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Abstract

Multimedia data have increased dramatically today, making the distinction
between desirable information and other types of information extremely important.
Speech/music discrimination is a field of audio analytics that aims to detect and clas-
sify speech and music segments in an audio file. This paper proposes a novel feature
extraction method called Long-Term Multi-band Frequency-Domain Mean-Crossing
Rate (FDMCR). The proposed feature computes the average frequency-domain
mean-crossing rate along the frequency axis for each of the perceptual Mel-scaled
frequency bands of the signal power spectrum. In this paper, the class-separation
capability of this feature is first measured by well-known divergence criteria such as
Maximum Fisher Discriminant Ratio (MFDR), Bhattacharyya divergence, and Jef-
freys/Symmetric Kullback—Leibler (SKL) divergence. The proposed feature is then
applied to the speech/music discrimination (SMD) process on two well-known speech-
music datasets—GTZAN and S&S (Scheirer and Slaney). The results obtained on
the two datasets using conventional classifiers, including k-NN, GMM, and SVM,
as well as deep learning-based classification methods, including CNN, LSTM, and
BiLSTM, show that the proposed feature outperforms other features in speech/music
discrimination.

Keywords FDMCR - Speech/music discrimination (SMD) - Speech detection -
Audio signal processing - Speech processing - Spectral feature extraction

B Mohammad Rasoul Kahrizi
kahrizi.mr @hotmail.com

Seyed Jahanshah Kabudian
kabudian @razi.ac.ir

Department of Electrical and Computer Engineering, Razi University, Kermanshah, Iran

Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-023-02440-0&domain=pdf
http://orcid.org/0000-0001-6954-1452

6930 Circuits, Systems, and Signal Processing (2023) 42:6929-6950

1 Introduction

Every day, massive amounts of useful data are broadcast and propagated on TV, radio
channels, and the Internet, a large percentage of which consists of audio signals. These
signals might have been combined with other signals that are not useful or may not be
desirable for our goals, like noise, all kinds of music, or anything other than speech.
Accordingly, a mechanism is required to distinguish the undesirable and the valueless
audio signals from the useful and the valuable audio signals.

A system is required to discriminate valueless data from intended data to reduce
the storage volume of audio files. In mobile networks, mobile operators may need to
eliminate or differentiate silence from speech to minimize the amount of data trans-
ferred. Discriminating systems can also be employed to switch radio channels during
commercial breaks that typically involve music. Additionally, SMD (speech/music
discrimination) systems can be utilized to detect and categorize music into different
classes by distinguishing it from speech in audio signals, which differs from the afore-
mentioned applications. SMD systems can also apply to speech enhancement, noise
reduction, speaker identification, speech command recognition, emotion detection,
and speech-to-text conversion.

In this paper, speech discrimination was used to detect and classify speech segments
of a signal comprising different types of audio. Here, speech/music discrimination
does not refer to separating the voice of the singer from a melody in a music track.
Additionally, a feature extraction method called Long-Term Multi-band Frequency-
Domain Mean-Crossing Rate (FDMCR) was proposed to discriminate speech from
music in audio signals. The characteristics of the audio signal in the frequency domain
were used to calculate the FDMCR. The proposed method is a long-term feature that
is robust against sudden changes in audio signals. Below are the highlights of this

paper:

e Introducing a new concept of mean-crossing rate in the frequency domain

e Proposing a novel feature extraction method based on the average frequency-
domain mean-crossing rate along the frequency axis for each of the Mel-scaled
perceptual frequency bands of a signal spectrum

e Demonstrating the class-separation ability of the proposed feature extraction
method in discriminating between speech and music using well-known divergence
criteria, such as MFDR, Bhattacharyya, and SKL

e Demonstrating higher accuracy of the proposed feature extraction method com-
pared to other features in the speech/music discriminating process using conven-
tional classifiers (SVM, GMM, and k-NN) and deep learning methods (CNN,
LSTM, and Bi-LSTM) on two popular speech-music datasets GTZAN and S&S

The rest of the article is organized as follows. In Sect. 2, some of the most recent stud-
ies and notable works related to speech/music discrimination are briefly mentioned.
The proposed method is described in Sect. 3, along with relevant mathematical equa-
tions. Section 4 deals with the comprehensive performance evaluation of the proposed
method. Finally, the conclusions are presented in Sect. 5.
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2 Literature Review

Discriminating speech from music has various applications. One of the earliest applica-
tions of SMD systems involved real-time discrimination of speech from other contents
being transmitted on FM radio channels [37]. As advertisements begin on a radio chan-
nel, the system changes the channel automatically. It was mentioned in [37] that the
performance of this system is high, and the ZCR feature is used for this purpose. In
[20], the SMD system was employed to analyse radio channels. Authors in reference
[44] used other features (i.e., spectral, thythmic, and harmonic features) of audio sig-
nals, especially music signals, for better classification. In [38], the low-energy measure
was introduced for the SMD system. Also, using peak energy in speech signals was
discussed in [34]. In [10, 30], MFCC was employed to improve discrimination.

Authors in [14, 31] used the LPC feature for speech/music discrimination. As men-
tioned, the application of SMD systems is not limited to a few cases. In another case,
the SMD system was used for Enhanced Voice Services (EVS) [29]. Authors in [25]
used a series of features obtained from empirical mode decomposition, such as mean,
absolute mean, variance, skewness, and kurtosis. The proposed method in [3] is based
on the Single Frequency Filtering (SFF) approach so that in audio signals, the parts
associated with speech have a higher signal-to-noise ratio (SNR) in all frequencies
compared to other parts which include noise.

In [12], a set of filter-based features was combined to separate speech from back-
ground sounds (noises). In that study, the discrimination accuracy increased by about
24% in all environmental conditions. In [24], features specific to human speech, such
as features that represent excitation source, vocal tract, and speech syllable rate, were
used for speech/music classification. In [39], features obtained from chroma vectors
and combinations with other features were used to discriminate speech from music
accurately. The proposed features in that study are effective and efficient.

In [40], the proposed SMD method is founded on the distinction that music carries a
melody, while speech does not. The author employs deviation distribution linked with
fundamental frequencies of various audio signal components to suggest a technique
that can differentiate between speech and music. Additionally, [11] utilizes the Stereo-
Input Mix-to-Peripheral Level (SIMPL) feature for discrimination, which is commonly
utilized to approximate the speech-to-music ratio. In [41], several methods have been
proposed for automatically classifying a large number of audio signals. It has been
mentioned that SMD accuracy using the proposed method would be more than 94%.

Certain studies have emphasized the classification stage of the discrimination pro-
cess. These studies have introduced methods that enhance the discrimination process
by suggesting a new machine-learning algorithm, rather than proposing a novel fea-
ture extraction method. Among these studies, [18, 26, 32] can be mentioned in which
convolutional neural networks (CNN) were applied to music detection from broadcast
contents and speech/music discrimination, respectively. Also, in [17], the method pro-
posed for the classification stage is based on the recurrent neural network (RNN) and
has higher efficiency and lower error. In [5, 8, 9, 15, 19, 22, 43, 45], other methods
were proposed for speech detection and SMD. Moreover, in surveys regarding speech
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Fig.1 The average of the
FDMCR

Average of the FDMCR

Frequency Band

—e— Speech[GTZAN] —m— Music[GTZAN]
—e— Speech[S&S] —+— Music[S&S]

discrimination, especially in [2, 4, 13, 33], more information can be obtained to dis-
criminate speech from the audio signal, including history, previous studies, employed
datasets, and methods associated with the discrimination process.

3 Long-Term Multi-band Frequency-Domain Mean-Crossing Rate
(FDMCR)

In our extensive research, the behaviour of the frequency signal of speech and music
was compared based on previous research data. The main hypothesis here is that the
different behaviour of speech and music signals in the time domain (like ZCR) could
have different manifestations in the frequency spectrum. Therefore, here, the frequency
spectrum of speech and music signals was investigated extensively. As shown in Figs. 1
and 2, each same band of speech and music frequency spectra have different crossing
rates of the mean frequency. The crossing rate of the mean frequency in the frequency
spectrum of speech signals is lower than that of music. The following lines discuss
the implementation steps of the proposed method.

As mentioned, the proposed method uses the frequency characteristics of audio
signals. In summary, the FDMCR! is defined as the crossing rate of mean frequency
for each pre-specified band on the frequency spectrum of an audio signal.

Here, the FDMCR was calculated by framing the primary signal to frames with 25
ms length and 50% overlap. Then as shown in Fig. 3, a short-time Fourier transform
was applied to each frame (Eq. (1)). In the next step, the power spectrum for each
frame was calculated (Eq. (2)). Then, it was smoothed in a 25-frame window (Eq.

3.

! The source code of the FDMCR has been registered as "Long-Term Multi-band Frequency-Domain
Mean-Crossing Rate (FDMCR) feature" on IEEE DataPort [21] with this DOI: "10.21227/H2NW6G".
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Fig.3 The block diagram of the FDMCR

The smoothed power spectrum was subsequently partitioned into specific intervals
(bands) along the frequency axis. Note that the width of these bands on the frequency
axis is not uniform, and the bandwidth increases incrementally. The bands are narrower
in lower frequencies and wider in higher frequencies. However, the lengths of these
bands are uniform on the perceptual frequency axis and are established using Bilinear
Frequency-Warping functions, as shown in Egs. (4) or (5).

In this step, each band’s mean value for the specific frame was calculated using Eq.
(6). The mean-crossing rate for each band was calculated based on Eq. (7). In the final
step, according to Egs. (8, 9), mean-crossing rates obtained in a specific interval were
averaged (an interval with 25 frames (312.5 ms)—12 frames before the current frame
and 12 frames after it. The obtained result was the FDMCR. All steps of extracting
the proposed feature from an audio signal are formulated as follows:

Ny—1

Xty = Y whx( + (n — DNg)e I Fo' )
=0

where X is the short-time Fourier transform (STFT) and N,, is the number of samples
in the nth frame or window equal to the number of samples in a frame with a length of
25 ms. Moreover, Ny, is the number of signal samples that is equivalent to a frameshift
half of N,,; this means that the overlap of the frames is fifty per cent here. w(.) shows
the window function, and k indicates the frequency-bin index for the desired frame.

Pk, n) = |X(k,n)|? 2)
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where P is the power spectrum for the ny, frame.

1 n+%
Pokon) = o ZM P (k,m) 3)
m:n—7

where Py is the smoothed power spectrum in an interval with M + 1 frames, and
M is an even and positive integer equal to 24. Frequency warping can be performed
according to Egs. (4) or (5), which are different in shape but equal to each other. The
bilinear frequency warping is used as follows [28]:

1
@ = 2 arctan to tan e @)
l—« 2
- o sin(w)
w=w+2arctan | —— (5)
1 — a cos(w)

in which @ is the warped frequency (estimate of human’s perceptual frequency), which
is divided into bands with equal width proportional to the number of bands: if the
number of bands is eight and the sampling frequency is 8 kHz, there will be eight
bands with equal width in the interval [0, Mel (4000)] on the warped frequency axis. It
should be noted that bandwidths are not the same after mapping to unwarped frequency
(Hz scale, calculated by the inverse of Egs. (4) or (5)). And w is the normal frequency in
the interval [0, 7 ]. « is the warping factor between [— 1, 1] and determines the degree
of nonlinearity in frequency warping, which is equal to 0.3 here(approximately equals
Mel scale).

. ZfeF,’ F)C(fv I’L)

M. n) |F_|
1

(6)

where M (i, n) is the mean smoothed power spectrum of the nth frame and ith band,
and F; is the set of frequency bins in the ith band and | F;| is the number of frequency
bins in the ith band (cardinality).

1
MCR(i, n) =
|Fil —1
Z |sign(Py(f,n) — M(i,n)) — sign(Py(f — 1,n) — M(i, n))|
; 2
fEF;
I, ifx>0
where sign(x) = otz . @)
—1, otherwise
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where MCR(i,n) is the mean-crossing rate for the nth frame and ith band. P, (f, n) is
the nth frame and fth frequency bin’s power spectrum.

n+%

MCR(i,n):%_H Z MCR(, m) 8)
m:n—%

FDMCR(n) = [MCR(1, n), MCR(2, n), ..., MCR(B, n)], , )

where (MCR)(i, n) is the smoothed mean-crossing rate in an interval with N + 1
frames. N is an even and positive integer equal to 24, and n and i are indices for
frames and bands, respectively. B is the number of bands, which is equal to 16. The
value of all parameters is quantified experimentally to achieve the proposed feature’s
best performance. The optimization algorithms like [23] can also be used to initialize
parameters to obtain an optimized form.

Finally, the B-dimensional FDMCR (n) feature vector is obtained for each frame.
This feature vector, corresponding to the nth frame, is given to a classifier for decision-
making, and the classifier labels the frame with speech or music.

4 Experimental Protocols and Results

To measure the proposed method’s efficiency in discriminating speech from music, the
FDMCR is evaluated and compared with features mentioned in Sect. 2 and many other
well-known features in the speech processing context. First, the separability criteria
and then machine learning accuracy metrics were used to that end. Generally, several
conventional types of classical and deep techniques are used for machine learning. It
should be noted that the proposed method was compared with other methods under
the same conditions described below. All results were achieved by running methods
in MATLAB (R2020b). In addition, all features were used in the long-term form to
further the authenticity of the comparison under identical conditions, meaning that if
a feature is not inherently long-term, after computing the feature for each frame, the
final value of the feature for the frame would be obtained by averaging among a certain
number of frames. This is while in this paper, twelve frames before and after along
with the current frame were used. Accordingly, the long-term features were calculated
within a 25-frame time window.

For the evaluation, two well-known datasets were used for comparison: GTZAN?
[44] with 128 30-second audio files, 64 of which are related to speech class, and the rest
are related to music and S&S3 (LabROSA) [6, 38, 46] with contains 244 15-second
audio files, 140 of which are related to speech, and the rest are related to music and
noise.

2 Available: “http://opihi.cs.uvic.ca/sound/music_speech.tar.gz". Accessed: 3/13/2021.

3 Accessible from this address: “http://www.ee.columbia.edu/~dpwe /sounds/musp/".
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4.1 Comparison Based on Separability

In the first experiment, the class-separability of the proposed feature was compared
with other features. Among well-known criteria for measuring the discriminability
or distance between two probability distributions used here are Dyppr (Maximum
Fisher Discriminant Ratio) [27], DBhat (Bhattacharyya Distance), and DSKL (Sym-
metric Kullback-Leibler Distance) [1]. The mathematical formulae of the mentioned
measures are as follows:

Xspeech ~ N (x; p1; X1) (10)
Xmusic ™ N(x; M2;3 22) (11)
> >
p— 21t (12)
2
v=x"+5 (13)
1 _
Dyiror = 3 (1 = ) Ty — p2) (14)
Dt = o )Tl )+ 11n( det® ) (15)
Bhat = g M1 H2 n1 n2 ) Jet(%)det(%,)
1 1 _ _
Dski. = 5 (u1 = 1) WG — p2) + Ju(E7 T2 + 2518 —21) - (16)

where [ is the identity matrix. ;1 and u, are the samples mean of all feature vectors,
which belong to speech and music classes, respectively, X1 and ¥, are the sample
covariance matrices. If covariance matrices of speech and music classes are assumed
to be the same, all the above measures would be the same, and they would only differ
in scale. However, this assumption is ignored in our computations.

The separability metrics presented in Eqgs. (10-16) were derived through statistical
calculations. In simpler terms, this comparison method primarily relies on the dif-
ference in the mean value of a feature between speech and music classes. A larger
difference value for a feature implies that it is more effective in distinguishing speech
from music.

Table 1shows the features’ class separability for the two speech and music classes
on the GTZAN and S&S datasets. The results indicate that the proposed method
exhibits greater discriminability across all between-class distance criteria, suggesting
its superior ability to accurately classify speeches and music pieces in audio signals.

4.2 The Evaluation Based on Machine Learning Accuracy

In this step, the Equal-Error-Rate (EER) metric is used for comparing methods. This
error metric equals the arithmetic mean of the False Positive Rate (FPR) and False
Negative Rate (FNR). Also, we use the accuracy measure for collation methods. This
metric is equal to the precision criterion. Furthermore, the F-measure or F-score is
used for comparing the correctness of methods. This metric is equal to the harmonic
mean of precision and recall criterion. Moreover, for a more accurate comparison of
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Table 1 Comparing separability of the proposed method with other methods on the GTZAN and S&S
datasets

Method Corpus Between-class distance criterion
DSKL DBhat DMFDR
AutoCorrelation S&S 0.17742 0.02204 0.08162
GTZAN 0.18250 0.02222 0.05669
Centroid S&S 0.03245 0.00403 0.00390
GTZAN 0.20214 0.02431 0.04457
Chroma HighFreq [39] S&S 0.42438 0.04811 0.00095
GTZAN 0.29236 0.03411 0.00006
ChromaDiff [39] S&S 0.46550 0.05231 0.00151
GTZAN 0.31322 0.03637 0.00001
Drugman [12] S&S 1.45549 0.17217 0.34920
GTZAN 1.13883 0.13438 0.22108
Energy S&S 0.14288 0.01725 0.00433
GTZAN 0.00582 0.00073 0.00290
Energy ratio S&S 0.02196 0.00274 0.00923
GTZAN 0.08546 0.01048 0.01221
Entropy S&S 0.27536 0.03334 0.09652
GTZAN 0.12874 0.01560 0.00080
Proposed FDMCR S&S 9.67128 1.02872 1.44,986
GTZAN 9.68412 0.98527 1.11791
Flatness S&S 0.21552 0.02599 0.05774
GTZAN 0.16433 0.01974 0.00525
LTSD [35] S&S 2.85802 0.34194 1.32325
GTZAN 1.92524 0.24048 0.96120
LTSV (GammaTone) S&S 1.54539 0.15956 0.40769
GTZAN 2.19741 0.21122 0.52657
LTSV [16] S&S 2.03353 0.19391 0.43608
GTZAN 2.25962 0.21154 0.48664
MBLTSV [42] S&S 3.20428 0.34772 0.34758
GTZAN 3.33674 0.36800 0.37335
MFCC S&S 3.85658 0.42784 0.68933
GTZAN 4.04613 0.41768 0.46964
Peakiness S&S 0.28927 0.03592 0.13683
GTZAN 0.13711 0.01658 0.00257
Pitch S&S 0.63164 0.07876 0.31256
GTZAN 0.23494 0.02895 0.10028
Sadjadi [36] S&S 1.16890 0.13303 0.18281
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Table 1 continued

Method Corpus Between-class distance criterion
DSKL pBhat DMFDR
GTZAN 0.70738 0.08420 0.14021
SNR (dB) S&S 7.62710 0.39399 0.09793
GTZAN 0.06099 0.00755 0.01711
Spread S&S 0.09646 0.01186 0.02683
GTZAN 0.27416 0.03354 0.11045
zC S&S 0.01518 0.00189 0.00338
GTZAN 0.27047 0.03173 0.01290

The best results are written in bold

methods, another metric called Area-Under-Curve (AUC) is used, which is equal to
the AUC of the Receiver Operating Characteristics (ROC) curve. It should be noted
that the rates of all comparison metrics for each method are computed in average mode
and using the 10-fold way here.

4.2.1 The Comparison Based on Classical Machine Learning Methods

In this part of the evaluation, the k-NN, GMM, and SVM classifiers were used for
machine learning. Generally, in cases with the k-NN classifier, 128-NN (k = 128) is
selected to ensure better accuracy, lower error, and the practical efficiency of the k-
NN with k& = 128 compared to other types of k-NN. One feature vector was produced
every 12.5-ms (frameshift size). Therefore, the number of generated feature vectors
and training samples was remarkably high. Evidently, more training samples improve
the efficiency of the k-NN classifier. Also, the Mahalanobis distance is used in the
k-NN classifier here. In this study, GMM models with eight Gaussian components for
each music and speech class were used. Moreover, the RBF kernel was selected when
SVM was used.

Tables 2, 3 and Figs.4and 5 compare the various methods’ errors and accuracy
using different classifiers according to EER, F-score, and AUC criteria. Here, the
AUC metric, which represents the area under the ROC curve, was calculated for each
method on average.

First, the features of the GTZAN corpus were compared. As shown in Table 2
and Fig.4, proposed method produced the best result in this section and among all
evaluations using different classifiers on the GTZAN dataset. It was found that the
FDMCR with the k-NN classifier has the best performance among the FDMCR results
(in terms of EER, F-score, and accuracy measures), followed by the evaluations of
FDMCR with SVM and GMM, respectively.

The proposed method ranked first on the GTZAN dataset according to the AUC
criterion The AUC shows the average performance for all possible values of decision
thresholds. Some of these decision threshold values lead to high levels of False Positive
Rates (FPR) or low levels of True Positive Rates (TPR) in the ROC curve, which are not
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Table 2 The results of different methods on the GTZAN dataset using k-NN, GMM, and SVM classifiers

(%)
Method Classifier AUC EER F-score Accuracy
AutoCorrelation GMM 61.51 42.32 57.65 57.66
KNN 61.44 42.66 57.30 57.32
SVM 61.82 41.66 58.31 58.32
Centroid GMM 60.22 41.79 58.18 58.19
KNN 57.71 44.11 55.85 55.88
SVM 61.15 42.08 57.88 57.90
ChromaHighFreq GMM 57.29 43.04 56.92 56.94
KNN 56.50 45.03 54.93 54.97
SVM 57.81 43.60 56.36 56.39
ChromaDiff GMM 57.39 43.65 56.32 56.37
KNN 56.36 45.51 54.44 54.48
SVM 55.52 4591 54.06 54.08
Drugman GMM 77.06 30.03 69.94 69.95
KNN 80.22 26.55 73.41 73.41
SVM 75.51 30.18 69.79 69.79
Energy GMM 49.32 51.29 48.68 48.69
KNN 52.10 48.19 51.76 51.82
SVM 50.97 50.29 49.67 49.71
Energy Ratio GMM 53.64 47.54 52.39 52.46
KNN 51.72 48.51 51.44 51.49
SVM 53.34 47.42 52.55 52.58
Entropy GMM 42.04 55.82 44.16 44.18
KNN 54.85 46.37 53.57 53.63
SVM 46.54 53.28 46.70 46.73
Proposed FDMCR GMM 88.14 18.56 81.42 81.41
KNN 89.23 17.01 82.95 82.99
SVM 89.11 17.99 81.98 81.97
Flatness GMM 48.85 52.70 47.26 47.29
KNN 56.93 44.40 55.56 55.60
SVM 49.87 5143 48.53 48.58
LTSD GMM 83.49 24.21 75.78 75.717
KNN 82.70 24.07 75.89 75.88
SVM 78.19 24.50 75.49 75.52
LTSV (GammaTone) GMM 77.52 29.47 70.51 70.53
KNN 76.74 30.02 69.95 69.95
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Table 2 continued

Method Classifier AUC EER F-score Accuracy
SVM 76.34 29.69 70.27 70.27
LTSV GMM 79.90 28.06 71.88 71.96
KNN 79.38 28.79 71.17 71.17
SVM 79.65 28.42 71.55 71.54
MBLTSV GMM 76.21 31.15 68.81 68.83
KNN 74.79 33.29 66.68 66.68
SVM 77.95 28.90 71.06 71.06
MECC GMM 79.46 27.63 72.35 72.35
KNN 79.74 28.17 71.80 71.79
SVM 79.34 26.48 73.48 73.47
Peakiness GMM 55.01 46.70 53.27 53.29
KNN 58.60 44.98 54.98 55.01
SVM 56.47 45.63 54.33 54.35
Pitch GMM 64.38 40.58 59.40 59.41
KNN 63.66 40.64 59.31 59.35
SVM 64.10 40.40 59.57 59.59
Sadjadi GMM 71.45 34.41 65.56 65.57
KNN 72.57 32.07 67.90 67.90
SVM 63.43 38.86 61.11 61.12
SNR GMM 59.41 44.65 54.64 55.69
KNN 56.91 45.52 54.45 54.48
SVM 59.67 43.46 56.50 56.52
SNR (dB) GMM 59.68 42.69 57.28 57.31
KNN 56.69 45.31 54.65 54.69
SVM 59.37 43.07 56.79 56.88
Spread GMM 62.99 41.08 58.89 5891
KNN 60.33 43.20 56.76 56.78
SVM 61.81 42.18 57.78 57.79
ZC GMM 60.70 41.85 58.13 58.14
KNN 61.11 42.36 57.58 57.61
SVM 61.19 42.15 57.82 57.83

The best results are written in bold

reliable working points for real-world applications. Hence, EER, F-score, or accuracy
could be more realistic criteria for ranking methods.
Now we compare features on the S&S dataset. As shown in Fig.5 and Table 3,
the FDMCR produced the best results when using k-NN (in terms of EER, F-Score,
accuracy, and AUC). Furthermore, the FDMCR demonstrated a better performance in
both SVM and GMM results in this section of the experiments. Overall, the proposed
method outperforms other methods on the S&S dataset, yielding the best results.
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Table 3 The results of different methods on the S&S dataset using k-NN, GMM, and SVM classifiers (%)

Method Classifier AUC EER F-score Accuracy
AutoCorrelation GMM 63.85 39.40 60.21 60.36
KNN 64.11 40.47 59.18 59.31
SVM 64.36 39.50 60.12 60.26
Centroid GMM 50.97 49.02 50.64 50.97
KNN 53.14 47.70 51.97 52.24
SVM 54.49 46.02 53.58 53.87
ChromaHighFreq GMM 63.53 40.03 59.46 59.71
KNN 65.45 39.19 60.41 60.54
SVM 64.81 38.06 61.57 61.65
ChromaDiff GMM 54.93 44.59 55.01 55.18
KNN 65.39 39.22 60.41 60.52
SVM 50.92 48.48 51.09 52.88
Drugman GMM 74.98 31.85 67.73 67.74
KNN 80.05 27.84 71.78 71.74
SVM 74.55 31.73 67.88 67.90
Energy GMM 49.22 50.60 49.11 49.41
KNN 50.11 50.16 49.44 49.82
SVM 49.86 49.32 49.69 51.11
Energy Ratio GMM 56.99 44.55 55.10 55.36
KNN 56.71 44.34 55.35 55.57
SVM 57.49 44.65 55.03 55.27
Entropy GMM 65.18 39.22 60.40 60.55
KNN 63.59 40.69 58.94 59.10
SVM 64.55 39.84 59.79 60.96
Proposed FDMCR GMM 90.05 16.38 83.32 83.17
KNN 91.46 15.18 84.42 84.82
SVM 91.25 15.58 84.12 83.97
Flatness GMM 63.38 40.82 58.81 59.00
KNN 62.33 41.13 58.47 58.67
SVM 63.04 41.35 58.29 58.49
LTSD GMM 86.13 20.19 79.47 79.34
KNN 85.99 20.06 79.62 79.49
SVM 81.24 20.17 79.71 79.89
LTSV (GammaTone) GMM 74.61 31.59 69.97 68.41
KNN 74.06 31.95 67.65 67.64
SVM 73.10 31.72 67.88 67.87
LTSV GMM 78.27 29.77 69.83 69.87
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Table 3 continued

Method Classifier AUC EER F-score Accuracy
KNN 77.82 29.89 69.72 69.67
SVM 77.96 29.88 69.72 69.67
MBLTSV GMM 73.37 33.29 66.27 66.29
KNN 71.61 35.13 64.47 64.51
SVM 74.51 31.82 67.76 67.75
MFCC GMM 81.88 25.69 73.92 73.86
KNN 82.60 25.44 74.19 74.09
SVM 79.65 26.22 73.40 73.31
Peakiness GMM 67.82 36.74 62.85 62.94
KNN 67.25 37.69 61.95 62.04
SVM 67.92 36.94 62.67 63.76
Pitch GMM 72.24 33.88 65.70 65.71
KNN 71.69 34.14 65.42 65.47
SVM 71.62 33.81 65.78 66.79
Sadjadi GMM 76.10 30.43 69.17 69.16
KNN 77.25 29.75 69.87 69.86
SVM 69.90 34.70 64.93 64.98
SNR GMM 61.36 43.14 51.48 62.38
KNN 63.85 39.46 60.15 60.31
SVM 53.59 45.68 53.44 54.52
SNR (dB) GMM 61.25 41.21 56.95 59.29
KNN 63.70 39.10 60.52 60.67
SVM 52.17 48.82 49.76 51.60
Spread GMM 51.76 49.73 49.92 50.22
KNN 53.00 48.38 51.26 51.56
SVM 52.12 49.36 50.12 50.64
ZC GMM 49.28 51.20 48.43 48.84
KNN 55.32 46.03 53.55 53.87
SVM 49.60 51.18 48.50 48.84

The best results are written in bold

4.2.2 The Comparison Based on Deep Learning

Asmentionedin [7, 32], deep learning methods effectively identify and separate speech
from music. Therefore, we intend to use these methods to compare and evaluate various

methods’ performance, including our proposed method.

This section compares the three features that had the best results in previous com-
parisons using deep learning methods. As mentioned in [7, 32], using deep learning
methods with image-based features to discriminate speech from music has shown
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promising results. However, we compared our proposed feature with two other fea-
tures using deep learning methods while all features are audio-based (not image-based)
using deep learning methods, including CNNs and recurrent neural networks (RNNs).

Table 4specifies the characteristics of the deep learning methods used in this study.
The network architecture of deep learning methods has a significant impact on the
performance and results of learning methods. Here, the input of learning networks
was in the form of a window of the desired feature for a 10-frame neighbourhood
(Five frames before and after the desired frame).
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Table 5 The results of the top three features on the GTZAN dataset using deep learning methods (%)

Method Classifier EER F-score Accuracy
Proposed FDMCR BiLSTM 21.09 78.88 78.88
CNN 17.04 82.96 82.95
CNNP 16.41 83.57 83.55
LSTM 21.74 78.22 78.21
LTSD BiLSTM 20.48 79.49 79.48
CNN 20.10 79.87 79.84
CNNP 19.69 80.28 80.26
LSTM 19.67 80.30 80.28
MFCC BiLSTM 26.71 73.25 73.24
CNN 21.94 78.02 78.01
CNNP 20.28 79.69 79.68
LSTM 29.78 70.13 70.28
The best results are written in bold
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As in the previous section, we examined the desired methods on the GTZAN and
S&S datasets. As shown in Table 5and Fig. 6, the proposed method performed best
when the GTZAN dataset is used. Also, the FDMCR produced the best results com-
pared to other features when the S&S dataset is used for comparison, as shown in

Table 6and Fig. 7.

Compared to the results of other classical methods, like the results of comparisons
in [7, 32], our results indicated that deep methods often outperform classical methods.
Nonetheless, it was found that the results are not desirable in some cases because
deep network architectures are very influential in this type of learning performance.
In addition, deep learning methods are more compatible with image-based methods
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Table 6 The results of top three features on the S&S dataset using deep learning methods (%)

Method Classifier EER F-score Accuracy
Proposed FDMCR BiLSTM 18.23 81.41 81.23
CNN 14.98 84.80 84.67
CNNP 16.06 83.65 83.51
LSTM 19.42 80.28 80.13
LTSD BiLSTM 16.42 83.28 83.14
CNN 14.99 84.79 84.67
CNNP 15.63 84.10 83.97
LSTM 16.37 83.34 83.20
MFCC BiLSTM 24.23 75.48 75.39
CNN 17.66 82.00 81.83
CNNP 17.33 82.37 82.24
LSTM 27.43 72.19 72.11

The best results are written in bold
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structurally and functionally. Therefore, these learning methods should not be expected
to perform much better when audio-based (non-image-based) features are used.

5 Conclusion and Future Suggestions
This paper proposed a new feature extraction method called Long-Term Multi-band
Frequency-Domain Mean-Crossing Rate (FDMCR) based on the new concept of

mean-crossing rate in the frequency domain.
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To prove the efficiency of the proposed method, first, the capability of the proposed
feature for class discrimination was measured using famous divergence criteria such
as Maximum Fisher Discriminant Ratio (MFDR), Bhattacharyya divergence, and Jef-
freys/Symmetric Kullback-Leibler (SKL) divergence. This feature was then applied to
the speech/music discrimination problem using conventional and deep learning-based
classifiers on two popular speech-music datasets, GTZAN and S&S.

It was shown that the proposed feature in this paper leads to more separability
between speech and music classes and performs better in the evaluations than other
features. The proposed system’s high computational complexity and memory con-
sumption in the deep learning stage pose a limitation, given that a speech/music
discrimination system should typically be fast and have low computational overhead.
To address this issue, deep neural networks with fixed-point weights or approxi-
mate/stochastic computations can be utilized. Additionally, training deep learning
systems on large speech-music datasets presents another challenge. One approach to
tackle this problem is to divide the dataset into smaller parts and train a deep classifier
on each part. The output of these classifiers can then be optimally combined using
various ensemble learning methods.

To enhance the system’s efficiency, one potential future approach is to combine
the proposed feature with feature vectors from other algorithms. In addition, different
algorithms for dimensionality reduction or feature selection must be used to reduce
redundancy in the combined vector after combining vectors.
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