigpro.2019.01.019
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TGRS.2012.2187665
https://doi.org/10.1109/TGRS.2012.2187665
https://doi.org/10.1109/WCSP55476.2022.10039232
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview

	Hardware Architectures for Computing Eigendecomposition-Based Discrete Fractional Fourier Transforms with Reduced Arithmetic Complexity
	Abstract
	1 Introduction
	2 Basic Modules
	2.1 Fixed-Point Arithmetic Modules
	2.2 Computation of an Eigenvalue

	3 DFrFT Hardware Architectures
	3.1 Architecture HGL_1
	3.1.1 Memory Blocks
	3.1.2 Computation of the Intermediate Vector x'
	3.1.3 Computation of the Intermediate Vector x''
	3.1.4 Computation of Vector Xa

	3.2 Architecture HGL_2
	3.2.1 Memory Blocks
	3.2.2 Computation of the Intermediate Vectors x'
	3.2.3 Computation of the Intermediate Vector x''
	3.2.4 Computation of Xa

	4 Implementation and Results
	4.1 Synthesis Results
	4.2 Comparative Analysis
	4.3 Comparison with Related Works
	4.4 Compact Fractional Fourier Domains

	5 Conclusion
	References

