
Circuits, Systems, and Signal Processing (2023) 42:6636–6659
https://doi.org/10.1007/s00034-023-02411-5

Spline Adaptive Filtering Algorithm-based Generalized
Maximum Correntropy and its Application to Nonlinear
Active Noise Control

Yuan Gao1 · Haiquan Zhao1 · Yingying Zhu1 · Jingwei Lou1

Received: 22 October 2022 / Revised: 15 May 2023 / Accepted: 16 May 2023 /
Published online: 8 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This study proposes a spline filtering algorithm-based generalized maximum corren-
tropy criterion (GMCC), named the spline adaptive filter (SAF-)-GMCC algorithm.
Comparedwith traditional spline algorithms, the SAF-GMCCcan copewith impulsive
interference effectively, because the GMCC has a low sensitivity to mutation signals.
The GMCC-based variable step-size spline filtering algorithm (SAF-GMCC) is pro-
posed to solve the limitation of the fixed step-size on the SAF-GMCC algorithm’s
performance and to improve the convergence rate and steady-state error performance.
Combining these algorithms with the active noise control (ANC) model, this study
proposes the filtered-c generalized maximum correntropy criterion (FcGMCC) and
variable step-size filtered-c generalized maximum correntropy criterion (FcVGMCC)
algorithms. Finally, the nonlinear system identification model simulates an experi-
mental environment with impulsive interference. The SAF-GMCC and SAF-VGMCC
algorithms offer better robustness than the existing algorithms. And the alpha-stable
noise environment simulation with different impact strengths, in the ANC model
verifies the FcGMCC and FcVGMCC algorithms’ robustness in nonlinear and non-
Gaussian noise environments.
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1 Introduction

Adaptive filtering theory is an optimal filtering method developed based on linear
filtering theories such as Wiener filtering theory [31] and Kalman filtering theory [7].
TheWiener filter is designed based on the known signal statistical properties to obtain
optimal estimates in practical applications. However, this design is unsuitable for sig-
nal statistical properties are unknown or non-stationary. TheKalmanfilter is applicable
when the input signal is non-stationary. However, this requires the previous estimate
and the current observation to estimate the signal value. In practical applications of sig-
nal processing, a priori knowledge of the statistical properties of the signal and noise is
often unavailable. Thus, the adaptive filter is required in the absence of a priori statis-
tics. The adaptive filter can learn and adjust its parameters adaptively according to
the signal sampling value, which finally achieves optimal filtering. Thus, the adaptive
filter shows excellent adaptive and real-time characteristics for signal processing prob-
lems in unknown or non-stationary environments. The adaptive filter also has broad
applicability in a range of fields, such as distributed linear cyber-physical system [10],
wireless sensor networks [29] and other adaptive signal processing [32, 33, 35–41]. In
linear adaptive filtering algorithms, the standard algorithms are the least mean square
(LMS) algorithm with low computational complexity, the normalized LMS (NLMS)
algorithm with strong tracking performance, and the affine projection algorithm with
fast convergence speed. Although linear filtering algorithm has flourished, the linear
adaptive filter is no longer suitable for practical applications. Therefore, research on
nonlinear filters is on the agenda.

Many scholars have developed nonlinear filter models, proposing the Volterra adap-
tive filtering [1, 16, 34], functional link adaptive filtering [5] and neural network
adaptive filtering [6] algorithms. The spline adaptive filtering (SAF) algorithm was
developed to achieve high efficiency in nonlinear adaptive filtering algorithms, obtain
lower computational complexity, and obtain better adaptability [18, 26, 31]. The SAF
consists of a linear combiner and spline interpolation, with the spline control points
stored in a set of discrete look-up tables (LUTs). The SAF adjusts the filter’s coeffi-
cients and spline control points through the error signal and input signal to identify
the nonlinear system.

According to the different orders of nonlinearization, theSAFcanbedivided into the
Wienermodel [11],Hammersteinmodel [20], and variants arising from these two types
according to different topology structures [24]. In recent years, some scholars have
combined block-oriented architecture with spline interpolation function to propose a
new Wiener model, called Wiener SAF [23]. The spline adaptive algorithms in this
study are all Wiener-type structures.

The SAF-LMS algorithm is proposed based on the SAF. The SAF-LMS algorithm
significantly solves nonlinear problems based on previous simulations and steady-
state performance analysis [25]. However, LMS-type algorithms use the second-order
statistical information of the error that deviates from the optimal solution in the face of



6638 Circuits, Systems, and Signal Processing (2023) 42:6636–6659

non-Gaussian signals. The shortcomings of the LMS-type algorithm in non-Gaussian
environment are still inevitable in the SAF, thus requiring explorations of the nonlinear
SAF algorithm.

Studies have proposedmany improved spline-type algorithms to solve various prob-
lems. Peng applied the maximum correntropy criterion (MCC) to the SAF algorithm,
namedSAF-MCCalgorithm [18], taking advantageof theMCCcriterion anti-mutation
signal characteristic and performing excellently in a heavy-tailed non-Gaussian envi-
ronment. Subsequently, algorithms suitable for non-Gaussian environments have
continued to be proposed to combat impulsive interference; successfully proposed
algorithms include the spline set-membership normalized least M-estimate algorithm
[12], the spline algorithm based on the Versoria function criterion [14], and a family
of logarithmic spline adaptive algorithm with hyperbolic cosine as the core [17].

Active noise control (ANC) technology integrates various modern advanced sci-
ence and technology to alleviate the limitation of passive noise control due to space
and cost reasons. Its advantages are the small size of the equipment, low cost, easy
installation, debugging ability, and remarkable control effect on low-frequency noise.
As the application of today’s control technology of mainstream noise has become
increasingly mature, the ANC algorithm has played a critical role in the controlling
ability. For example, the classic filtered-x LMS algorithm has been widely used for
ANC. However, this algorithm generally assumes the secondary channel loudspeaker
as an ideal linear distortion-free model. In real solutions, ANC systems are probably
nonlinear. The specific manifestation of this nonlinearity is that the model input and
output signals exhibit a nonlinear relationship. Moreover, harmonics are found in the
output signal, and the original signal spectrum changes [19]. The linear ANC system
is inapplicable in these cases, while the above SAF is a good solution.

In general, the kernel function of the MCC defaults to the Gaussian kernel. Despite
not being impeccable, the Gaussian kernel is accepted as maximally noncommittal
to outliers. It also expresses maximum uncertainty concerning missing information
[3, 28]. Thus, one is confronted with the problem of choosing a suitable kernel width
value through the kernel approach. An inappropriate choice of width will significantly
deteriorate the algorithm’s behavior. The generalized correntropy, which adopts the
generalized Gaussian density function as kernel, was proposed. The study focuses
on the problem of unsatisfactory simple spline filtering effect under non-Gaussian
noise. The SAF-GMCC algorithm is proposed by introducing the generalized max-
imum correntropy criterion (GMCC) to the SAF. Then, the variable step-size is
introduced, and the SAF-VGMCC algorithm is proposed to improve the SAF-GMCC
algorithm’s performance. This performance is achieved after theoretically analyzing
the SAF-GMCC and SAF-VGMCC algorithms and comparing the performance of
the proposed new spline algorithms through simulations in an impulsive interference
environment. This study proposes the filtered-c generalizedmaximum correntropy cri-
terion (FcGMCC) and variable step-size filtered-c generalized maximum correntropy
criterion (FcVGMCC) algorithms given the ANC system nonlinear problem. Finally,
the effectiveness of the proposed algorithms in the nonlinear and non-Gaussian noise
environments is verified through simulation in an alpha noise environment with dif-
ferent impulsive strengths.
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The rest of this paper is structured as follows: Sect. 2 introduces the SAF and
GMCC. Section 3 proposes the SAF-GMCC and SAF-VGMCC algorithms. Section 4
analyzes the range of the step-size and the steady-state of the SAF-GMCC algorithm
under some simplifying assumptions. Section 5 provides some numerical simulations
and Sect. 6 introduces the FcGMCC and FcVGMCC algorithms. Finally, Sect. 7
concludes this paper.

2 Spline Adaptive Filter and Generalized Correntropy

2.1 Spline Adaptive Filter

Figure 1 shows a structural schematic of theSAF.Themain components are the cascade
of a fair number of linear filters and a memoryless nonlinear function implemented
by the spline interpolation scheme [22]. In Fig. 1, n is the instantaneous moment, and
x(n) is the input signal of the whole system and the input of the linear adaptive filter.
The s(n) is the output of the linear network. The spline interpolation function and the
LUT address the input of the nonlinear network s(n). Finally, the output signal of the
system is generated.

s(n) = wT(n)x(n) (1)

where w(n) = [
w0, w1, . . . , wN−1

]T is the adaptive weight vector for the finite
impulse response filter. The tapped delayed input signal is represented as x(n) =
[x(n), x(n − 1), . . . , x(n − N + 1)]T , where N is the number of filter taps. The input

Fig. 1 Spline adaptive filter structural model
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signal of the nonlinear spline filter, namely s(n), is the output signal of the linear time-
invariant filter, and the final system output signal is y(n). The parameters i and u are
the span index and local parameters, respectively, where u ∈ [0, 1].

The calculation formula of the local parameter u(n) is as follows

u(n) = s(n)

�x
−
⌊
s(n)

�x

⌋
(2)

The formula for calculating the span index i(n) is as follows

i(n) =
⌊
s(n)

�x

⌋
+ H − 1

2
(3)

where H is the total number of control points, � x is the sampling interval, and �•�
is rounded down. For notation simplicity, we use i ≡ i(n).

The output of the SAF is as follows:

y(n) = ϕi (u) = uTn Chi,n (4)

where un = [
u3(n), u2(n), u(n), 1

]T
. For notation simplicity, we use u ≡ un to

determine the starting position of a group of continuous control points in the LUT
through the span index to form a control point vector hi = [ hi , hi+1, hi+2, hi+3

]T .
C is the spline basis matrix. CR-spline and B-spline basis matrices are the most widely
used among SAFs. Moreover, the CR-spline basis matrix [2] produces a more local
approximation than the B-spline basis matrix [22]. To improve the accuracy of the
estimation of nonlinear quantities, the CR-spline basis matrix is given as follows:

CCR = 1

2

⎛

⎜⎜
⎝

−1 3 −3 1
2 −5 4 −1

−1 0 1 0
0 2 0 0

⎞

⎟⎟
⎠ (5)

2.2 GeneralizedMaximum Correntropy Criterion

Given two random variables X and Y, the correlation entropy is defined by [4]

V (X ,Y ) = E
[
ϕ(X)Tϕ(Y )

]
(6)

where ϕ(·) represents the nonlinear mapping determined by the kernel function. Addi-
tionally, ϕ(·) satisfies the following equation

ϕ(X)Tϕ(Y ) = κ(X ,Y ) (7)
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where κ(·, ·) denotes the Mercer nucleus. The kernel function of the GMCC is as
follows:

Gα,β(e) = α

2β�(1/α)
exp

(
−
∣∣∣∣
e

β

∣∣∣∣

α)
= γα,β exp

(−λ|e|α) (8)

where e = x− y,�(·) represents the gamma function, α is the shape parameter greater
than zero, β is the scale coefficient, λ = 1/βα represents the kernel parameter, γα,β

is the normalization constant, and the expression of γα,β is as follows:

γα,β = α/(2β · �(1/α)) (9)

From the above formulas, the entropy function of GMCC is

Vα,β(X ,Y ) = Eα,β [G(X − Y )] (10)

3 Proposed Algorithms

3.1 Proposed SAF-GMCC Algorithm

A sample-averaged estimate of the GMCC is given as follows

V̂α,β(X ,Y ) = 1

N

N∑

i=1

Gα,β(xi − yi ) (11)

Under the condition of adaptive filtering, the cost function is defined as follows:

J = Eα,β [G(e(n))] = γα,βE
[
exp
(−λ|e(n)|α)] (12)

When α = 2, the GMCC-type algorithms will degenerate into the MCC-type
algorithms. The cost function of the SAF-GMCC algorithm is as follows:

J
(
wn,hi,n

) = E
[
γα,β exp

(−λ|e(n)|α)] ≈ γα,β exp
(−λ|e(n)|α) (13)

Some studies [4, 28, 30] have evaluated whether the absolute value function in
J
(
wn,hi,n

)
is differentiable inferring that the kernel functions about GMCC are dif-

ferentiable. Through the gradient descent method, the updated method of the filter
weight coefficient is as follows:

wn+1 = wn − μw
∂ J
(
wn,hi,n

)

∂wn
(14)

∂ J
(
wn,hi,n

)

∂wn
= − f (e(n)) · ∂ϕi (u)

∂u(n)

∂u(n)

∂s(n)

∂s(n)

∂wn
= − f (e(n)) · ϕ′

i (u)x(n) (15)
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where ϕ′
i (u) = u̇TChi,n , u̇ = ∂u

∂u = [3u2(n), 2u(n), 1, 0
]T

and f (e(n)) expresses

f (e(n)) = αλ · γα,β exp
(−λ|e(n)|α)|e(n)|α−1 · sign(e(n)) (16)

Similarly, it is deduced that the control point update method is as follows

hi,n+1 = hi,n − μh
∂ J
(
wn,hi,n

)

∂hi,n
(17)

∂ J
(
wn,hi,n

)

∂hi,n
= − f (e(n)) · ∂ϕi (u)

∂hi,n
= − f (e(n)) · CTu (18)

In summary, the updated formulas of the SAF-GMCC algorithm are as follows:

wn+1 = wn + μw f (e(n)) · ϕ′
i (u)x(n) (19)

hi,n+1 = hi,n + μh f (e(n)) · CTu (20)

whereμw andμh represent the step-size convergence factor of the weights and control
points, respectively.

3.2 Proposed SAF-VGMCC Algorithm

Like the linear adaptive filter algorithm, the SAF algorithm also has a problem because
the convergence speed and the steady-state error cannot be considered simultaneously.
Inspired by a previous study [13], in this study we introduce the variable step-size into
the SAF-GMCC algorithm, and propose a variable step-size SAF-VGMCC algorithm.

In the SAF-GMCC algorithm, the weight μw and the step-size of the control point
μh are fixed values. We use μw(n) and μh(n) to replace the fixed values. Then, (19)
and (20) are rewritten as follows:

wn+1 = wn + μw(n) f (e(n)) · ϕ′
i (u)x(n) (21)

hi,n+1 = hi,n + μh(n) f (e(n)) · CTu (22)

In addition, the adjustments of the variable step-sizes are all controlled by the
squared value of the impulsive-free error.

μw(n) = aμw(n − 1) + (1 − a)min

[
�
e
2
o(n), μw(n − 1)

]
(23)

μh(n) = aμh(n − 1) + (1 − a)min

[
�
e
2
o(n), μh(n − 1)

]
(24)
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Table 1 The pseudocode of the SAF-VGMCC algorithm

Initialization w(0) = 0, hi (0) = 0w(0) = 0, hi (0) = 0

Algorithm parameters N , �x , H , C, a, λ, c1
For n = 0, 1, 2, .....

e(n) = d(n) − ϕi (u)

s(n) = wT(n)x(n)

u(n) = s(n)/�x − �s(n)/�x�
i = �s(n)/�x� + (H − 1)/2

y(n) = ϕi (u) = uTChi,n

f (e(n)) = αλ · γα,β exp
(−λ|e(n)|α)|e(n)|α−1 · sign(e(n))

wn+1 = wn + μw(n) f (e(n))ϕ′
i (u)x(n)

hi,n+1 = hi,n + μh(n) f (e(n))CT u

μw(n) = aμw(n − 1) + (1 − a)min
[
ê2o(n), μw(n − 1)

]

μh(n) = aμh(n − 1) + (1 − a)min
[
ê2o(n), μh(n − 1)

]

e20(n) = λe20(n − 1) + c1(1 − λ)med(γn)

γn =
[
e2(n), e2(n − 1), · · · , e2(n − N + 1)

]

End

where a < 1 is a forgetting factor which is close to one. Furthermore,
�
e
2
o(n) is an

estimate of the squared value of the impulse-free error [42], used to adjust the variable
step process obtained by [13].

�
e
2
o(n) = λ

�
e
2
o(n − 1) + c1(1 − λ)med(γn) (25)

where λ is another forgetting factor close to one but less than one; c1 =
1.483(1 + 5/(N − 1)) is a finite correction factor;med(.) represents the median oper-
ator; and γn is expressed as follows

γn =
[
e2(n), e2(n − 1), · · · , e2(n − N + 1)

]
(26)

Table 1 shows the pseudocode of the SAF-VGMCC algorithm.

3.3 Proposed Algorithms Applied to ANC

Figure 2 shows a schematic of a nonlinear ANC system based on the SAF algorithm.
The residual noise sensed by the error microphone is mathematically obtained as

follows:

e(n) = d(n) − y(n) ∗ sN (n) (27)
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Fig. 2 Spline nonlinear active noise control structural model

where ∗ represents the linear convolution operator and sN (n) is the impulse response
of the secondary path.

This section discussed the practical applications of the proposed algorithms. In
the ANC model, we propose a new ANC algorithm against impulsive interference,
namely the FcGMCC algorithm. Its cost functions are the same as (21) and (22). The
derivation process of the FcVGMCC algorithm is similar to that of the FcGMCC
algorithm. The difference is that the FcVGMCC step-size satisfies (23) and (24). The
updated formulas of the FcGMCC algorithm are as follows:

wn+1 = wn − μw
∂ J
(
wn,hi,n

)

∂wn

= wn + μw f (e(n))
∂[y(n) ∗ sN (n)]

∂w(n)

= wn + μw f (e(n))

[
PuTCqi

1

�x
x(n) ∗ sN (n)

]

= wn + μw f (e(n))x
′
(n) (28)

wn+1 =wn − μw
∂ J
(
wn,hi,n

)

∂wn

=wn + μw f (e(n))
∂[y(n) ∗ sN (n)]

∂w(n)

=wn + μw f (e(n))

[
PuTCqi

1

�x
x(n) ∗ sN (n)

]

=wn + μw f (e(n))x
′
(n) (29)
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where x
′
(n) = u̇TCqi

1
�x x(n) ∗ sN (n) and u′ = u ∗ sN (n).

4 Mean Analysis of SAF-GMCC

This section analyzes the range of step-sizes which makes the SAF-GMCC algorithm
stable.

4.1 Mean Analysis of�w

Averaging two sides of (19) yields

E{wn+1} = E{wn} + μwE
{
f (e(n))ϕ′(r(n))x(n)

}
(30)

Referring to Fig. 3, w0 and ϕ0(p(n),h0) are the unknown systems to be identified
and v(n) denotes additional ambient noise. The output error of the adaptive structure
is as follows:

e(n) = d̃(n) − y(n) = ϕ0(p(n)) − ϕ(s(n)) + v(n) (31)

Since the noise signal v(n) is independent of x(n), using the Taylor formula in (30)
yields:

E
{
wn+1

} = E{wn} + μwE
{
x(n)ϕ′(s(n))( f (v(n)) + f ′(v(n))[ϕ0(p(n)) − ϕ(s(n))]

)}
(32)

Since f (v(n)) is an odd function, (32) is rewritten as follows:

E{wn+1} = E{wn} + μwE
{
x(n)ϕ′(s(n))

[
f ′(v(n))[ϕ0(p(n)) − ϕ(s(n))]

]}
(33)

Fig. 3 Nonlinear system identification model
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Gaussian distribution is the probability distribution of the process p(n), x(n) is a
Gaussian signal, and the modew0 is non-random. Furthermore, the Lyapunov version
of the central limit theorem [21] guarantees that the probability distribution of s(n)

is close to the Gaussian distribution as long as the length of wn grows. The above
assumptions and the extension of the Bussgang theorem are used to evaluate the
second term on the right side of (33), stated as follows.

Corollary: Let � = [θ1, . . . , θn] represent an n-dimensional Gaussian variate and
G(z) is any analysis function defined in the subspace z = [θ2, . . . , θn] [21]. Then, the
expectation of multiplying θ1 by G(z) is described as follows:

E{θ1 · G(θ2, . . . , θn)} = mθ1 · E{G(θ2, . . . , θn)} +
n∑

i=2

E

{
∂G(θ2, . . . , θn)

∂θi

}
K1,i

(34)

wheremθ1 denotes the average value of θ1 and K1,i expresses the covariance between
θ1 and θ i.

Using the corollary in (33), we derive the following expression:

E
{
x(n)ϕ′(s(n)) f ′(v(n))ϕ0(p(n))}

= E
{
f ′(v(n))

}(
E
{
ϕ′(s(n))ϕ′

0(p(n))
}
Rxw0 +E

{
ϕ′′(s(n))ϕ0(p(n))

}
Rx E{wn}

)

(35)

E
{
x(n)ϕ′(s(n)) f ′(v(n))ϕ(s(n))

}

= E
{
f ′(v(n))

}
E
{
ϕ′2(s(n)) +ϕ′′(s(n))ϕ(s(n))

}
Rx E{wn}

(36)

where Rx = E{x(n)xT (n)} represents the autocorrelation matrix of the input signal.
Combining (34), (35) and (36), the following equation is calculated as:

E{wn+1} = [I − μwaRx E
{
f ′(v(n))

}]
E{wn} + μwbRx E

{
f ′(v(n))

}
w0 (37)

where

a = E
{
ϕ′2(s(n))

}
+ E

{
ϕ′′(s(n))[ϕ(s(n)) − ϕ0(p(n))]

}
(38)

b = E
{
ϕ′(s(n))ϕ′

0(p(n))
}

(39)

The expectation of wn is solved using the recursive iteration equation after ignoring
the expected time dependency, as follows:

E{wn} = [I − μwaRx E
{
f ′(v(n))

}]n
E{w−1}

+μwb
n−1∑

r=0

[
I − μwaRx E

{
f ′(v(n))

}]n−1−r × E
{
f ′(v(n))

}
Rxw0

(40)
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where w−1 is the original condition of the linear filter.
If and only if the matrix

[
I − μwaRx E

{
f ′(v(n))

}]
is stable, unbi-

ased estimates are obtained. Thus,
[
I − μwaRx E

{
f ′(v(n))

}]
is equivalent to∣∣I − μwaRx E

{
f ′(v(n))

}∣∣ < 1, and the following equation is obtained:

0 < μw <
2

aλmax(Rx )E{ f ′(v(n))} (41)

Therefore, if the nonlinearity converges to the actual value at the steady-state,
namely ϕ(s(n)) → ϕ0(p(n)), then we derive this expression:

lim
n→∞ E{wn} = w0 (42)

4.2 Mean Analysis of�h

The mean analysis of μh is obtained similar to that of the previous subsection. The
output error of the adaptive structure is as follows:

e(n) = d̃(n) − y(n) = uTl,nChi,n − uTs,nChi,n + v(n) (43)

whereul,n andus,n are the local variablesun for evaluating p(n) and s(n), respectively.
Similar to (34), the expectation of hi,n is calculated as follows:

E
{
hi,n+1

} =
[
I − μhCTUsCE

{
f ′(v(n))

}]
E
{
hi,n
}+ μhCTUspCE

{
f ′(v(n))

}
hi,0
(44)

where Us = E
{
us,nuTs,n

}
is the autocorrelation matrix and Usp = E

{
us,nuTp,n

}
is a

cross correlation matrix. The recursion Eq. (44) is solved by

E
{
hi,n
} =

[
I − μhCTUsCE

{
f ′(v(n))

}]n
E{h−1}

+μh

n−1∑

r=0

[
I − μhCTUsCE

{
f ′(v(n))

}]n−1−r × E
{
f ′(v(n))

}
CTUspChi,0

(45)

where h−1 indicates the original condition of the spline control point.
Similar to the linear case, if and only if the matrix

[
I − μhCTUsCE

{
f ′(v(n))

}]
is

stable, the SAF-GMCC algorithm is stable. Thus,
∣∣I − μhλ

(
CTUsC

)
E
{
f ′(v(n))

}∣∣ <
1 can be obtained. The following equation can be obtained:

0 < μh <
2

λmax
(
CTUsC

)
E{ f ′(v(n))} (46)
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At the same time, when the system converges to the steady state value, its stable
state solution is

lim
n→∞ E

{
hi,n
} = hi,0 (47)

4.3 Selection of Optimal Parameters

The trial-and-error determines the selection of parameters. However, this approach is
unrealistic in practical application. Finding the optimal solution of the parameters is
necessary for accurate signals. Thus, (28) and (29) are the cost functions of the SAF-
GMCC algorithm. First, μw, μh, α and β are replaced in (28) and (29), and μw(n),
μh(n), α(n) and β(n) are used to indicate that these variables are all time-varying.
Let ωn = wn − w0 and Hn = hi,n − hi,0, and then, w0 and hi,0 are subtracted from
both sides of (28) and (29):

ωn+1 = ωn + μw(n) f (e(n))ϕ′
i (u)x(n) (48)

Hn+1 = Hn + μh(n) f (e(n))CTu (49)

From a previous study [25], we have

e(n) = v(n) − c3hi,0
� x

xT (n)ωn − (CTu)THn (50)

where ck expresses the k-th row of C. v(n) is the measurement noise. Substituting
(50) into (48) and (49), we obtain

ωn+1 = ωn + μw(n) f (e(n))ϕ′
i (u)x(n)

= [I − μw(n)g(e(n))
ϕ′
i (u)c3hi,0

� x
x(n)xT (n)]ωn

+μw(n)g(e(n))ϕ′
i (u)(v(n)x(n) − x(n)(CTu)THn

= [I − μw(n)g(e(n))mϕ′
i (u)x(n)xT (n)]ωn

+μw(n)g(e(n))ϕ′
i (u)(v(n)x(n) − x(n)(CTu)THn (51)

Hn+1 = Hn + μh(n) f (e(n))CTu

= Hn + μh(n)g(e(n))CTu(v(n) − c3hi,0
� x

xT (n)ωn − (CTu)THn)

= (I − μh(n)g(e(n))

∥∥∥CTu
∥∥∥
2
)Hn

+ μh(n)g(e(n))(v(n)(CTu)T − m(CTu)T xT (n)ωn) (52)
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where m = c3hi,0
�x and g(e(n)) = λ1 exp(−λ2|e(n)|α)|e(n)|α−2. Multiplying (51) and

(52) by their transpose from the left and taking expectation with the above approxi-
mations, we obtain

ω2
n+1 = [I − 2μw(n)mg(e(n))ϕ′

i (u)x(n)xT (n) + μ2
w(n)m2g2(e(n))ϕ2′

i (u)(x(n)xT (n))2]ω2
n

−2[μ2
w(n)mg2(e(n))ϕ2′

i (u)v(n)x(n)xT (n)x(n) + μw(n)mg(e(n))ϕ′
i (u)v(n)x(n)]ωn

+2[μ2
w(n)mg2(e(n))ϕ2′

i (u)x(n)xT (n)x(n) + μw(n)mg(e(n))ϕ′
i (u)x(n)]ωn(C

T u)THn

−2μ2
w(n)g2(e(n))ϕ2′

i (u)v(n)(CT un)THn‖x(n)‖2

+μ2
w(n)g2(e(n)))ϕ2′

i (u)‖x(n)‖2
∥∥∥(CT un)THn

∥∥∥
2 + μ2

w(n)g2(e(n))ϕ2′
i (u)v2(n)‖x(n)‖2

(53)

H2
n+1 = (I − 2μh(n)g(e(n))

∥∥
∥CTu

∥∥
∥
2 + μ2

h(n)g2(e(n))

∥∥
∥CTu

∥∥
∥
4
)H2

n

+μ2
h(n)g2(e(n))v2(n)

∥∥∥CTu
∥∥∥
2 + μ2

h(n)m2g2(e(n))

∥∥∥CTu
∥∥∥
2∥∥∥xT (n)ωn

∥∥∥
2

−2[μh(n)g(e(n))v(n) + μ2
hg

2(e(n))v(n)

∥∥
∥CTu

∥∥
∥
2](CTu)THn

+2[μh(n)mg(e(n)) + μ2
h(n)m2g2(e(n))

∥∥∥CTu
∥∥∥
2]xT (n)ωn(C

Tu)THn

−2μ2
h(n)mg2(e(n))v(n)

∥∥
∥CTu

∥∥
∥
2
xT (n)ωn

(54)

We aim to optimize the step-sizes and other variable factors for the SAF-GMCC
algorithm by minimizing H2

n+1 and ω2
n+1. We take the partial derivative of (53) and

(54) concerning all variables, and set them to zero. After simplifying, the following
equation is obtained.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = ∂λ1
∂α(n)

− λ1
∂λ2

∂α(n)
|e(n)|α(n) + λ1 ln |e(n)|(1 − λ2|e(n)|α(n))

0 = ∂λ1
∂β(n)

− λ1
∂λ2

∂β(n)
|e(n)|α(n) + λ1 ln |e(n)|(1 − λ2|e(n)|α(n))

0 = [−mx(n)xT (n) + m2μw(n)g(e(n))ϕ′
i (u)(x(n)xT (n))2]ω2

n
−[2mμw(n)g(e(n))ϕ′

i (u)v(n)x(n)xT (n)x(n) + mv(n)x(n)]ωn
+[2mμw(n)g(e(n))ϕ′

i (u)x(n)xT (n)x(n) + mx(n)]ωn(C
Tu)THn

−2μw(n)g(e(n))ϕ′
i (u)v(n)(CTu)THn‖x(n)‖2

+μw(n)g(e(n))ϕ′
i (u)‖x(n)‖2∥∥(CTu)THn

∥∥2 + μw(n)g(e(n))ϕ′
i (u)v2(n)‖x(n)‖2

0 = (−∥∥CTu
∥∥2 + μh(n)g(e(n))

∥∥CTu
∥∥4)H2

n + μh(n)g(e(n))v2(n)
∥∥CTu

∥∥2

+μh(n)m2g(e(n))
∥
∥CTu

∥
∥2
∥
∥xT (n)ωn

∥
∥2

−[v(n) + 2μh(n)g(e(n))v(n)
∥∥CTu

∥∥2](CTu)THn

+[m + 2μh(n)m2g(e(n))
∥∥CTu

∥∥2]xT (n)ωn(C
Tu)THn

−2μh(n)mg(e(n))v(n)
∥∥CTu

∥∥2xT (n)ωn

(55)
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where

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = α(n)λ · γα(n),β(n) = α2(n)

2β(n)α(n)+1�(1/α(n))
, λ2 = 1/β(n)α(n)

∂λ1
∂α(n)

= 2α(n)−α2(n) ln(β(n))+ϕ(1/α(n))

2β(n)α(n)+1�(1/α(n))
, ∂λ2

∂α(n)
= − ln(β(n))

β(n)α(n)

∂λ1
∂β(n)

= − α2(n)(α(n)+1)
2β(n)α(n)+2�(1/α(n))

, ∂λ2
∂β(n)

= − α(n)

β(n)α(n)+1

(56)

E[
∥∥
∥CTu

∥∥
∥
2] ≈ 1

2
E[u2(n)] + ‖c4‖2 (57)

Like the method used in the previous study [9], we estimate ωn and Hn through
one-step approximation as follows:

ωn ≈ −μ̃w(n) f̃ (e(n))ϕ′
i (u)x(n) (58)

Hn ≈ −μ̃h(n) f̃ (e(n))CTu (59)

where μ̃w(n) and μ̃h(n) are the optimal step-sizes for estimating ωn and Hn , respec-
tively. f̃ (e(n)) is the value of α(n) and β(n) when taking the optimal solutions.

When a unique solution exists (55), and the functions of the different parameters
are convex functions in the vicinity of the solution, the time-varying optimal solution
of the variables is solved [8, 34].

5 Numerical Simulations

MATLAB simulation experiments evaluate the performance of the proposed algo-
rithms [15]. Let the unknown systemorder beN = 4. Theweight vector of the unknown
adaptive system, namely w0 = [0.6,−0.4, 0.25,−0.15]T , consists of linear compo-
nents. The nonlinear memoryless objective function implemented by the 21-point
length LUT control points takes the following values:

h0 = {−2,−1.8, . . . ,−1.0,−0.8,−0.91, 0.42,−0.01,

−0.1, 0.1,−0.15, 0.58, 1.2, 1.0, 1.2, . . . , 2.0} (60)

where sample interval � x = 0.2.
In this experiment, a Gaussian signal and a first-order color signal (AR(1) =

[1,−0.8] model) are used as the input signals to the system. The desired signal is
expressed as follows:

d̃(n) = ϕ0(p(n),h0) + v(n) (61)

where v(n) is the observation noise, that contains the background noise and the impul-
sive noise v(n) = vA(n) + vB(n). The background noise vA(n) is a Gaussian white
noise with a signal-to-noise ratio (SN R = 10 log10(σ

2
x

/
σ 2

v )) of 30 dB; σ 2
x indi-

cates the variance of the input signal; and σ 2
v represents the variance of Gaussian
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white noise. The impulsive noise vB(n) is a Bernoulli Gaussian (BG) process, i.e.,
vB(n) = b(n)q(n), where q(n) is a Gaussian process with zero mean variance σ 2

B and
has σ 2

B � σ 2
A. Moreover, b(n) represents a Bernoulli process. Its probability density

function is as follows:

P(w) =
{
1 − Pr , w = 0
Pr , w = 1

(62)

where Pr represents represent the average power of the BG signal, which determines
the probability of impulsive interference. The larger the Pr value, the stronger the
impact. Pr = 0 and Pr = 0.01 are chosen for comparing simulation results.

Mean square derivation (MSD = 10 log10‖w(n) − w0‖22) measures the algorithm’s
performance [23].

Figure 4a, b, and c shows the algorithms’ performance with different SNRs. The
parameters of each algorithm are shown in Table 2. As the SNR decreases, the perfor-
mance of the two proposed algorithms is consistently better than other algorithms. As
the SNR decreases, the effect of the variable step-size strategy is no longer evident,

Fig. 4 The curves of SAF-type algorithms for estimating time-varying unknown systems with different
SNRs: AR(1) = [1, 0], Pr = 0[1, 0], Pr = 0: a SNR = 15 dB; b SNR = 10 dB; and c SNR = 5 dB
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Table 2 Choice of parameters in Fig. 4

Algorithm (a) (b) (c)

SAF-LMS μw=0.02, μh=0.02 μw=0.01, μh=0.01 μw=0.02, μh=0.02

SAF-SNLMS μw=0.002, μh=0.002 μw=0.002, μh=0.002 μw=0.002, μh=0.002

SAF-VSNLMS μw=0.01, μh=0.01

a =0.85, λ = 0.90

μw=0.01, μh=0.01a =
0.85, λ = 0.90

μw=0.01, μh=0.01

a =0.85, λ = 0.90

SAF-MCC μw=0.005, μh=0.005

σ =2

μw=0.005, μh=0.005

σ =2

μw=0.005, μh=0.005

σ =2

SAF-GMCC μw=0.01, μh=0.01

α=2, β= 2

μw=0.01, μh=0.01

α=2, β= 2

μw=0.01, μh=0.01

α=2, β= 6

SAF-VGMCC μw=0.1, μh=0.1

α=2, β=2

a =0.85, λ = 0.90

μw=0.1, μh=0.1

α=2, β=2

a =0.85, λ = 0.90

μw=0.1, μh=0.1

α=2, β= 6

a =0.85, λ = 0.90

as shown in Fig. 4a, b, and c. This decrease may be because the stability range of the
step-sizes becomes narrow when the SNR is small, resulting in the variable step-size
strategy not being performed correctly. The possible causes and their analysis will be
part of our future research.

Figure 5a and b shows the MSD curves of all algorithms in different environments
where the impulsive interference frequencies are 0 and 0.01, respectively. The set-
ting parameters of all algorithms are shown in Table 3. The SAF-LMS algorithm
has diverged in an impulsive interference environment. The SAF-SNLMS and SAF-
VSNLMS algorithms can keep the convergence. However, the proposed SAF-GMCC
and SAF-VGMCC algorithms remain stable under impulsive interference, and the

Fig. 5 The curves of SAF-type algorithms for estimating time-varying unknown system under BG noise
environment for different probabilities of occurrence of impulsive noise: AR(1) = [1,−0.8], SNR =
30 dB: a Pr = 0 and b Pr = 0.01
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Table 3 Choice of parameters in Fig. 5

Algorithm (a) (b)

SAF-LMS μw=0.02, μh=0.02 μw=0.02, μh=0.02

SAF-SNLMS μw=0.002, μh=0.002 μw=0.002, μh=0.002

SAF-VSNLMS μw=0.01, μh=0.01

a =0.85, λ = 0.90

μw=0.01, μh=0.01

a =0.85, λ = 0.90

SAF-MCC μw=0.01, μh=0.01

σ =1

μw=0.01, μh=0.01

σ =1

SAF-GMCC μw=0.02, μh=0.02

α=1.6, β=2

μw=0.02, μh=0.02

α=1.8, β=2

SAF-VGMCC μw=0.1, μh=0.1

α =1.6, β=2

a =0.85, λ = 0.90

μw=0.1, μh=0.1

α=1.8, β=2

a =0.85, λ = 0.90

performance is significantly better than several other algorithms. In addition, the SAF-
VGMCC algorithm has better performance than the SAF-GMCC algorithm (Fig. 6).

However, the step-size variation of the original variable step-size algorithm does
not effectively track the mutation signal. Thus, we propose an improvement strategy
for the original variable step-size algorithm; as shown in Fig. 7, when n = 15000,
w0 = [0.6,−0.4, 0.25,−0.15]T is reversed. The improved variable step-size algo-
rithm exhibits excellent mutation tracking ability, where μw=μh=0.05 and the other
parameters are the same as in Fig. 6.

The improved variable step-size strategy adds a part to detect mutations; when
|e(n) − e(n − 1)| ≥ ϑn , the step-size jumps to the initial step-size μw=μh=0.05,

Fig. 6 The curves of the experimental signal and the filtered signal in the time domain and frequency domain
for estimating time-varying unknown system: AR(1) = [1,−0.8], SNR= 30 dB, Pr = 0.01: a SAF-GMCC
and b SAF-VGMCC
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Fig. 7 a Comparison of the tracking step-size curves of the original SAF-VGMCC and improved SAF-
VGMCC algorithms; b comparison of the MSD curves of the original SAF-VGMCC and improved SAF-
VGMCC algorithms: AR(1) = [1, −0.8], SNR = 30 dB, and Pr = 0

and the variable step-size process is repeated, where ϑn = Mmed(κn) and κn =
[|e(n − 1) − e(n − 2)|, |e(n − 2) − e(n − 3)|, ..., |e(n − M) − e(n − M − 1)|].

6 Application of ANC

6.1 Comparative Experiment of ANC

This experiment shows that the secondary channel of the system is a non-minimum
phase. The first step is to set N = 6 for the nonlinear spline structure. The standard
averaged noise reduction (ANR) is used as the evaluation index to unify the criteria
for judging the performance of these algorithms, and its expression is as follows:

ANR(n) = 20 log

(
Ae(n)

Ad(n)

)
(63)

Ae(n) = λAe(n − 1) + (1 − λ)|e(n)|, Ae(0) = 0 (64)

Ad(n) = λAd(n − 1) + (1 − λ)|e(n)|, Ad(0) = 0 (65)

where λ is a smoothing parameter, and λ → 1, λ �= 1. In this experiment, λ = 0.999.
In the experiment, we select the ubiquitous α-stable noise defined as follows:

ϕ(t) = exp
{
jϑ t − γ |t |α[1 + jβsign(t)ω(t,α)]} (66)

where

ω(t, α) =
{

π
2 log |t |, α = 1
tan απ

2 , α �= 1
(67)
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sign(t) =
⎧
⎨

⎩

1, t > 0
0, t = 0
−1, t < 0

(68)

The simulation is based on the standard α-stable distribution [27], whose parameter
values are β= 0,γ= 1, and ϑ= 0, and the characteristic function is as follows:

ϕ(t) = exp
(−|t |α) (69)

The noise intensity is controlled by adjusting the α-parameter. The smaller the
α, the greater the impact strength. The primary channel noise observed by the error
microphone is given by [19]

d(n) = u(n − 2) + δ1u
2(n − 2) − δ2u

3(n − 1) (70)

The function δi, i = 1,2,... is to measure the strength of the nonlinear secondary
channel, and this simulation takes δ1= 0.08 and δ2= 0.04. The input signal x(n) is the
alpha-stable distributed noise. u(n) = x(n) ∗ p(n), p(n) is the impulsive response of
the transfer function of the primary channel. Afterward α ≡ α∗, in α-stable noise to
achieve ease of differentiation. The transfer functions of the primary and the secondary
channels with non-minimum phase characteristics are as follows:

P(z) = z−3 − 0.3z−4 + 0.2z−5 (71)

S(z) = z−2 + 1.5z−3 − z−4 (72)

Figure 5 shows the performance of the FcNLMS, FcSNLMS, FcMCC, FcGMCC,
and FcVGMCC algorithms based on the SAF-NLMS, SAF-SNLMS, SAF-MCC,
SAF-GMCC, and SAF-VGMCC algorithms, respectively, where the impact strength
is 2, 1.9, 1.8, and 1.7. Table 4 shows the parameters (Fig. 8).

The FcGMCC and FcVGMCC algorithms maintain stable convergence under the
non-minimum phase channel, when the input signal does not contain impulsive noise.
Under comprehensive comparison, the newalgorithms’ convergence speed and steady-
state ANR are better than other algorithms. The FcVGMCC algorithm shows better
performance than the FcGMCC algorithm. The FcGMCC and FcVGMCC algorithms
have superior performance, when α = 1.9. The steady-state ANR of the proposed
FcVGMCC algorithm is better than that of other algorithms. When the input contains
impulsive noise, the FcNLMS algorithm shows severe divergence state with the same
step-size parameter. When α = 1.8 and α = 1.7, the FcGMCC and FcVGMCC algo-
rithms offer clear advantages. Although the steady-state of the FcVGMCC algorithm
is similar to that of the FcGMCC algorithm, the FcVGMCC algorithm convergence
speed is faster than that of the FcGMCC algorithm.
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Table 4 Choice of parameters in ANC

Algorithm (a) (b) (c) (d)

FcNLMS μw=0.3

μh=1 × 10−5

μw=0.3

μh=1 × 10−5

μw=0.1

μh=1 × 10−5

μw=0.2

μh=1 × 10−5

FcSNLMS μw=0.3

μh=1 × 10−5

μw=0.3

μh=1 × 10−5

μw=0.1

μh=1 × 10−5

μw=0.2

μh=1 × 10−5

FcMCC μw=0.3

μh=1 × 10−5

σ = 1

μw=0.3

μh=1 × 10−5

σ = 1

μw=0.1

μh=1 × 10−5

σ = 1

μw=0.2

μh=1 × 10−5

σ = 1

FcGMCC μw=0.3

μh=1 × 10−5

α=1.3, β=2

μw=0.3

μh=1 × 10−5

α=1.3, β=1.1

μw=0.1

μh=1 × 10−5

α=1.1, β=1.1

μw=0.2

μh=1 × 10−5

α=1.3, β=1.1

FcVGMCC μw= 7

μh= 1.5 × 10−5

a= 0.85, λ= 0.90

α=1.3, β=2

μw= 7

μh= 1 × 10−5

a= 0.85, λ= 0.90

α=1.3, β=2

μw= 7

μh= 1 × 10−5

a= 0.85, λ= 0.90

α=1.1, β= 1

μw= 7

μh= 1 × 10−5

a= 0.85, λ= 0.90

α=1.3, β=2

7 Conclusions

This study proposes the SAF-GMCC and SAF-VGMCC algorithms, to improve the
robustness of the traditional SAF-type algorithms. Unlike the algorithms based on
the error mean square criterion, which relies on the Gaussian environment, the SAF-
GMCC algorithm is not too sensitive to abnormal data because of the presence of the
kernel function. Thus, the SAF-GMCC algorithm offers good robustness in impul-
sive interference. In addition, the variable step-size is introduced to improve the
SAF-GMCC algorithm’s performance, and the SAF-VGMCC algorithm is proposed.
Comparedwith the fixed step-size algorithm, the SAF-VGMCC algorithm has theoret-
ically improved both convergence rate and steady-state error. Simulation in impulsive
interference shows that the performance of the above algorithms is effective in impul-
sive interference. Finally, this study presents the practical applications of the proposed
algorithms. Then, the SAF-GMCC and SAF-VGMCC algorithms are applied to non-
linearANC, and the FcGMCCandFcVGMCCalgorithms are proposed. The nonlinear
problem in the ANC model is solved by introducing the nonlinear spline adaptive
structure. In addition, a better noise removal effect is achieved with the algorithms’
robustness, even when the noise source contains impulsive interference. Simulation
experiments shows the feasibility of the proposed FcGMCC and FcVGMCC algo-
rithms in nonlinear and non-Gaussian noise environments.
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Fig. 8 ANR curves under different alpha impulsive noises
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