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Abstract
In this paper, we study the speech emotion feature optimization using stochastic opti-
mization algorithms, and feature compensation using deep neural networks. We also
proposed to use accentuation-based fusion for long-time speech emotion recogni-
tion. Firstly, the extraction method of emotional features is studied, and a series of
speech features are constructed for the recognition of emotion. Secondly, we pro-
pose a method of sample adaptation through denoising autoencoder to enhance the
versatility of features through the mapping of sample features to improve adaptive
ability. Thirdly, GA and SFLA are used to optimize the combination of features to
improve the emotion recognition results at the utterance level. Finally, we use trans-
former model to implement accentuation-based emotion fusion in long-time speech.
The continuous long-time speech corpus, as well as the public available EMO-DB, are
used for experiments. Results show that the proposed method can effectively improve
the performance of long-time speech emotion recognition.

Keywords Speech emotion recognition · Feature compensation · Long-time emotion
recognition · Accentuation-based fusion

1 Introduction

Speech emotion recognition represents a critical area of research. Emotions serve as
essential elements in human communication and expression, exerting considerable
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influence on an individual’s behavior and psychological well-being [18]. Understand-
ing and accurately identifying emotions conveyed through speech are therefore of
great significance. Emotion recognition has a wide range of applications in many
fields, such as human–computer interaction, diagnosis and treatment of mental ill-
ness, social media analysis, and more.

Long-time speech emotion recognition studies the temporal changes of emotions
over a paragraph period of time. This is a highly challenging problem, as traditional
algorithms mainly focus on the emotional state within a single sentence, losing the
emotional information over time in the context [10].

The extraction, compensation, and optimization of speech emotion features consti-
tute pivotal challenges in the field of speech emotion recognition. Addressing these
challenges necessitates a holistic approach integrating signal processing and machine
learning techniques. Speech emotion feature extraction involves the derivation of fea-
tures from speech signals that effectively capture emotional characteristics.Key speech
emotion features commonly utilized include pitch, formant, speaking rate, energy, and
intonation [6, 17].

Feature extraction based onMel frequency cepstral coefficients (MFCC) is amethod
that converts speech signals into Mel frequency spectrograms and extracts spectral
coefficients as features. Themethod based on intonation analysis is a feature extraction
method that extracts emotion features by analyzing the changes in pitch of speech
signals. Short-term energy analysis is a feature extractionmethod that extracts emotion
features by analyzing the changes in acoustic energy of speech signals. Using speech
duration, we can construct feature extraction method that extracts emotion features by
analyzing the duration of different syllables in speech signals.

Apart from feature extraction, compensation and optimization of speech emotion
features are also important. Especially in practical applications, due to differences in
speech features amongdifferent individuals, it is necessary to compensate andoptimize
these differences. There has been relatively less research on the compensation of
emotional features, and previous researchmainly focused on normalization of features
to compensate for the impact of individual differences [23].

The optimization of features can play a crucial role in enhancing the quality of
speech emotion features and significantly improving the accuracy of speech emotion
recognition systems. Common feature selection methods include correlation coeffi-
cient,mutual information, and so on. In addition, randomoptimizationmethods such as
genetic algorithm and swarm intelligence have important value for selecting emotional
features [19]. Such algorithms randomly select feature combinations from a feature
subset to obtain a new feature subset. If the performance of the new feature subset is
better than the current solution, the new solution is accepted. This step is repeated until
a specified stopping criterion is reached. Random optimization methods can search for
the optimal solution by repeatedly sampling, evaluating, and updating the solution.
It can effectively solve the feature selection problem, especially for searching and
optimizing cases with a large number of emotional features.

Researchers have investigated the practical applications of emotion recognition and
have conducted comparative analyses of various modeling algorithms in this domain.
Albu et al. [3] explore various neural network approaches for children’s emotion
recognition, specifically focusing on speech signals and facial images. It highlights
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Fig. 1 Long-time speech emotion recognition

the influence of the number of centers chosen by the k-means algorithm on the recog-
nition performance of radial basis function (RBF) networks and extreme learning
machines (ELM). The findings emphasize the importance of child affective modeling
alongside cognitive modeling for intelligent software applications and technology-
enhanced learning, indicating the implications for personalized tutoring.

In the context of long-time speech, the challenge in emotion recognition addressed
by the paper lies in optimizing speech emotion feature extraction and compensation.
This involves dealing with complex emotions expressed in long-time speech and cap-
turing the dynamic relationships between emotions over time.

In this paper, we study the extraction, compensation, and optimization of emotional
features in speech and their application in long-time speech emotion recognition. In
order to improve emotion recognition in continuous long-time speech utterances, we
studied a novel framework involving four main steps, as shown in Fig. 1: emotional
feature extraction, sample adaptation using neural network, feature optimization using
GA and SFLA, and a novel accentuation-based fusion method for long-time speech
emotion recognition.

In the first step, a series of speech features are extracted for emotion recognition at
the frame level. These features include prosodic and spectral features, such as pitch,
intensity, formant, and MFCCs.

In the second step, a neural network is used for sample adaptation to enhance the
versatility of features. The neural network maps the sample features to a set of latent
variables that capture the underlying emotional content of the speech. The features of
a new speech sample are adapted to improve adaptive ability.

In the third step, GA and SFLA are used to optimize the combination of features
to improve the accuracy of emotion recognition. GA and SFLA are metaheuristic
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optimization algorithms that can search for the optimal solution in a large solution
space.

In the fourth step, we propose to use a novel accentuation-based fusion algorithm
to combine context information and accentuation information in long-time speech
emotion. Each utterance is modeled independently and jointly recognized for the final
emotion category.

We introduce a unique method that represents emotions as nodes and transitions
as edges in a graph, utilizing the transformer model’s self-attention mechanism to
predict future states based on previous states and encoder outputs. The incorporation
of accentuation weights enhances emotion recognition accuracy, offering a promising
solution for understanding and recognizing emotions in extended speech contexts.

The proposed method was tested on continuous long-time speech utterances, and
the results showed that it effectively improved the accuracy of emotion recognition.
By optimizing the combination of features and enhancing the versatility of features
through sample adaptation, the proposed method was able to improve the performance
of emotion recognition in continuous long-time speech utterances.

Overall, we studied a comprehensive approach to improving emotion recognition
in continuous long-time speech utterances by addressing the challenges of feature
compensation, optimization, and accentuation-based results fusion. The method can
be applied in a variety of contexts, such as emotion recognition in therapy, education,
and customer service.

1.1 RelatedWork

Many existing emotion recognition studies have considered the problem of feature
selection and feature analysis [2, 14, 15, 21, 25]. Alex et al. [4] studied feature selec-
tion in utterance level and syllable level for emotion recognition. Abdelhamid et al.
[1] studied stochastic optimization for speech emotion models. Zhang et al. [28] pro-
posed to study the practical speech emotion using stochastic optimization algorithms.
In their study, basic feature was analyzed and feature combination was used to model
speech emotions. They further studied emotion types that had practical values. Xu et
al. [26] studied a large set of speech emotional features, and the results were promising.
Although the novelty in the graph learning-based classifier was high, the generaliza-
tion ability of the algorithms needed to be further discussed. Gat et al. [11] studied
speaker feature normalization for emotion models. Huang et al. [13] studied feature
normalization using speaker-sensitive features. A general framework was proposed
to improve the emotion recognition performance. Saad et al. [24] studied emotion
recognition across different languages and databases. The transfer of models is a very
interesting topic. The optimal set of emotional features need to be further studied.
Cowen et al. [8] studied a large number of emotions with feature analysis. Hajarolas-
vadi et al. [12] studied convolution neural network and its application in spectrograms.
They propose to model emotions using visual features of the spectrogram. Fahad et
al. [9] studied speaker-adaptive SER system. They presented a promising solution
to the issue of speaker variability, enhancing accuracy in emotion recognition tasks.
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Feature space maximum likelihood linear regression was used, and emotion-specific
epoch-based features are explored.

Other researchers have focused on the emotion models. Zou et al. [29] studied the
cognitive-related emotions and the detection from speech. They propose to record
the oral report during math exercises and analyzed the emotional features. Although
the results were promising, the relation between acoustic features and the cognitive
states still needs investigation. Anvarjon et al. [5] studied a lightweight detector based
on a novel CNN architecture. Although the results were promising, more variety of
backbone networks could be discussed with novel emotional features. Jin et al. [16]
studied support vector machines from a semi-supervised framework. They propose to
apply self-training SVM to speech emotion recognition and tested on public available
databases. Although the results were promising, more recent algorithms needed to be
further discussed. Choudhary et al. [7] studied emotion recognition using deep neural
networks. The representative learning requires a large number of training samples.
Although the results were promising, the generalization of the model is dependent on
the dataset. Oaten et al. [20] studied a special type of emotion, disgust and its practical
values in health.

2 Methodology

2.1 Feature Compensation

The problem of uneven sample distribution is an important challenge in feature engi-
neering. In the process of emotionmodeling, we often need a large number of samples,
so that the statistical distribution we learn is very consistent with the real situation.
However, our sample data sets are often limited, and the distribution of samples is
uneven from different angles, such as age, accent, and personality. This will directly
lead to the model we learned, which is not highly versatile, and the effect on the new
sample is difficult to guarantee. Therefore, it is necessary to study the compensation
method of the features to compensate for the equilibrium problem of the sample.

Deep neural networks are used to normalize and compensate for features, so that
the imbalance distribution in the sample is alleviated, as shown in Fig. 2. Feature-
compensated samples can be better counted and modeled. The input of the network
is a one-dimensional emotional feature vector of each sample, and the output of the
network is expressed by supervised information, which is also the emotional feature
vector after one-dimensional compensation.

Feature compensation algorithms play a particularly important role. In the noise
scenario, we add various types of noise to the test sample, which destroys the original
emotional features to a certain extent. The training samples were collected in a rela-
tively quiet environment, and the signal was relatively pure. The problem of sample
mismatch caused by noise is a great application bottleneck in the practical application
of speech emotion recognition. The method of deep network feature compensation
can solve the feature mapping from pure speech to noisy speech, or vice versa. To
a certain extent, the influence of noise is reduced. It should be pointed out that the
current emotional database rarely exists in an absolutely quiet environment, inevitably,
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Fig. 2 Denoising autoencoder for feature compensation

the training data center brings all kinds of noise, so in practical applications, the test
environment can be of higher quality than the training data, such as on a smartphone,
close collection of voice can obtain high quality. Therefore, the mismatch of noise is
not necessarily unidirectional, the sound quality of the test environment can also be
better than the training corpus, and simple noise reduction methods cannot replace the
feature compensation algorithm.

2.2 Feature Optimization

When it comes to the selection and combination of features, it is difficult to exhaust the
full range of possibilities. Therefore, in this paper, stochastic optimization algorithms
are used to optimize the sample features. We compare the GA and SFLA algorithms
and optimize the combination of features to improve the emotion recognition results
at the frame level.

GA-Based Feature Selection
The fitness function is defined in Eq.1:

f i tnessi = f (featuresi ) (1)

where f i tnessi is the fitness of the i-th individual, featuresi is the binary vector
representing the presence or absence of each feature for the i-th individual, and f ()
is the performance metric of the model trained on the selected features.

The selection of individuals for crossover and mutation using Roulette wheel selec-
tion: pi = f i tnessi

∑pops i ze
j=1 f i tness j

, where pi is the probability of selecting the i-th individual,

f i tnessi is the fitness of the i-th individual, and
∑pops i ze

j=1 f i tness j is the sum of
fitness values in the population.

The crossover of two individuals using a one-point crossover operator, as shown in
Eq.2, is:

c1, c2 = crossover(p1,p2, pc) (2)

where p1 and p2 are the parent binary vectors, c1 and c2 are the offspring binary
vectors, and pc is the crossover probability.

The mutation of an individual using a bitwise mutation operator is shown in Eq.3.

m = mutation(p, pm) (3)
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where p is the parent binary vector, m is the mutated binary vector, and pm is the
mutation probability.

The replacement of the worst individuals in the population with the best individuals
from the new population, Eq. 4, is:

if f i tnessnew > f i tnessworst
then replace(worstindividual , newindividual)

(4)

where f i tnessnew is the fitness of the new individual, f i tnessworst is the fitness of the
worst individual in the population, and replace() is a function that replaces the worst
individual with the new individual.

SFLA-Based Feature Selection
The fitness function is defined the same as the one used for GA (Eq.1), in which

f i tnessi is now the fitness of the i-th frog, and featuresi is the binary vector repre-
senting the presence or absence of each feature for the i-th frog.

The creation of a new frog population by combining the best two frogs from each
memeplex is shown in Eq.5.

xnew = (xbest1&xbest2)| ∼ (xbest1|xbest2) (5)

where xbest1 and xbest2 are the binary vectors of the best two frogs in the memeplex, &
is the bitwise AND operator, | is the bitwise OR operator, and ∼ is the bitwise NOT
operator.

The replacement of the worst frogs in each memeplex with the best frogs from the
new population is shown in Eq.6:

if f i tnessnew > f i tnessworst
then replace(worst f rog, new f rog)

(6)

where f i tnessnew is the fitness of the new frog, f i tnessworst is the fitness of the worst
frog in the memeplex, and replace() is a function that replaces the worst frog with
the new frog.

2.3 Accentuation-Based Fusion of Emotions

In order to better analyze the utterance-level characteristic of emotions, we use a
graphical chain model to represent emotional behavior in long-time speech. We can
capture the complex and dynamic relationships between different aspects of emotions
and build more accurate models for long-time emotion recognition.

In continuous speech, emotion states also change continuously. At the conventional
frame-level recognition, emotion labels are assigned to short-time periods. However,
in long-time periods of utterances, these emotion recognition results should bemerged.
Previous studies on continuous speech have been focused on the linguistic meaning
[22]; the parallel-linguistic information, such as emotion, is not well studied. Since
emotions in speech typically last around one to several seconds, fusion of neighboring
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Fig. 3 Emotion labels fusion with accentuation weights

emotion labels is a direct implementation of long-time speech emotion recognition,
as shown in Fig. 3.

For example, each node in the graph could represent a specific emotion label such
as happy, sad, angry, and neutral, which is assigned to a specific utterance.

EmotionSequence = e1, e2, e3, . . . , em (7)

where ei represents an emotional label of an utterance.
The edges between these nodes could represent the transitions between these emo-

tions. The weights on the edges could represent the likelihood of transitioning from
one emotion to another, based on the emotional behavior characteristics of the speech.

Using a graphical chain model, we can estimate the transition probability. By esti-
mating probability of the next emotion labels, conditioned on the previous observation
of label sequence, we can build a predictor to identify the change of emotions in long-
time speech. Errors in segment-level emotion recognition can be corrected, when
abnormal edges with low posterior probability are detected.

Transformer model is adopted to build the predictor. The transformer is a type of
neural network architecture that can be used for various sequential data processing.
It is a feedforward neural network that uses self-attention to process inputs (emotion
label sequence in long-time speech emotion).

The attention mechanism works by assigning a weight to each element of the input
sequence based on its relevance to the output at each step of the processing. The
weights are calculated using a function that takes into account the similarity between
the current processing step and each element of the input sequence.

The prediction algorithm steps are as follows:
Input:
Bi-direction Emotion label sequence;
Accentuation Weights Sequence.
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The accentuation weights are related to each emotion label, and they can be calcu-
lated by utterance-level acoustic features.

Output:
Predict the transition probability of the next node;

If it is lower than an empirical threshold, replace it with the predicted emotion label.
To predict the next state of emotion sequence in long-time speech, we can first input

the sequence into the transformer encoder to obtain a sequence of encoder outputs.
Then, we can use the decoder to generate the next state based on the previous states and
the encoder outputs. Specifically, at each time step, the decoder generates an output
representation based on the previous output and the encoder outputs and then generates
a probability distribution over the possible next states using a softmax function.

To estimate the probability of state transitions, we can compute the probability
of transitioning from the current state to each possible next state using the output
distribution generated by the decoder. The transition probabilities can then be used
to construct a state transition matrix that describes the probability of transitioning
between any two states in the sequence.

Furthermore, we consider the accentuation, which is a cue of important utterance
in a paragraph.

To identify long-period emotion type over a paragraph, we consider the accen-
tuation weights. A sliding window is used to generate the samples. The weights
are estimated by a regression model, which reflects the accentuation features. The
accentuation-related features used for regression include pitch frequency, formant fre-
quency, duration time, and intensity.

By using a graph to represent emotions in this way, we can capture the dynamic
changes in emotional expression over time and build models that can improve the
recognition of emotional state of the speaker for long period of speech.

3 Experimental Results

3.1 The Databases

In our experiment, we use EMO-DB for feature compensation experiment and emotion
recognition test.

EMO-DB is a widely used emotional speech database that contains recordings of
emotional speech inGerman. It was created by the Institute of Communication Science
and Phonetics at the University of Bonn in Germany.

The EMO-DB database comprises seven emotions: (1) anger; (2) boredom; (3)
disgust; (4) fear; (5) happiness; (6) sadness; and (7) neutral. The data were recorded
at a 16-kHz sampling rate.

EMO-DB has been used in various studies to analyze emotional speech and develop
algorithms for speech emotion recognition. It is freely available for academic research
purposes and has been used in numerous studies worldwide.

Weadopt another local database fromSoutheastUniversity,whose long-time speech
corpus is an idea to verify our emotion recognition method.
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Table 1 The original sample distribution of SEU database

Emotion types Gender Short sentence Long paragraph

Happy Male 238 18

Female 242 18

Fear Male 220 18

Female 234 18

Sad Male 230 18

Female 232 18

Surprise Male 239 15

Female 241 15

Angry Male 240 18

Female 237 18

Neutral Male 243 18

Female 243 18

The database involves three males and three females with performance or broad-
casting experience, who have not had a cold recently and speak Mandarin accurately,
to record their voices. The recording is conducted in a quiet room with no echo,
and the performers are in separate booths, while the recording staff are outside
the booths and cannot see the performers’ facial expressions and movements, only
their voices. Before recording, the performers are told to speak in their own emo-
tional expression. They can make whatever facial expressions and movements they
want, as long as they do not make any noise that will interfere with the record-
ing.

The recording was in mono, with 16-bit quantization and a sampling rate of
11025Hz. Each word and short phrase should be able to express six types of emo-
tions, as shown in Table 1. Each long paragraph is composed of 4–5 or 5–6 short
sentences. Long paragraph always contains some emotions or neutral emotions to
some extent. All selected long paragraphs have certain emotions.

Listening test is conducted for verification of the emotion annotations. The work
flow of data annotation is shown in Fig. 4. Listening tests are commonly used for
verifying the accuracy of emotion annotations in speech datasets, and they are an
important step in developing and evaluating speech emotion recognition systems.
Human listeners are asked to listen to audio samples and provide their own annotations
of the emotions expressed in the speech. These annotations are then compared to the
existing annotations in the dataset, and any discrepancies or errors can be identified
and corrected.

We constructed a number of statistic features for emotion recognition. As shown
in Table 2, examples of statistical features include MFCCs, pitch, formant features.
These features are derived from the acoustic properties of the speech signal and can
provide information about the emotional state of the speaker.
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Fig. 4 Flowchart of the data
annotation for emotional speech

Table 2 Statistic feature set used for emotion analysis

Feature index Feature description Feature type

1–15 Mean, maximum, minimum, range, std of pitch,
first-order difference, second-order difference

Prosodic features

16–90 Mean, maximum, minimum, range, std of first to
fifth format frequency, first-order, second-order
difference

Voice quality features

91–165 Mean, maximum, minimum, range, std of first to
fifth format bandwidth, first-order, second-order
difference

Voice quality features

166–180 Mean, maximum, minimum, range, std of short time
energy, first-order, second-order difference

Prosodic features

181–375 Mean, maximum, minimum, range, std of MFCC 0
to 12 order, first-order, second-order difference

Voice quality features

3.2 Feature Compensation Results

Before and after the feature compensation, the feature dimension of the sample pro-
duces a clear improvement. The input feature sequence ismapped into the compensated
feature sequence through the neural network, and its difference in sample gender is
reduced. As shown in Tables 3 and 4, we can see happiness in improved around 3
percentage, and neutral is improved around 2 percentage.

In Table 5, the presented results serve as a basis for comparing the effectiveness of
feature compensation by contrasting the metrics before and after compensation. The
evaluation metrics used are precision, recall, and F1 score, which assess the model’s
performance in classifying different emotion classes. Before compensation, the model
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Table 3 Emotion recognition results before feature compensation (SEU database)

Ground truth Recognition results (%)
Happy Fear Sad Surprise Angry Neutral

Happy 71.1 5.2 6.3 7.5 3.8 6.1

Fear 5.3 74.9 6.4 5.5 2.0 5.9

Sad 3.1 3.2 79.1 4.5 6.7 3.4

Surprise 7.1 3.5 4.0 75.3 4.5 5.6

Angry 5.6 3.4 2.1 5.1 75.1 8.7

Neutral 8.4 6.5 4.4 4.5 5.7 70.5

The bold indicate the percentages of the correctly recognized emotion samples

Table 4 Emotion recognition results after feature compensation (SEU database)

Ground truth Recognition results (%)
Happy Fear Sad Surprise Angry Neutral

Happy 74.2 4.4 5.1 7.5 3.6 5.2

Fear 4.5 75.7 5.1 5.9 2.1 6.7

Sad 3.4 3.5 81.9 4.2 3.1 3.9

Surprise 7.4 3.1 4.3 77.1 3.7 4.4

Angry 5.1 3.2 2.1 5.5 78.4 5.7

Neutral 7.2 6.1 4.5 4.2 5.4 72.6

The bold indicate the percentages of the correctly recognized emotion samples

demonstrates moderate performance across most emotion classes, with varying levels
of precision, recall, and F1 score.

Among the emotion classes evaluated, the highest performance is observed in the
“Sad” class with a precision of 0.7732, recall of 0.791, and an F1 score of 0.7820. This
indicates that the model exhibits relatively good capability in identifying instances of
sadness, demonstrating a balanced precision and recall. On the other hand, the lowest
performance is observed in the “Neutral” class with a precision of 0.7036, recall of
0.705, and an F1 score of 0.7043. Although the model shows a reasonably balanced
precision and recall for neutral instances, there is room for improvement to achieve
higher accuracy.

The results indicate areas for improvement, such as enhancing recall rates to reduce
missed emotions. By comparing these metrics before and after compensation, we can
determine the effectiveness of the feature compensation technique in enhancing the
model’s emotion classification capabilities.

As shown in Table 6, the results after feature compensation demonstrate the effec-
tiveness of the method in enhancing the emotion classification model’s performance.
The two highest performing emotion classes are "Angry" and “Sad.” The “Angry”
class exhibits the highest precision (0.8141), recall (0.784), and F1 score (0.7988)
after compensation, indicating a significant improvement in accurately identifying
instances of anger. The second highest performing class, "Sad," also shows notable
enhancements in precision (0.7951), recall (0.819), and F1 score (0.8069), further
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Table 5 Evaluation metrics for
each emotion class before
compensation (SEU database)

Emotion class Precision Recall F1 score

Happy 0.7068 0.711 0.7089

Fear 0.7746 0.749 0.7616

Sad 0.7732 0.791 0.7820

Surprise 0.7354 0.753 0.7441

Angry 0.7679 0.751 0.7594

Neutral 0.7036 0.705 0.7043

Table 6 Evaluation metrics for
each emotion class after
compensation (SEU database)

Emotion class Precision Recall F1 score

Happy 0.72888016 0.742 0.73538157

Fear 0.78854167 0.757 0.77244898

Sad 0.79514563 0.819 0.80689655

Surprise 0.73850575 0.771 0.75440313

Angry 0.81412253 0.784 0.79877738

Neutral 0.73705584 0.726 0.73148615

validating the effectiveness of the compensation method. These results highlight the
success of the feature compensation technique in improving the model’s ability to
recognize and classify emotions, as reflected by the enhanced evaluation metrics.

Similar improvements can be observed on EMO-DB, as shown in Tables 7 and
8. Neutral is improved 2 percentage, and fear is improved around 2 percentage. We
can see from Tables 9 and 10. It is evident that there has been an improvement in the
feature compensation. After compensation, we can observe higher values for preci-
sion, recall, and F1 score across most emotion classes compared to the results before
compensation. For instance, the precision for Happy increased from 0.9151 to 0.9241,
recall increased from 0.851 to 0.864, and F1 score increased from 0.8819 to 0.8930.
Similarly, improvements are seen in other emotion classes as well. This enhancement
suggests that the feature compensation technique implemented in the evaluation has
resulted in better accuracy and performance for emotion classification in the EMO-DB
dataset.

In Figs. 5 and 6, it displays a comparison of precision, recall, and F1 metrics for
emotion class recognition before and after compensation. The left subplot illustrates
the performance metrics before compensation. The bars depict the precision, recall,
and F1 scores for each emotion class. The legend provides a clear distinction of the
metrics’ color-coded representation. The right subplot showcases the corresponding
metrics after compensation. Notably, after compensation, improvements are observed
in precision, recall, and F1 scores across various emotion classes. The data highlights
the effectiveness of the compensation approach in enhancing emotion class recognition
performance in both databases. These findings contribute valuable insights to the field
of emotion recognition and can aid in developing more accurate and reliable emotion
recognition classifiers.
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Table 7 Emotion recognition results before feature compensation (EMO-DB database)

Ground truth Recognition results (%)
Happy Disgust Fear Sad Boredom Angry Neutral

Happy 85.1 3.4 1.5 0.8 2.1 2.5 4.6

Disgust 0 91.1 3.3 2.1 1.2 0.3 2.0

Fear 4.5 4.1 84.3 2.3 1.4 0.3 3.1

Sad 1.1 2.1 3.1 90.0 1.1 0.2 2.4

Boredom 0.1 2.1 4.1 1.1 91.0 1.1 0.5

Angry 0.1 0.2 1.1 3.1 2.1 91.2 2.2

Neutral 2.1 2.3 4.1 1.3 4.1 4.5 81.6

The bold indicate the percentages of the correctly recognized emotion samples

Table 8 Emotion recognition results after feature compensation (EMO-DB database)

Ground truth Recognition results (%)
Happy Disgust Fear Sad Boredom Angry Neutral

Happy 86.4 3.0 1.5 0.4 2.2 2.2 4.3

Disgust 0 92.1 3.4 1.2 1.1 0.5 1.7

Fear 3.3 4.2 86.4 2.1 1.5 0.2 2.3

Sad 1.3 0.3 3.2 92.1 1.5 0.4 1.2

Boredom 0.3 2.2 2.4 0.1 92.5 2.0 0.5

Angry 0 0.3 1.0 0.3 2.4 94.5 1.5

Neutral 2.2 3.1 3.2 2.4 3.0 2.5 83.6

The bold indicate the percentages of the correctly recognized emotion samples

Table 9 Evaluation metrics for
each emotion class before
compensation (EMO-DB)

Emotion class Precision Recall F1 score

Happy 0.9151 0.851 0.8819

Disgust 0.8651 0.911 0.8875

Fear 0.8305 0.843 0.8367

Sad 0.8937 0.9 0.8969

Boredom 0.8835 0.91 0.8966

Angry 0.9111 0.912 0.9115

Neutral 0.8465 0.816 0.8310

Comparison Between Denoising Autoencoder and Existing Feature Compen-
sation Algorithm

Feature compensation or normalization methods are employed to standardize the
features or variables within a dataset, ensuring they are on a consistent scale or dis-
tribution. These techniques are valuable for enhancing the performance of machine
learning algorithms and ensuring that all features contribute proportionately to the
analysis.
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Table 10 Evaluation metrics for
each emotion class after
compensation (EMO-DB)

Emotion class Precision Recall F1 score

Happy 0.9241 0.864 0.8930

Disgust 0.8755 0.921 0.8977

Fear 0.8546 0.864 0.8593

Sad 0.9341 0.921 0.9275

Boredom 0.8877 0.925 0.9060

Angry 0.9238 0.945 0.9343

Neutral 0.8791 0.836 0.8570

Fig. 5 Comparison of precision, recall, and F1 for emotion class recognition before and after compensation
(SEU Database)

Mean shift [27] can be utilized for feature compensation by applying it to the feature
space clustering. This approach aims to shift the feature distribution towards a desired
target distribution, thereby facilitating feature normalization or compensation. Sub-
sequently, normalization and standardization can be performed within each arbitrary
cluster shape to enhance the data distribution for modeling purposes.

As shown in Figs. 7 and 8, the denoising autoencoder method exhibits higher F1
scores of 0.735 (Happy), 0.772 (Fear), 0.807 (Sad), 0.754 (Surprise), 0.799 (Angry),
and 0.731 (Neutral). In comparison, the mean-shift method achieved slightly lower
F1 scores: 0.713 (Happy), 0.764 (Fear), 0.789 (Sad), 0.751 (Surprise), 0.763 (Angry),
and 0.705 (Neutral). These results indicate that the denoising autoencoder approach
outperforms the mean-shift method in improving feature compensation based on the
SEU dataset.

Similarly, on EMO-DB, the data represents the F1 scores for emotion classes such
as Happy, Disgust, Fear, Sad, Boredom, Angry, and Neutral, using the same denois-
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Fig. 6 Comparison of precision, recall, and F1 for emotion class recognition before and after compensation
(EMO-DB Database)

ing autoencoder and mean-shift methods. The denoising autoencoder method yields
higher F1 scores. In contrast, the mean-shift method achieves slightly lower F1 scores.



932 Circuits, Systems, and Signal Processing (2024) 43:916–940

Fig. 7 Denoising autoencoder-based feature compensation (SEU)

Fig. 8 Denoising autoencoder-based feature compensation (EMO-DB)
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Fig. 9 Comparison of SFLA and GA optimization results

These results highlight that the denoising autoencoder approach demonstrates superior
performance over the mean-shift method in enhancing feature compensation on both
the SEU dataset and EMO-DB dataset.

Overall, we can observe that the denoising autoencoder method exhibits better
improvement in feature compensation compared to the mean-shift method, as evi-
denced by the higher F1 scores achieved across various emotion classes in both
datasets.

3.3 Feature Optimization Results

We compare the GA and SFLA algorithms and optimize the combination of features
to improve the emotion recognition results at the frame level.

In Fig. 9, we compared the average recognition rates for EMO-DB and SEU Data
Set. SFLA results are better than GA, with better frame-level recognition rates.

In our experiment, we use GMM and SVM to construct the classifiers. As we focus
on feature optimization, we use GMM and SVM as two typical classifiers for emotion
recognition to verify the feature optimization method. It can be seen that SVM gives
better average recognition rates. In the subsequent experiments, we use SVM for
long-time speech emotion recognition experiments.

In the subsequent experiments, we use the feature combination given by SFLA, as
shown in Tables 11 and 12. The feature optimization results using GA are provided in
Tables 13 and 14.

The population size for GA is set to 200 as the starting point. The rank-based
selection method is used. The crossover rate is set to 0.5 and the mutation rate is
set to 0.001 as the starting point. The population size for SFLA is set to 100 as the
starting point. The mutation rate is set to 0.01. The crossover rate is set to 0.5. Detailed
information is summarized in Tables 15 and 16.
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Table 11 Optimized combination of speech emotional features using SFLA(SEU dataset)

Index Feature description Feature category

1 Std of pitch frequency Prosodic feature

2 Min of first-order difference of short-time energy Prosodic feature

3 Std of MFCC2 Voice quality feature

4 Mean of F1 frequency Voice quality feature

5 Mean of F3 bandwidth Voice quality feature

6 Std of MFCC1 Voice quality feature

7 Std of short-time energy Prosodic feature

8 Min of short-time energy Prosodic feature

9 Std of first-order difference of short-time energy Prosodic feature

10 Mean of first-order F1 frequency Voice quality feature

Table 12 Optimized combination of speech emotional features using SFLA(EMO-DB)

Index Feature description Feature category

1 Mean of first-order difference of short-time energy Prosodic feature

2 Std of first-order difference of short-time energy Prosodic feature

3 Min of short-time energy Prosodic feature

4 Mean of F1 frequency Voice quality feature

5 Mean of first-order difference F3 frequency Voice quality feature

6 Std of MFCC1 Voice quality feature

7 Std of pitch frequency Prosodic feature

8 Std of short-time energy Prosodic feature

9 Mean of MFCC2 Voice quality feature

10 Std of MFCC4 Voice quality feature

Table 13 Optimized combination of speech emotional features using GA (SEU dataset)

Index Feature description Feature category

1 Mean of bandwidth of F3 Voice quality feature

2 Std of MFCC1 Voice quality feature

3 Min of short-time energy Prosodic feature

4 Mean of first-order difference of short-time energy Prosodic feature

5 Mean of MFCC2 Voice quality feature

6 Std of MFCC4 Voice quality feature

7 Std of pitch frequency Prosodic feature

8 Std of short-time energy Prosodic feature

9 Mean of short-time energy Prosodic feature

10 Mean of first-order F3 frequency Voice quality feature
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Table 14 Optimized combination of speech emotional features using GA(EMO-DB)

Index Feature description Feature category

1 Std of pitch frequency Prosodic feature

2 Mean of first-order difference of short-time energy Prosodic feature

3 Std of MFCC5 Voice quality feature

4 Mean of MFCC5 Voice quality feature

5 Mean of first-order F1 frequency Voice quality feature

6 Std of short-time energy Prosodic feature

7 Min of short-time energy Prosodic feature

8 Std of first-order F3 frequency Voice quality feature

9 Mean of first-order F3 frequency Voice quality feature

10 Mean of bandwidth of F1 Voice quality feature

Table 15 Parameter settings for genetic algorithm (GA) in feature selection

Parameter Description Value

Population size Number of individuals in each generation 200

Number of generations Total number of generations 200

Crossover rate Probability of crossover occurring 0.5

Mutation probability Probability of mutation occurring 0.001

Table 16 Parameter settings for shuffled frog-leaping algorithm (SFLA) in feature selection

Parameter Description Value

Population size Number of frogs in the population 100

Number of generations Total number of generations 100

Number of memeplexes Number of subpopulations (memeplexes) 5

Number of frogs per memeplex Number of frogs in each memeplex 5

Shuffling factor Fraction of memeplex frogs to be
shuffled

0.6

Crossover probability Probability of crossover occurring 0.5

Mutation probability Probability of mutation occurring 0.01

Local search iterations Number of iterations for local search
optimization

100

3.4 Long-Time Emotion Recognition Results

Using our proposed method, considering the accentuation, the context and the long-
time dependency, speech emotion recognition results can be further improved.

The transformer model is configured with various parameter settings to optimize
its performance during training and inference. A dropout rate of 0.1 is applied to the
model, randomly deactivating 10% of the neurons during training to prevent overfit-
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Table 17 Emotion recognition results using long-time emotion fusion (SEU database)

Ground truth Recognition results (%)
Happy Fear Sad Surprise Angry Neutral

Happy 79.4 4.1 3.2 5.1 3.8 4.4

Fear 3.3 77.2 5.1 3.4 6.1 4.9

Sad 2.5 3.1 84.5 4.4 2.1 3.4

Surprise 5.1 3.3 4.2 80.5 3.1 3.8

Angry 5.2 3.2 1.0 5.7 81.7 3.2

Neutral 6.1 5.1 4.4 3.8 2.8 77.8

The bold indicate the percentages of the correctly recognized emotion samples

Table 18 The final evaluation
metrics for each emotion class

Emotion class Precision Recall F1 score

Happy 0.7815 0.794 0.7877

Fear 0.8042 0.772 0.7878

Sad 0.8252 0.845 0.8350

Surprise 0.7823 0.805 0.7935

Angry 0.8203 0.817 0.8186

Neutral 0.7979 0.778 0.7878

ting. The learning rate is set to 0.001, controlling the step size of parameter updates
during optimization. A batch size of 64 is utilized, determining the number of training
examples processed together in each iteration. The maximum sequence length is lim-
ited to 512, ensuring efficient processing and memory utilization. Finally, the model
undergoes 10 training epochs, indicating the number of times the entire training dataset
is processed. These parameter settings collectively define the behavior and capacity
of the transformer model, allowing it to effectively process and learn from sequential
data, such as long-time speech emotion sequences.

As shown in Tables 17 and 18, the final results tested on SEU database show
that the proposed methods resulted a promising performance for long-time speech
emotion recognition. The recognition accuracy is further improved. In Figs. 10 and
11, we further illustrated the improvement using our proposed algorithms.

As shown in Fig. 12, we compared the conventional averaged weights fusion with
the proposed accentuation-based approach. In the context of long-time emotional
speech analysis, two fusion techniques that can be employed are averaged weights
fusion and accentuation-based fusion. These techniques aim to combine multiple
sources of information or features to enhance the overall performance of emotion
recognition systems.

Averaged weights fusion involves assigning equal importance to all the input fea-
tures or sources, which is conventionally used when not considering the different
characters in long-time emotional speech. Each feature is weighted equally, and their
contributions are averaged to obtain a combined representation. This fusion method
assumes that all features are equally relevant and can provide valuable information for
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Fig. 10 Improvement of the emotion recognition results using the feature compensation algorithm

Fig. 11 Improvement of the emotion recognition results using the long-time emotion fusion algorithm

emotion recognition. However, it may not consider the varying importance of different
features in capturing emotional cues in long-time speech.

From Fig. 12, we can see that the green line represents the accentuation-based
method, and the orange line represents the averaged weights method. Both methods
have F1 scores for each emotion class plotted for comparison.

We can observe that the F1 scores vary for different emotion classes and between
the two methods. In general, the “Sad” emotion class has the highest F1 score for both
methods, followed by “Angry” and “Surprise”. The lowest F1 scores are seen for the
“Neutral” emotion class.

The proposed accentuation-basedmethod constantly has higher F1 scores compared
to the averaged weights method across the emotion classes. We further calculated the
p-value of significance equal to 0.0061, which is smaller than the common alpha level
(significance level), 0.05 or 0.01. Based on the given information, the proposedmethod
is better than the conventional method in long-time speech emotion recognition, as it
achieves marginally higher F1 scores.
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Fig. 12 Comparison with the existing method in long-time speech emotion recognition

4 Discussion

Speech emotion recognition is a challenging task because it requires not only under-
standing the words being spoken but also the emotional content conveyed by the
speaker. One of the key factors that can affect the accuracy of speech emotion recog-
nition is the context in which the speech is spoken. Understanding the context of the
speech can help improve the accuracy of emotion recognition by providing additional
information about the speaker’s intentions and emotional state.

We can improve the accuracy of speech emotion recognition using the long-time
dependency of emotions. Emotions are often expressed over an extended period, and
they can change rapidly, making it difficult to accurately capture and classify them.
To address this, we have explored various techniques such as feature compensation,
feature optimization, and fusion of recognition results in long-time speech.

5 Conclusion

In this paper, we studied long-time speech emotion recognition, which is an important
topic in real-world applications, yet lack of systematic and in-depth research. First, we
used denoising autoencoder for emotion feature compensation and then used SFLA for
feature selection. Second, we studied accentuation-based emotion fusion, and we used
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transformer to predict the probability of the next emotion, and corrected errors from the
view of emotion sequence. Third, we verified our methods on two different databases.
The feature compensation and optimization are tested and compared on both databases,
and the long-time emotion fusion and recognition is tested on a local database. The
results show that our framework is suitable for emotional feature extraction and long-
time emotion recognition.

In our future work, we will consider more factors related to long-time emotional
behavior and study different context information in paragraph level. Future work will
emphasize the analysis of long-term emotional behavior and the exploration of context
at the paragraph level. This approach provides a more comprehensive understanding
of emotions and their dynamics, going beyond traditional sentence-level analysis.
By considering factors that influence emotional behavior over time and incorporat-
ing paragraph-level context, researchers can uncover patterns, trends, and changes in
emotions within specific contexts. This research has practical applications in areas
such as mental health, customer experience, and education.

Data Availability The EMO-DB database is the freely available German emotional database. EMO-
DB can be downloaded publicly from https://www.kaggle.com/datasets/piyushagni5/berlin-database-of-
emotional-speech-emodb.
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