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Abstract
The children below 6years of age are called preliterate who use speech as one of their
primary forms of communication. Fundamental frequency or pitch is a characteristic
that is used to classify gender, but young children have reasonably similar pitch due
to their immature vocal tract which varies from 215 to 390Hz for both genders. Most
studies for gender identification have utilized pitch and mel frequency cepstral coef-
ficients (MFCC), because of their ability to capture the efficacy of signals. However,
the performance of pitch and MFCC on noisy speech signals are poor, and as a result,
they fail to accurately detect gender characteristics. Considering this limitation, the
proposed work investigates the novel fusion and ablation experimentation of mel fre-
quency cepstral coefficients (MFCC) and gamma-tone frequency cepstral coefficients
(GFCC). To enhance the accuracy of a robust text-independent children gender iden-
tification model, the cepstral features are combined with the tonal descriptors (pitch
and harmonic ratio). The most contributing front-end features were selected by fusion
and ablation analysis and distributed to a bagged tree classifier ensemble. To manage
the memory requirements, redundant features are trimmed using principle component
analysis (PCA). The hyper-parameter optimization is accomplished using the grid
search technique to further increase frame-level accuracy. This study is likely to be a
forerunner in the field of children’s speech recognition, which has been revealed to be
a reliable and accurate method of gender identification.
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1 Introduction

Children’s automatic speech recognition (ASR) systems have lagged behind adultASR
in terms of reliability. The precise challenges and strategies for evaluating child ASR
were yet to be substantially investigated. Recent research from the robotics community
reveals that ASR for kindergarten speech is exceptionally hard [31], regardless of the
fact that voice-based pedagogical and diagnostic tools may benefit this age group the
most. The review of grade and gender-specific ASR systems was performed, with an
emphasis on kindergarten-aged children (5–6years old) [16]. Gender classification of
children is one of the most significant procedures in speech processing. The paralin-
guistic effects can be identified from an acoustic speech signal and used to infer the
speaker’s identity, gender, age, personality traits, accent, and emotional states [22–24,
27]. For example, in some situations like a telephone conversation, it is difficult to
identify the gender of children [5]. The difficulty of distinguishing a child’s gender and
the presence of multiple significant speech cues between boys and girls have garnered
attention in gender classification research. For theOGIKid’s corpus, a complete and in-
depth investigation of the automatic speaker, age group, and gender identification from
children’s speech was presented [27]. However, it may not have been able to account
for all possible factors that could affect gender identification from children’s speech,
such as cultural background, accent, or language. Another research [26] presents dif-
ferent combinations of features used to evaluate the efficiency using machine-learning
techniques, which allows for flexibility in gender identification. Moreover, additional
research is needed to determine the most effective features for gender identification in
children’s speech. A technique for developing gender and age-based automatic mod-
els of 174 children (between 6 and 11years old) was detailed in another article [18].
The aforementioned study illustrates that gender identification results have greatly
improved compared to recent findings by various other researchers, but it’s challeng-
ing to correctly classify individuals who are extremely similar in age. Therefore, our
research aims to fill this gap and can accurately classify the gender in children below
6years of age.

The proposed research addresses these concerns by utilizing feature fusion and
ablation, as well as hyper-parameter tuning. The fusion and ablation of mel frequency
cepstral coefficients (MFCC) and gamma-tone frequency cepstral coefficients (GFCC)
feature vectors are concatenated with pitch and harmonic ratio. Then modeled using
an ensemble classifier for gender detection in an attempt to significantly improve
the representation of features. The process of fusing MFCC and GFCC is known as
“feature fusion”, whereas “feature ablation” is the process of removing undesirable
features to investigate individual features influencing the performance of the model.

The organization of the article is as follows. Section2 discusses relatedwork, Sect. 3
articulates the speech data sets used in this article, and Sect. 4 describes the proposed
methodology, which involves feature extraction using tonal and cepstral variations,
and classification using ensemble learning, Sect. 5 presents the experimental setup,
and Sect. 6 presents the experimental results. Finally, Sect. 7 concludes the proposed
empirical work briefly with future scope.
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2 RelatedWork

There has been considerable work on gender classification of adults’ speech and
achieved high accuracy of 99% [1, 4, 8], but quite little work done on children’s
speech. Extracting the para-linguistic information of children like age, gender, dialect,
and emotions from the speech are challenging. Some reasons may include the fact that
small vocal tracts of children, high levels of spectral variability, high pitch and reso-
nant frequencies, and lack of children’s speech data [32]. The study of gender identity
from the pitch ( f0) and formant frequencies (F1 + F2 + F3) of children’s speech aged
between 4–16years was attempted in [19] with an accuracy of 74%. Later on, many
researchers reported the effectiveness of pitch in distinguishing gender in children.
A typical approach found that the fundamental frequency f0 is high in spontaneous
speech [17] under noisy environments which is another challenge in the presentmodel.
In [6], three voice sources: cepstral peak prominence, harmonic-to-noise ratio and
spectral harmonic magnitudes were extracted for gender detection and compared with
MFCC for 5 age groups of children between 8–17 in conjunction with support vector
machine (SVM) and Gaussian mixture model (GMM) achieved an accuracy ranging
from 61–91%. In the article [26], the MFCCs, linear predictive cepstral coefficients
(LPCC), formants, pitch, shimmer and jitter features are extracted from reading speech
of children aged 6–11 and gained an accuracy of 84.79%with random forest (RF) clas-
sifier. Recently, [2] employed CatBoost machine to choose features from MFCC and
spectral subband centroids (SSC) in age and gender classification of children aged 7 to
14, achieving an accuracy of 86.23% with SVM classifier. Although the classification
accuracy of male and female increases with the age of the children because of the
maturity in vocal folds, however, considering the decrease in age groups as suggested
in this model is relatively difficult, this inspired us to reliably classify the gender of
preschool children from their speech.

Finally, themain contribution of this article is the classification of gender in children
below 6 years of age (preliterate children) from their spontaneous speech, which is
still an elusive and very little explored task. In addition, to complete this task, a novel
feature fusion and ablation analysis of MFCC and GFCC were used to investigate the
most promising characteristics in differentiating male and female classes of children,
as well as pitch and harmonic ratio in conjunction with the model ensemble.

3 Speech Data Sets

The database used in this study is recorded English speech at a preschool in the U.K
with 11 kindergarten school children consisting of 5 females and 6 males with a mean
(μ) age of 4.9years and standard deviation (σ ) of 4 months which was developed by
child speech recognition in human–robot interaction [15]. The dataset contains 670
recordings, out of which 280 from females and 390 from males. Children’s speech
is collected during interaction with robots holding three microphones (NAO, PORT
and STUDIO) placed at different natural locations in the school and includes noisy
environments like fan noise, bird noise, door closing, other children shouting from
other classrooms, etc.
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The dataset consists of three different categories of speech utterances: single-word
sentences, fixed sentences, and spontaneous speech. The single word utterances were
numbers from 1 to 10, fixed utterances were 5 short sentences (e.g., “the boy climbed
out of the window”), and spontaneous speech consists of long sentences which were
collected through story retelling from a picture book

All the recordings are in the format of “.wav”with a sampling frequencyof 44.1kHz,
resulting in 16 files per microphone (48 in total) per child. The spontaneous speech
was transcribed and cut into 222 sentences of various lengths (μ = 7.8 words per
utterance, σ = 2.6). However, the selection of this database in the proposed approach
was centered on the possibility of identifying the gender of children from spontaneous
speech rather than short utterances, which is useful for market applications of ASR.

4 ProposedMethodology

High-performance gender identification systems rely heavily on data pre-processing,
robust feature extraction, and, finally, classification. After thorough experimentation
of selecting optimum features from fusion and ablation ofMFCCandGFCC compared
against pitch and harmonic ratio, the proposed work is the only one to apply GFCC in
the identification of child’s gender. The best features are used to train an ensemble of
bagged tree classifiers, and gender class is predicted via majority voting.

4.1 Spontaneous Speech in Children

One of the most challenging aspects in children speech recognition is obtaining bet-
ter accuracy when spoken responses are relatively unscripted or spontaneous and
ungrammatical (e.g., “The girl putted the box on the table”). Preschool children speech
(4–6years) is remarkablydifferent fromhigher grade children (above7years) and iden-
tification performance is only 45.5%whereas higher grade children achieved 75% [7].
Each recording of spontaneous speech used in this study is around 2–3min long and
contains natural noise settings from several microphones.

4.2 Speech Pre-Processing

Pre-processing is mostly used to remove undesirable noise from an audio source.
Speech is a non-stationary signal with a low frequency (upto 4kHz), but is expected
to be stationary for a short period of time, i.e., between 20 and 30ms. Pre-emphasis
[12] is a straight-forward signal processing technique that boosts the amplitude of a
high-frequency speech signal to make it stronger than noise, which indeed improves
the signal-to-noise ratio (SNR).

The output of the pre-emphasis network is represented as E that boosts the high-
frequency components of an audio signal. It is typically applied to speech signals before
further processing, such as compression or recognition. Equation (1) shows how the
output of the pre-emphasis network at nth sample is calculated. It is the difference
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Fig. 1 Segmentation of children speech (Sn ) using pre-emphasis filter (HPre(Z)) and frame duration of
10ms with a hamming windowing (WHm(n)) of 30ms duration

between the current sample of the input speech signal (Sn), and the previous sample
(Sn−1) multiplied by coefficient α, as depicted in Eq. (1).

En = Sn − αSn−1 (1)

The finite impulse response (FIR) of the high-pass pre-emphasis filter (HPre(Z)) is
obtained from Eq. (1) by taking the Z-transform of both sides and is given in Eq. (2).

HPre(Z) = E(Z)

S(Z)
= 1 − αZ−1 (2)

where ‘Z ’ represents the Z-transform variable, and ‘α’ is a pre-emphasis coefficient
in the range of 0 < α ≤ 1.

The process of splitting the pre-emphasized audio signal into a sequence of frames
is referred to as framing and windowing [29]. Therefore, in this paper 30ms ham-
ming window WHm(n) with a 25ms overlap length to avoid signal loss, are used for
segmentation as shown in Fig. 1. The hamming window is a tapering function that
smooths out the start and end discontinuities of each sample using Eq. (3).

WHm(n) = 0.54 − 0.46 cos

(
2 · π · n

N

)
, 0 ≤ n ≤ N (3)

where ‘N ’ denotes the number of samples.

4.3 Proposed Tonal Descriptors

This section provides a detailed explanation of the pitch, harmonic ratio, and zero
crossing rate as efficient tonal descriptors that can be derived from children’s speech.

4.3.1 Pitch (Fundamental Frequency)

The study of tonal characteristics in speech, such as pitch and harmonic ratio, is
essential for understanding the prosody of children’s speech. Pitch, specifically the
fundamental frequency, is considered to be a crucial indicator of gender discrimination
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Fig. 2 Histogram representation of pitch for male and female children

Fig. 3 Comparison of pitch and harmonic ratio: a represents an example audio signal b represents the pitch
or fundamental frequency of the given signal c represents the harmonic ratio of the given signal

and identification in children’s speech. Previous research has found that children have
a higher pitch due to their immature vocal tracts, with ranges varying from 210 to
415Hz for children between the ages of 3 and 7 [11, 16]. This range is typically lower
for female children, which is between 212 and 375Hz (μ = 290 ± σ = 26) and
slightly higher for male children, which is between 245 and 390Hz (μ = 315 ± σ =
25). However, the similarity in pitch ranges between the two genders makes gender
classification challenging as shown in Fig. 2. Therefore, this study has explored the
use of another prosodic trait, the harmonic ratio, in combination with pitch to aid in
detecting children’s gender as shown in Fig. 3.
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Pitch or fundamental frequency ( f0) as shown in Eq. (4), is determined for a given
input frame of 30ms hamming window with an overlap of 25ms [30].

f0 = 1

2L

√
ϕ

ρ
, (4)

where L effective vocal fold length, ϕ longitudinal stress, and ρ tissue density.

4.3.2 Harmonic Ratio

In 1977, Stephanie Seneff introduced a method for detecting the harmonic ratio (HR)
by analyzing the distance between harmonics in a specific region of the spectrum,
specifically below 1100Hz [28]. This technique is used to derive the fundamental
frequency ( f0) of a sound by analyzing the harmonics created by the vibration of the
vocal cords and the flow of acoustical air from the vocal tract. The harmonic ratio
(�r ) is a measure of the number of frequency components in the power spectrum of
a sound. For each frame of the input signal, the HR is estimated using Eq. (5), and
the resulting feature vectors are then normalized using an auto-correlation function
(ACF).

�r =
∑N

n=1 SnSn−i√∑N
n=1 S

2
n
∑N

n=0 S
2
n−i

, for 1 ≤ i ≤ � (5)

where, Sn denotes speech signal at nth sample with N frame length, i is the delay of
ACF and � is the maximum delay referring to the minimal f0.

4.3.3 Zero Crossing Rate

The speech waveform can be divided into three regions: voiced, unvoiced, and silence.
The voiced speech region is considered to be the most informative, as it contains
valuable information on the pitch and harmonic ratio, which can be used to distinguish
it from silence and unvoiced speech [3]. To separate silence and speech regions, a short-
time power threshold is calculated, and the zero crossing rate (ZCR) is determined
using Eq. (6) to distinguish between voiced and unvoiced speech [29]. It is possible
to identify the voiced speech regions by combining the power threshold and ZCR for
each frame.

ZCR = 1

N

N∑
n=1

[
1 − sgn{SnSn−1}

]
, (6)

where sgn{·} =
{
1 SnSn−1 ≥ 0

0 Otherwise
Sn is the nth sample value of the speech signal

and frame period N .



Circuits, Systems, and Signal Processing (2023) 42:6228–6252 6235

Fig. 4 Feature fusion and feature ablation of cepstral descriptors: a represents the 26 static feature vectors
of both MFCC and GFCC extracted from all frames, b represents the 13 static GFCC features along with
log energy (2nd coefficient), c represents, the ablation of log energy resulting 13 static MFCC features, d
represents, the ablation of log energy resulting 13 static GFCC features

4.4 Cepstral Descriptors

To investigate the relevant cepstral features in speech for children’s gender identi-
fication, the MFCCs and GFCCs are used to compare with the pitch and harmonic
features. In general, the classification performance is measured by the quality of the
set of feature vectors. As a result, irrelevant features may affect the gender identifi-
cation model to be less accurate. Obtaining a specific set of linguistic features is of
high priority inmachine learning to achieve better classification performance. Further-
more, many researchers reported that MFCC features provide the best possible results
in gender identification, but that MFCC features are less accurate if the children’s
speech coincides with noise. In particular, introducing GFCC feature engineering in
children’s gender identification under natural environmental settings, and an effective
combination of MFCC fused with GFCC features and GFCC features alone with an
appropriate learningmechanism yields state-of-the-art results. The fusion and ablation
of front-end features are shown in Fig. 4. This illustrates the fusion and ablation of
front-end features. Figure 4a displays the fusion of MFCC and GFCC with 13 static
features, where a clear distinction between the coefficients can be seen. Figure 4b
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shows GFCC with log energy located at the 2nd cepstral coefficient. Figure 4c, d
depicts the ablation of log energy, showing only 13 static features. It is notable that
in comparison to Fig. 4b, d, the 2nd cepstral coefficient was removed from the 14
GFCCs, resulting in the clear visibility of 13 static GFCCs in Fig. 4d.

4.4.1 MFCC Feature Vectors

There is rich literature on extracting features by using MFCCs due to the ability to
simplify the speech amplitude spectrum in a cosine form on a nonlinear mel scale [14,
29]. To capture the dynamic features of non-stationary speech,� and�� coefficients

along with static MFCCs (�̂i ) were estimated using Eqs. (7) and (8).

�̂i =
k∑
j=1

(log Ŝ j ) cos

[
i

(
j − 1

2

)
π

k

]
, (7)

where �̂i is the i th cepstral coefficients of static MFCC, log Ŝ j denotes the log filter
bank amplitudes of speech and ‘k’ is number of filter bank channels. The following
equation is to calculate �(differential) feature coefficients,

�i,t =
∑k

i=1 i[�̂i,t − �̂i,t−1]
2

∑k
i=1 i

2
(8)

Here �i,t and �̂i,t are the i th delta coefficient and cepstral coefficients of MFCC
for frame ‘t’ respectively. ��i,t (acceleration) feature coefficients can be directly
calculated from �s using Eq. (9).

��i,t = �i,t − �i,t−1 (9)

4.4.2 GFCC Feature Vectors

GFCC features, on the other hand, are extracted because MFCCs are susceptible to
noise.MFCCs alone cannot provide better accuracy because children’s speech datasets
were gathered in noisy environments. The gamma-tone frequency cepstral coefficients
(GFCC) are a group of gamma-tone filter banks that are used to mimic the auditory
features of a human ear. The gamma-tone filter bank output can be used to create a
cochleagram,which is a time-frequency representation of the signal and it is comprised
of a number of overlapping bandpass filters that are specified in the temporal domain
by its impulse response at particular points all along the cochlea. The gamma tone
distribution function and sinusoidal function form an impulse response in the time
domain as shown in Eq. (10).

γ (t) = Â · tη−1 · exp(−2
Wt) cos(2
 fct + �) (10)
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Here Â controls the output gain,W represents the bandwidth, η represents the order
of the gamma tone filter that defines the gradient of the edges and which is usually
set to an order less than 4, fc(Hz) is the central frequency and �(radians) is the phase
shift often set to 0.

Similar to the triangular filter banks of MFCC, gamma-tone filter banks of GFCC
are the discrete cosine transform of nonlinear cubic root of the equivalent rectangular
bandwidth (ERB) scale [20]. The static features of GFCC can be computed from Eq.
(11).

γ̂i =
√
2

η

η∑
j=0

1

3
(log Ŝ j ) cos

[
i

(
j − 1

2

)
π

η

]
(11)

where γ̂i is the i th cepstral coefficients of static GFCC, 1/3 log(Ŝ j ) denotes the
cubic root of log filter bank amplitudes of speech and η is a number of filter bank
channels. The following Eqs. (12) and (13) are used to calculate �i,t (Differential)
feature coefficients and ��i,t (Acceleration) feature coefficients from static GFCC.

�i,t = γ̂i,t − γ̂i,t−1 (12)

��i,t = �i,t − �i,t−1 (13)

4.5 Ensemble Learning Classifier

Ensemble learning is a generic machine learning meta-approach that aims to improve
predictive performance by aggregating predictions from individual models. Compared
to individual decision tree classifiers, the ensemble methods can significantly improve
the classification performance in children’s speech.

The ensemblemodel’s basic principle is that a cluster ofweak learners joins together
to become strong learners, boosting the model’s accuracy. The predictions made by
the ensemble members are then aggregated using simple statistics, such as voting as
depicted in Algorithm 1. Although there are nearly an unlimited number of ways, to
choose the best parameters of the bagged tree [21] ensemble classifier shows high
accuracy for all the tested cases, and thus, it is chosen for the purpose of child gender
classification in this article.

Assume Xi ∈ {x1, x2, . . . , xn} to be the original feature set with n × q matrix,
where xn is the nth sample with q features and Y j ∈ {y1, y2} is the class labels in
classification of gender, where y1 is the female class label and y2 is the male class
label. The bootstrap samples from randomly selecting with replacement are denoted
by �∗

b ∈ {θ∗
1 , θ∗

2 , . . . , θ∗
B}, where B as a number of learner models.

Consequently, bootstrap samples are modeled using B decision tree classifier and
denoted as C∗

DT (Xb) = Info(�∗
b) which is the information gain [25] of each boot-

strap data. The model estimator of an ensemble of bagged tree classifier is given as

�∗
bag = argmax

y∈Y

{∑B
b=1 C

∗
DT (Xb) = Y j

}
that chooses the output class which receives

the highest votes as final classification.
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Algorithm 1 Bagged tree classifier for child gender classification
Input: Child speech dataset [Train 75%, Test 25% ]
Use 5-fold cross validation.
[Xi , Y j ] Training data Xi with labels Y j ε{ y1, y2}
Result: Female child & male child classification
for i= 1:n do

�∗
b = [X∗

i , Y ∗
j ] � Bootstrap sampling of [Xi , Y j ]

C∗
DT (Xb) = Info(�∗

b) � Information gain of bootstrap data
end for
for j= 1:2 do

�∗
bag = argmax

y∈Y

{ B∑
b=1

C∗
DT (Xb) = Y j

}
� Majority vote prediction

end for

Fig. 5 Proposed methodology using feature fusion and ablation for gender identification in pre-school
children

In this work, the ensemble of bagging tree classifier is implemented with the total
number of splits are 62,623 and the number of learners are 30. Classification of male
and female in children can be inevitably identified using spontaneous speech record-
ings of subjects as shown in Fig. 5.

5 Experimental Setup

The experimental setup for developing the gender identification model using the pro-
posed feature fusion and feature ablation ofMFCCandGFCCusing ensemble learning
is presented in this section. In-depth investigations were conducted in four distinct
ways to evaluate the performance of the suggested child gender identification model.
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5.1 Feature Fusion and Ablation Analysis

In this research, both cepstral and tonal descriptors are extracted from children’s
spontaneous speech. Spectral descriptors are mainly static and dynamic MFCCs and
GFCCs, as well as fused MF-GFCC features, whilst the pitch and harmonic ratio are
tonal descriptors.

5.1.1 Feature Fusion Analysis

Fusion of MFCC and GFCC features is a technique used to combine the strengths of
both feature sets and improve the performance of gender identification systems for
children’s speech.MFCCs are a commonly used feature in speech processing systems,
as they capture the spectral characteristics of speech in a compact form. They are based
on a nonlinear frequency scale, which makes them efficient to compute and easy to
interpret. However, they may not be optimal for certain types of speech, such as
children’s speech, where the characteristics of the voice may be different from adult
speech. Children’s voices are known to have different pitch, formants, and prosodic
patterns than adult speech, which can make them harder to identify. GFCCs, on the
other hand, are designed to better handle non-stationary signals, such as those found
in children’s speech. They are based on a nonlinear cubic root of ERB frequency scale,
which allows them to capture the harmonic structure of speech. This is important for
capturing the unique characteristics of children’s voices, such as their pitch, formants,
and prosodic patterns.

By concatenating MFCC and GFCC features, a gender identification system can
take advantage of the strengths of both feature sets and improve its performance
on children’s speech. The MFCCs can provide a good representation of the spectral
characteristics of speech, while the GFCCs can capture the harmonic structure of
speech. The combined feature set can be more robust and accurate than using a single
feature set alone.

In practice, the concatenation is done by appending the GFCCs to the MFCCs,
forming a longer feature vector that will be used as an input to the gender identification
model. This concatenated feature vector can be used to train and test the model. Once
themodel is trained, it can be used to performgender identification on children’s speech
with a high degree of accuracy and robustness. Basic acoustic features (BAF) were
extracted from the children’s speech initially, which included static MFCC along with
� and �� (39) feature vectors and static GFCC along with � and �� (39) feature
vectors. For the comparison against BAF, static MFCC and static GFCC (26) feature
vectors were concatenated in the feature fusion (FF) setup.

In addition, it’s also worth noting that gender identification from children’s speech
is a complex task as it relies on both acoustic and linguistic features, therefore, fusing
different features from multiple sources can help the system to be more robust and
generalize better.
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5.1.2 Feature Ablation Analysis

Feature ablation, particularly leave-one-feature-out (LOFO) [9], is important in chil-
dren’s gender identification from speech because it allows for the evaluation of the
contribution of each individual feature to the overall performance of the gender iden-
tification system. LOFO is a method of feature ablation where each feature is removed
one at a time and the performance of the gender identification system is evaluated with
the remaining features. This allows for the identification of which features are most
important for accurate gender identification and which features can be removed with-
out significantly impacting performance. In the case of children’s gender identification
from speech, different features such as pitch, formants, harmonic ratio, acoustic, and
prosodic features may have different importance. By removing each feature one at
a time, it is possible to understand which features are most important in children’s
speech, and which ones may not be necessary.

This analysis can be useful in identifying redundant or less important features,
which can then be removed from the feature space, resulting in a smaller and more
efficient feature space. This can also help in understanding the contribution of each
feature to the final decision of the model. Additionally, it can aid in identifying which
feature type (MFCCorGFCC) ismore important for the specific task,which in turn can
help to improve the generalization ability of the system. The ablation experiment that
was part of the proposed investigation is represented by the FA1 and FA2 experiments.
Thirteen static features of MFCC or GFCC along with log energy are the outcomes of
the ablation of dynamic features (� & ��) of MFCC or GFCC in FA1 whereas FA2
represents the feature selection of 13 static features of MFCC or GFCC by ablation of
log energy.

Overall, feature ablation is a powerful tool for understanding the underlyingmecha-
nisms of gender identification in children’s speech and for improving the performance
of gender identification systems.

5.2 Transform Best FA2 Features Vectors using Principle Component Analysis
(PCA)

An excessive intake of concatenated features will decelerate the computational speed
of the model. As a result, using dimensionality reduction algorithms like PCA to
remove redundant features is crucial. To improve the performance of the proposed
model in terms of frame-level accuracy, PCA is enabled. The PCA reduces 14 features
to 9 features that account for 90% of variability. The training time and prediction speed
before and after enabling PCA were recorded.

5.3 Hyper-Parameter Tuning

The hyper-parameter optimization or tuning in machine learning is the process of
choosing a group of optimal hyper-parameters for a learning algorithm. In this paper,
grid search is used to fine-tune the ensemble model’s parameters search with learning
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rate ranges between 0.001–1, number of predictors to be 10 features, and learners to
be 10–500.

5.4 Comparison of Proposed State-Of-the-Art Features with Baseline Results

To show the effectiveness of the proposed model, a comparison with baseline models
was performed. The extracted features of UK children’s speech datasets are incor-
porated and retrained by other baseline models like artificial neural network (ANN),
deep neural network (DNN), random forest (RF), support vector machine (SVM), and
multi-layer perceptron (MLP).

6 Experimental Results

This section reveals the results of all the experiments discussed in Sect. 5.

6.1 Performance Analysis using Feature Fusion and Ablation Study

In this section, to evaluate the classification performance of gender identification in
children’s speech and to verify the choice of modeling, different combinations of
cepstral and tonal descriptors were used as shown in Table 1. The experiments are
conducted in such a way that the combination of cepstral features are concatenated
with pitch and harmonic ratio separately and predicted the accuracy of the child gender
identification model in terms of files (FileAcc) and frames (FrameAcc).

• Gender Identification (GI) Model using Pitch ( f0) Concatenation:
The basic acoustic characteristics (BAF), which are composed of 39MFCC feature
vectors and 39 GFCC feature vectors, were taken into consideration in the initial
experiment. 39 MFCCs were concatenated with a pitch that yields a FileAcc of
89.85% and FrameAcc of 85.7%. Similarly, the combination of pitch and 39 GFCC
features yielded a FileAcc of 92.75% and FrameAcc of 86.47%. Since GFCCs are
inherently more noise-robust than MFCCs, their adoption enhances the perfor-
mance of the GI model. Further, the investigation into feature fusion (FF) of 13
static MFCC and 13 static GFCC (MF-GFCC) continued and concatenated with
a pitch, which results in FileAcc of 94.2% and FrameAcc of 89.3%. When com-
paring the FF study with the BAF study of GFCC, it has been shown that there is
a relative improvement (RI) in the accuracy of 1.52% at the file level and 3.27%
at the frame level. A feature ablation (FA1) investigation is being performed in
the subsequent iteration by ablating the dynamic features (13� + 13��) from
the BAF of MFCCs and GFCCs. This produces 13 static and the co-existing log
energy features concatenated with the pitch showing that in the MFCC, FileAcc
rapidly drops to 85.5% and FrameAcc to 83.34%. Additionally, the empirical use
of the GFCC (13 static features + log energy) concatenated with a pitch for gender
prediction demonstrates the higher accuracy at the file and frame level reporting, at
98.55 and 90.11%, respectively, as demonstrated in Fig. 6. The final experimental
setup aimed to evaluate the impact of each feature on the model’s performance. To
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Fig. 6 Performance analysis: a Effect of fusion and ablation of cepstral features on file accuracy (%) with
pitch ( f0) and harmonic ratio (HR), separately. b Effect of fusion and ablation of cepstral features on frame
accuracy (%) with pitch ( f0) and harmonic ratio (HR), separately

achieve this, a leave-one-feature-out (LOFO) ablation study, also known as FA2,
was conducted. The study involved removing one feature at a time from the 14 fea-
tures of MFCC and GFCC. These 14 features included 13 static cepstral features
and log energy. Themodel was then retrained to assess its performance. The results
of the LOFO study showed that in the case of MFCCs concatenated with pitch,
removing any MFCC feature or log energy did not affect the model’s accuracy.
However, in the GFCC setup of FA2, excluding the log energy feature resulted in
an improvement in accuracy. Thus, it was concluded that all cepstral features of
GFCC contributed to the model’s performance, except for log energy. Log energy
added noise or redundancy to the feature set, which negatively affected themodel’s
ability. The results demonstrated a significant enhancement in the model’s perfor-
mance when the log energy feature was removed from the GFCCs. As a result,
when log energy was excluded from GFCCs and combined with pitch, the accu-
racy per file reached 100% and the accuracy per frame was 90.13%, as indicated
in Table 1.

• Gender Identification (GI) Model using Harmonic Ratio (HR) Concatenation:
As it was evident in the above section, GFCC performed effectively when com-
bined with pitch. The subsequent harmonics of fundamental pitch, known as the
harmonic ratio, are taken into consideration and evaluated for gender prediction in
order to advance the research. Initially, the BAF, which is composed of 39 MFCC
feature vectors and 39 GFCC feature vectors, was taken into consideration. 39
MFCCs were concatenated with a HR that yields almost similar performance
as pitch which reported to a FileAcc of 89.85% and FrameAcc of 85.22%. Simi-
larly, the combination of HR and 39 GFCC features yielded a FileAcc of 92.75%
and FrameAcc of 86.26%. This BAF research revealed that the cepstral features
combined with pitch performance are equally similar to the cepstral features con-
catenated with HR performance. Further research into the feature fusion (FF) of
13 static MFCC and 13 static GFCC (MF-GFCC) was conducted and combined
with the HR which results in FileAcc of 92.75% and FrameAcc of 89.16%. When
comparing the FF study with the BAF study of GFCC, it has been shown that there
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Table 2 Confusion matrix of gender identification model of feature ablation studies FA1 & FA2 in terms
of FileAcc(%)

Class FA1: GFCC (14 features)+Pitch FA2: GFCC (13 features)+Pitch

F M F M

F 96 4 100 0

M 0 100 0 100

F female child, M male child

is no relative improvement (RI) at the file level, but a RI of 3.36% is observed at the
frame level. A feature ablation (FA1) results in 13 static and log-energy features
combined with HR have revealed that, in the MFCC, FileAcc and FrameAcc both
swiftly decrease to 85.5 and 83.25%, respectively. Additionally, GFCC (13 static
features + 1 log energy) concatenated with a HR for gender prediction demon-
strates higher accuracy at the file and frame level reporting, at 98.55 and 89.7%,
respectively. In the final stage of the experiment, the impact of harmonic ratio and
LOFO (FA2) characteristics on the performance of the model was evaluated. The
results showed that the addition of HR and LOFO did not affect the accuracy of the
FA2 model, which was consistent with that of the previous stage, FA1, as demon-
strated in Table 1. This finding suggests that the HR feature was already highly
discriminative and played a crucial role in accurately classifying audio signals.
Furthermore, when the log energy feature was removed from the cepstral features
of MFCCs and GFCCs and concatenated with HR, there was no significant impact
on the model’s performance, which remained at 98.55% at the file level and 89.7%
at the frame level.

The gender identification performance of GFCC + Pitch from FA1 and FA2 experi-
ments are further examined in the confusionmatrix of Table 2. In FA1, 4%of the female
class is misclassified as male which results in 98% of overall classification accuracy,
and leaving a Log Energy from 14 features of GFCC results in 100% accuracy of the
proposed model.

6.2 Performance Analysis using Feature Transformation with PCA

As a part of reducing the computational complexity of the suggested model, PCA
transformation of key contributing features of FA2 was followed. As demonstrated
in the above experiment, GFCC (13 static features)+pitch (1 feature) achieves 100%
accuracy (FileAcc) and 90.1% (FrameAcc), but the space requirements inMATLAB are
rather extremely high due to the high dimensionality of the feature space. However,
the typical goal of using PCA is to mitigate the redundant feature dimensions from
14 to 9 while incorporating required components that explain 90% of the variability,
resulting in a new set of 9 features known as principal feature components.

An important measure in the selection of a suitable feature subspace called
“Explained Variance” is considered to be 90% which corresponds to those top 9 fea-
tures. The explained variance per component in descending order is constructed with
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Table 3 Performance analysis of ensemble model before and after PCA in terms of number of features,
frame accuracy (%), prediction speed (observations/second), and training time (seconds)

Parameters Before PCA After PCA

No. of features GFCC+Pitch (13 static+1) GFCC+Pitch (8 static+1)

Accuracy/frame 90.13% 90.13%

Prediction speed 42,000obs/s 45,000obs/s

Training time 51.59 s 46.051s

Table 4 List of hyper-parameters used in grid-search optimization in tuning the ensemble model

Parameter Optimal configuration value

Optimizer Grid search

Number of grid divisions 10

Number of iterations 100

Number of learners 210

Learning rate 0.02155

Maximum number of splits 5380

Observed minimum classification error 0.048

33.3%, 14.5%, 9.9%, 7.8%, 7.0%, 6.2%, 4.6%, 4.1%, 3.7% and are more than enough
to describe the entire data set. And discarding the remaining variance of those not
opted 5 features contains the least information and can be excluded. To inspect the
application of PCA in the proposed model, prediction speed is increased and training
time is reduced as shown in Table 3. However, it has been discovered that the same
accuracy can be achieved even with reduced features.

6.3 Performance Analysis of Optimizable Ensemble Model

The relative importance of the proposed gender identification model, which employs
the grid search algorithm of hyper-parameter tuning, is examined in this section.
Tuning the hyper-parameters of an ensemble classifier, such as the learning rate,
the maximum number of splits, and the number of learners, of a machine learning
algorithm, influences the learning process of a model to work at an optimal level for
performance improvement. As a result, various hyper-parameter tuning approaches,
such as grid search, Bayesian search, and random search, are frequently used [10]. The
Bayesian and random search methods are sluggish and unsophisticated. Hence, the
grid search method was used to select the optimum hyper-parameters for the proposed
model.

Using the grid search method, we develop a model for various hyper-parameter
combinations, validate the model for each combination, and save the findings. The
selection of hyper-parameters that yields the desired results out of all possible com-
binations is identified as the best parameter set for the proposed model. Using a grid
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Fig. 7 Grid-search hyper-parameter optimization

search approach, the determined best set of hyper-parameters are shown in Table 4
with a minimum classification error [13] of 0.048. The yellow spot in Fig. 7 repre-
sents the iteration that corresponds to the hyper-parameters that provide the observed
minimum classification error (MCE).

6.4 Comparative Analysis of Proposed Systemwith EarlierWork

To evaluate the performance of the proposed system for gender identification in chil-
dren, various front-end features used in previous studies were compared in Table 5
based on their classification accuracy. However, it’s important to note that the results
obtained by the proposed method cannot be directly compared with the baseline meth-
ods due to differences in datasets. The baseline models used in these studies were
trained on datasets that are not publicly available, making direct comparison difficult.
Instead, to assess the effectiveness of the proposed approach, the most contributing
features (GFCC+Pitch) fromUK children’s speech datasets were fed to other baseline
models, as presented in Table 6. While these models showed improvement over the
compared method, with a relative improvement of 1.04% using ANN and 2.23% using
DNN, as reported in [26], the proposed ensemble of bagged trees achieved even higher
accuracy. The bagged trees model outperformed the baseline models and achieved the
highest accuracy, highlighting its effectiveness for gender identification in children.

In nutshell, the ensemble model proposed in this study, which uses GFCC and pitch
features, has shown promising results for identifying the gender of preschool children.
Additionally, incorporating these features into various baseline models demonstrates
the effectiveness of our proposed approach in improving the accuracy of gender clas-
sification.
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7 Conclusion and FutureWork

In this paper, the noise-robust front-end features are extracted from the voiced samples
of spontaneous speech datasets. Novel fusion and ablation studies ofMFCCandGFCC
that combine the effectiveness of tonal descriptors (pitch and harmonic ratio) were
employed to detect the gender of children. The rigorous experimental finding revealed
that the performance of the various combinations of features shows an overall accu-
racy of approximately 89.8–100% outperforms the previous approaches. Moreover,
the GFCC and pitch were found to be suitable for classifying gender using an ensem-
ble model of bagged trees. The performance of the model was evaluated by reducing
the feature dimensions using PCA and furthermore focusing on memory requirements
and training time. The ideal parameter set is determined via the grid search hyper-
parameter optimization, with a least miss-classification error of 0.048. The existing
approaches for determining children’s gender either demands clean speech datasets
or require more feature extractors because of more spectral and temporal changes. It
is important to say that the data is from 3 different microphones (NAO, PORT, and
STUDIO) in a noisy environment with targeted children of below 6 years of age whose
speech has higher spectral and acoustic variability. Despite multiple constraints, this
innovative methodology is able to predict the gender of children with an accuracy
of 100% outperforming existing methods. The obtained results motivate us to con-
tinue researching ensemble learning, which might be used as a universal model for
classifying para-linguistic effects in large datasets of spontaneous speech in children.
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