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Abstract
This paper proposes a neweffective scale-aware edge-smoothingweighting constraint-
based weighted guided image filter (ESAESWC-WGIF) for single image dehazing.
Edge-weighting constraint incorporated in this method ismulti-scale and less sensitive
to regularization parameter. It removes halo artifacts and over-smoothing strongly and
preserves edge information in both flat and sharp regions more accurately than the
guided image filter (GIF) and weighted guided image filter (WGIF). There are three
main steps in the proposed method: In the first step, dark channel prior method is
applied to hazy input image to estimate atmospheric map and transmission map. In
the next step, we refine the initial transmission map using the proposed ESAESWC-
WGIF. It removes halo artifacts, over-smoothing effect strongly and preserves edge
information in both flat and sharp regions. In the final step, the haze-free image is
recovered from the scene radiance. About 3200 images from Fattal, NYU2, D-HAZY,
Haze-RD, and O-Haze datasets are used to compare the performance of the proposed
filter with the existing image dehazing methods. Experimental results prove that the
proposedmethod is independent of the nature of the input image.Moreover, it produces
better visual quality. It is noteworthy that the proposedmethod is faster than the existing
methods for a given resolution of images.
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1 Introduction

The visual quality of the outdoor images is seriously degraded due to hazy weather.
Haze, fog, water droplets, suspended particles, etc., are different conditions of bad
weather. The outdoor images captured under this situation have poor color, contrast,
and visibility [7, 33, 38]. The reason for the formation of these types of turbidmediums
is scattering and absorption of light by different aerosols present in the atmosphere
[22, 36]. Image dehazing is extremely desired in computational photography, image
processing, and computer vision [10, 32]. It can significantly reduce color and visi-
bility and increase the contrast of hazy images. To improve the performance of hazy
images, many algorithms have been proposed in different applications of computa-
tional photography, computer vision, and image processing. Due to unknown distances
from the camera to scene points as well as unknown airlight, it is tough to remove haze
from the input image. Several methods have been developed to remove haze. Tan et
al. proposed a local contrast optimization-based haze removal method [38]. However,
experimental results produce color distortion and halo artifacts. He et al. proposed
a novel dark channel prior (DCP) [12] method for single image dehazing. However,
this method is not applicable to large sky regions and halo artifacts, as well as color
distortions, persist in both flat and sharp regions. To reduce halo artifacts, different
edge-preserving image filters have been proposed [13, 23, 26, 39, 44]. Bilateral fil-
ters and their improved versions are widely used in image processing [39, 44]. But,
the pixels cannot maintain consistency near the edges, and hence, edge information
is not preserved appropriately. Further, He et al. developed local linear model-based
guided image filter (GIF) [13] to overcome the drawback of bilateral filter [39]. It
is a good edge-preserving filter. Here, the contents of the guided image or different
images are considered as filter input. It has wide applications in image processing like
detail enhancement, reduction in edge smoothing, image feathering, denoising, etc.
However, halo artifacts and over smoothing persist in the sharp regions. Further, a
weighted guided image filter (WGIF) [26] was proposed to reduce the halo artifacts
by introducing an edge-aware weighting factor in the existing GIF [13]. But, due to
the local linear model, it is unable to preserve edge information in the sharp regions. In
this paper, we propose an effective scale-aware edge-smoothing weighting constraint-
based weighted guided image filter (ESAESWC-WGIF) for single image dehazing.
The main contributions of this work are summarized as

• In this paper, we propose a new effective scale-aware edge-smoothing weight-
ing constraint-based weighted guided image filter (ESAESWC-WGIF) for single
image dehazing.

• The proposed edge-smoothing weighting is a multi-scale-based local linear filter,
and it is less sensitive to the regularization parameter than the GIF, WGIF, GGIF,
and EGIF methods.

• This filter is proposed by incorporating of ESAESWC into the cost function of
GIF.

• It is an excellent edge-preserving filter and removes halo artifacts and over-
smoothing strongly in both flat and sharp regions.
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• To analyze the effectiveness of the proposed method, we have evaluated PSNR,
SSIM, FADE, and CIEDE2000 metrics for different datasets, viz. Fattal, NYU2,
D-HAZY, Haze-RD, andO-Haze datasets. Experimental results prove that the pro-
posed method achieves favorable performance against the existing haze removal
methods.

The remaining part of this paper is framed as follows. In Sect. 2, we shortly review
the related works. Section3 covers the preliminary work essential for understanding
the GIF and related edge-preserving filtering concept. The proposed dehaze algorithm
is detailed in Sect. 4. Experimental outcomes are discussed in Sect. 5, and Sect. 6
concludes the paper.

2 RelatedWork

This work is related to prior-based, edge-preserving filter-based, and deep-learning-
based haze removal methods.

2.1 Prior-Based Haze Removal Methods

Various prior-based haze removal methods are in existence. The prior-based well-
known haze removal methods are DCP [12], CAP [48], DSPP [14], CEP [4], BDPK
[19], IDGCP [20], SIPSID [29], and IDBP [21]. He et al. proposed a dark channel
prior (DCP) [12] method for single image dehazing. In DCP, dark channel is defined
as at least one color channel has very low intensity in the non-sky regions. However,
it fails when bright objects are present in the scene. Moreover, it is computationally
inefficient due to soft matting. It generates halo artifacts and color distortions at depth
discontinuity. Zhu et al. proposed a color attenuation prior (CAP) method in [48] for
single image dehazing. Here, a linear model-based supervised learning method is used
to evaluate the depth information of the input hazy image. Next, He et al. proposed an
optimal transmission map-based difference structure preservation prior [14] method
for single image dehazing. This method used an image patch as a sparse linear combi-
nation of the elements to obtain accurate transmission map. Next, Bui et al. proposed
a color ellipsoid prior [4] method for single image dehazing. This method used a color
ellipsoid geometry to calculate the transmission map which increases contrast of the
restored image pixels, while preventing over-saturated pixels. In this prior, Ju et al.
proposed an adaptive and more reliable atmospheric scattering model (RASM)-based
algorithm known as Bayesian dehazing algorithm (BDPK) [19]. This method directly
converts the image dehazing process into an optimization function using Bayesian
theory and prior knowledge and restore the scene albedo with an alternating min-
imizing technique (AMT). Next, an effective gamma correction prior (GCP)-based
atmospheric scattering model (ASM) is proposed in [20] for image dehazing. In this
model, first an input image is transformed into a virtual image and it is combined with
an input image to calculate scene depth of image dehazing. Next, Lu et al. proposed
a saturation-based iterative dark channel prior (IDCP) [29] method for single image
dehazing. In IDCP, dark channel is reformulated in saturation and brightness terms
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and estimates the transmission map without computing the dark channel. In [21], Lu
et al. proposed a novel blended prior model for single image dehazing (IDBP). This
method has two modules such as atmospheric light estimation (ALE) and a multiple
prior constraint (MPC) to remove haze from input image. The prior-based methods
remove haze efficiently. However, they fail to preserve edge information in the sharp
regions and halo artifacts are observed in the dehazed image.

2.2 Edge-Preserving Filtering-Based Haze Removal Methods

Halo artifact is a major problem in haze removal algorithms. Therefore, He et al.
developed a novel guided image filter (GIF) [13] for single image dehazing. In this
algorithm, a local linear model is used to represent iterated output with the help
of a guided image. This method reduces the halo artifacts and preserves the edge
information more accurately. But, GIF [13] fails to preserve edge information in sharp
regions due to local linear model and large computational complexity. Next, Li et al.
proposed a weighted guided image filter (WGIF) [26] for image dehazing. It removes
halo artifacts strongly and preserves the edge information more accurately in the sharp
regions than the GIF [13]. However, due to local linear model and fixed regularization
parameter, over-smoothing takes place in the sharp regions. Next, Kou et al. proposed a
multi-scale edge-aware weighting-based gradient domain guided image filter (GGIF)
[23] to avoid over smooth images in flat regions and reduce halo artifactsmore strongly
thanWGIF [26]. But, over-smoothing in the sharp regions increaseswith an increase in
the regularization parameter. In EGIF [28], the average of local variances for all pixels
is incorporated in the cost function of GIF [13]. It removes halo artifacts effectively
and preserves edge information more precisely than GIF [13], WGIF [26], GGIF [23]
methods. However, it also over smooth images in the sharp regions depending on the
value of the regularization parameter. Next, Geethu et al. proposed a weighted guided
image filter for image dehazing [11]. In [15], Hong et al. developed weighted guided
image filtering-based a local stereo matching algorithm to improve scene depth of
hazy image. Chen et al. proposed a weighted aggregation model using guided image
filter for single image dehazing in [6]. In [16], Hong et al. proposed a fast guided
image filtering-based real-time local stereo matching algorithm for image dehazing.

2.3 Deep-Learning-Based Haze Removal Methods

With the popularity of convolutional neural network (CNN), many deep-learning-
based haze removal methods such as DehazeNet [5], AOD-Net [24], Proximal
dehazeNet[43], PDR-Net[25], FFA-Net[34], andRefineDNet [47] have been proposed
for image dehazing. In [5], Cai et al. proposed a trainable deep learning architecture
called DehazeNet to estimate transmission map and then remove haze by atmospheric
scatteringmodel (ATSM). In [5], a nonlinear activation function called Bilateral Recti-
fied Linear Unit (BReLU) is proposed to restore the haze-free image more accurately.
Next, Aod et al. proposed an end-to-end CNN-based deep learningmodel called AOD-
Net [24] to remove haze. It is designed by re-formulating ATSM and directly generates
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the haze-free image through a lightweight CNN. Yang et al. [43] presented a CNN-
based deep architecture for single image dehazing by learning dark channel prior
and transmission map. This method used a proximal learning-based iterative deep
learning algorithm called proximal DehazeNet for single image dehazing. Next, Li et
al. proposed a deep CNN for single image dehazing named PDR-Net [25]. Here, a
perception-driven image dehazing sub-network is designed for single image dehazing.
The refined sub-network improves the contrast and visual quality of the dehazed image.
Next, Qin et al. proposed an end-to-end feature fusion attention network (FFA-Net)
[34] which combines the channel attention and pixel attention approach to directly
recover the haze-free image. This method performs outstanding in case of thick haze
and rich texture details. Zhao et al. proposed a two stage weakly supervised framework
named RefineDNet [47] for single image dehazing. In [47], first prior-based DCP is
used to recovered the visibility and then introduced generative adversarial network
(GAN) to enhance the contrast and realness of the dehazed image. However, these
methods are impractical and most of the models are trained on synthetic hazy datasets
and often fail when tested on real hazy datasets. They require enormous computation
and memory resources, especially with the increase in network depth.

3 Background

In GIF [13], the filtered output is linearly related to the guidance image, and it is
expressed as

qi = ak Ii + bk, ∀i ∈ ωζ1(k), (1)

where Ii represents an input the guidance image and qi represents its linear transform
inwindowωζ 1 at i th pixel position with radius ζ1 and (ak, bk) represent constant linear
coefficients in window ωζ1 at pixel position kth.
The minimized cost function in window ωζ1(k) can be expressed as

E(ak, bk) =
∑

i∈ωζ1 (k)

((ak Ii + bk − pi )
2 + εa2

k ), (2)

where pi represents a filter input and ε represents a regularization parameter used to
penalize large ak . The cost function in Eq. (2) is a linear ridge regression model [8,
49], and its optimal solution is given in terms of linear coefficients (ak, bk) as

ak =
1

|ω|
∑

i∈ωζ1 (k) Ii pi − μk pk

σ 2
k + ε

, (3)

bk = pk − akμk . (4)

where |ω| represents number of pixels,μk is mean, σ 2
k is variance and pk is average or

mean of p in window ωζ 1(k). The regularization parameter (ε) and variance σ 2
k play

a vital role in preserving edges in smooth and sharp regions. Specifically, ε should be
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Fig. 1 The basic framework of the proposed haze removal method

larger than σ 2
k to preserve edges in smooth regions and ε should be smaller than σ 2

k to
preserve edges in the sharp regions.
In order to keep the edge information more accurately than the GIF [13], a weighted
guided image filter (WGIF) is proposed in [26]. In WGIF [26], local variance is
replaced by a new edge-aware weighting �I (k), and it can be expressed as

�I (k) = 1

N

N∑

i=1

σ 2
I ,1(k) + λ

σ 2
I ,1(i) + λ

, (5)

where N indicates the pixel number of the guidance image I and the parameter λ is a
small constant and its value is selected by as (0.001× M)2 with M being the dynamic
intensity range of the image. σ 2

I ,1(k) and σ 2
I ,1(i) are the local variance of I in the

windows ωk and ωi , respectively. The optimized cost function for WGIF [26] can be
expressed as

E(ak, bk) =
∑

i(x,y)∈ωζ1 (k)

{
(ak Ii + bk − pi )

2 + a2
k

ε

�I (k)

}
. (6)

The optimal value of ak and bk is obtained by the following expression:

ak = μI∗p,ζ1(k) − μI ,ζ1(k)μp,ζ1(k)

σ 2
I ,ζ1

(k) + ε
�I (k)

, (7)

bk = μp,ζ1(k) − akμI ,ζ1(k). (8)

where μI∗p represents the mean of (I ∗ p).

4 ProposedMethod

In this paper, an effective scale-aware edge-smoothing weighting constraint-based
weighted guided image filter (ESAESWC-WGIF) is proposed for single image dehaz-
ing. The basic framework of the proposed method is shown in Fig. 1. The proposed
method has three main steps as follows: In the first step, the dark channel prior (DCP)
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[12] method is used to compute the atmospheric and transmission maps accurately. In
the second step, we refined the raw transmission map by ESAESWC-WGIF algorithm
to remove halo artifacts, over smooth, and preserve edge information more accurately
in both flat and sharp regions. Finally, we recovered the dehazed image from the scene
radiance.

4.1 Dark Channel Prior (DCP)-Based Atmospheric Map and TransmissionMap
Estimation

The popular Koschmieder’s law [18] is generally used to represent the haze formation.
However,McCartney [30] improvedKoschmieder’s lawby estimating the atmospheric
map as well as transmission map more accurately. In this model, haze formation is
represented by the following expression:

I (x) = J (x)t(x) + A(1 − t(x)), (9)

where x is pixel’s position into the image, I (x) is input hazy image, J (x) is output
dehaze image or scene radiance, t(x) is the medium transmission map, and A is the
global atmospheric light or map. In Eq. (9), the first term J (x)t(x) and the second
term A(1 − t(x)) are called direct attenuation and airlight, respectively.
The relation of medium transmission map t(x) with the object’s distance d(x) can be
expressed as

t(x) = exp(1 − βd(x)) ≤ 1, (10)

where 0 ≤ d(x) ≤ ∞ is the depth (distance) of scene point (pixel) from camera and
β is the scattering coefficient related to the wavelength of light and it is exponentially
attenuated with the scene depth d(x). The single image haze removal result can be
obtained by putting t(x) and A value in Eq. (9).
According to dark channel prior (DCP) [12]method, J can be estimated after assuming
some prior information. In DCP [12], dark pixel (lowest pixel) concept is used to
calculate transmission map t(x) and A(x). In DCP [12], the atmospheric map A
is estimated by selecting top 0.1% of brightest pixels in hazy image. For a given
atmospheric map A, Eq. (9) can be modified as

I c(x)

Ac
= t(x)

J c(x)

Ac
+ 1 − t(x), (11)

where c denotes color channels (r , g, b). Ac and J c represent the atmosphericmap and
dehaze image for color channel, respectively. Due to constant behavior of transmission
map t(x) in a local patch 	(x), it is denoted by t̃(x) [12]. Dark channel is computed
after substituting the minimum operator on both sides of Eq. (11).

min
y∈	(x)

(
min

c∈{r ,g,b}
I c(y)

Ac

)
= t̃(x) min

y∈	(x)

(
min

c∈{r ,g,b}
J c(y)

Ac

)
+ 1 − t̃(x). (12)



Circuits, Systems, and Signal Processing (2023) 42:6136–6159 6143

Algorithm 1 ESAESWC-WGIF for single image dehazing
Input: Input hazy image I (x), Atmospheric map A, Transmission map t(x), Refine transmission map t̃(x),

filtering input image p(x), linear transform qi , linear constants ak , bk .
1: Calculate Atmospheric map A and Transmission map t(x) using DCP [12] by Eq. (9) and Eq. (10),

respectively.
2: Calculate minimum cost function using proposed ESAESWC ψ I (k) by Eq. (19).
3: Calculate optimized linear constants ak , bk by Eq. (28) and Eq. (24), respectively.
4: Calculate refined transmission map t(x) by Eq. (31)
5: Calculate mean values of linear constants ak , bk by Eq. (32) and Eq. (33), respectively.
Output: Dehazed output image J (x) is calculated by Eq. (34).

According to DCP [12], to restore the scene radiance J as haze-free image, the dark
channel of the scene radiance should be zero, and it can be expressed as

J dark(x) = min
y∈	(x)

(
min

c

J c(y)

Ac

)
= 0, (13)

where J dark is a scene radiance for dark channel. Since Ac should always positive,
Eq. (12) can be modified as

min
y∈	(x)

(
min

c

I c(y)

Ac

)
= 1 − t̃(x). (14)

After simplification, t̃(x) can be expressed as

t̃(x) = 1 − min
y∈	(x)

(
min

c

I c(y)

Ac

)
, (15)

We know that the DCP [12] method is not valid for large sky, sea, or white regions
because the color of skyor oceanduringhaze ismostly similar to atmosphericmap.Due
to that, the transmission map becomes close to 0 [12, 41, 42]. Finally, the transmission
map can be expressed as

t̃(x) = 1 − w min
y∈	(x)

(
min

c

I c(y)

Ac

)
. (16)

Here, a constant parameter w (0 < w ≤ 1) is used to retain a very limited amount of
haze for distant objects.

4.2 Effective Scale-Aware Edge-SmoothingWeighting Constraint-BasedWeighted
Guided Image Filter (ESAESWC-WGIF)

In this paper, a new multi-scale edge-aware weighting constraint-based an effective
weighted guided image filter is proposed for single image dehazing. The new multi-
scale edge-weighting constraint is incorporated in the cost function of the GIF [13].
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The proposed method removes halo artifacts and over-smoothing effect strongly and
preserves edge information appropriately in both flat and sharp regions.
In GIF [13], the regularization parameter ε is identical for all local windows and due to
that it is unable to preserve sharp edges appropriately and hence halo artifacts exhibit
near edges in the output images. To overcome this problem, a single scale edge-aware
weighting was initially proposed in weighted guided image filter (WGIF) [26]. In
this filter, a 3 × 3 window has been considered for every pixel while computing local
variance and the regularization parameter ε is replaced with ε�I (k). It removes halo
artifacts and preserves edge information more accurately than GIF. However, over-
smoothing effect persists in the sharp regions due to single scale edge-awareweighting.
In this paper, we are proposing a method to overcome this issue by introducing a new
effective scale-aware edge-smoothing weighting constraint-based weighted guided
image filter (ESAESWC-WGIF). It is multi-scale edge-aware weighting constraint
which is definedusing local varianceof both 3 × 3 and (2ζ1 + 1) × (2ζ1 + 1)windows
of each pixel in the guidance image I . The following expression can be used to express
the average of local variances for all pixels:

ψ I (k) = σI ,1(k)

σ 2 , (17)

and σ 2 is expressed as

σ 2 = 1

N

N∑

k=1

σ 2
I ,ζ1(k). (18)

where N indicates the pixel number of the guidance image I , σI , 1(k) and σ 2
I ,ζ1

(k)

are the local variances of I in 3 × 3 windows and (2ζ1 + 1) × (2ζ1 + 1) windows of
all pixels.
The minimum cost function for the proposed ESAESWC-WGIF can be expressed as

E(ak, bk) =
∑

i(x,y)∈ωζ1 (k)

{
(ak Ii + bk − pi )

2 + a2
k

ε

ψ I (k)

}
. (19)

The modified ak value is calculated by the following expression:

ak = μI∗p,ζ1(k) − μI ,ζ1(k)μp,ζ1(k)

σ 2
I ,ζ1

(k) + ε

ψ I (k)

, (20)

and bk is calculated as mentioned in Eq. (8). For better analysis, I and p can be
assumed identical and it can be expressed after simplification as

μI∗p,ζ1(k) − μI ,ζ1(k)μp,ζ1(k) = σ 2
I ,ζ1(k) (21)
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and

μp,ζ1(k) = μI ,ζ1(k). (22)

After substituting Eqs. (21) and (22) in Eq. (20), we obtain

ak = σ 2
I ,ζ1

(k)

σ 2
I ,ζ1

(k) + ε

ψ I (k)

, (23)

and

bk = (1 − ak)μI ,ζ1(k), (24)

or it is simply written as

ak = σ 2
I ,ζ1

(k)

σ 2
I ,ζ1

(k) + ε

ψ I (k)

. (25)

After dividing Eq. (25) by σ 2
I ,ζ1

(k), we get

ak = 1

1 + ε 1
σ 2

I ,ζ1

(k)ψ I (k)
, (26)

Substituting value of ψ I (k) from (17) into (26)

ak = 1

1 + ε 1{
σ 2

I ,ζ1
(k)

}
∗
{

σI ,1(k)

σ2

} (27)

ak = 1

1 + ε σ 2

σ 2
I ,ζ1

(k)∗σI ,1(k)

. (28)

Finally, qi is expressed as

qi = 1

|ωζ 1(k)|
∑

k∈ωζ1 (k)

(ak Ii + bk), (29)

qi = (ai Ii + bi ), (30)

After obtaining linear constants ak and bk , the filtered output qi is now the refined
transmission map (refined filtered output). It can be expressed as

qi = t(x) = (ai Ii + bi ), (31)
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whereai andbi terms in the above expression representmeanofak andbk , respectively,
in the corresponding window of all pixels, and it is computed as

ai = 1

|ωζ 1(k)|
∑

k∈ωζ1 (k)

ak, (32)

bi = 1

|ωζ 1(k)|
∑

k∈ωζ1 (k)

bk . (33)

In order to preserve edge information in sharp regions, ak should be 1 and bk close to
0, whereas for smooth regions ak close to 0 and bk become 1 [26]. Finally, the dehazed
output image is calculated by following expression:

J (x) = I (x) − A

max(t(x), t0)
+ A. (34)

where the value of t0 is set to 0.1 [13] for avoiding noise amplification.

5 Experimental Results and Analysis

The proposed algorithm is experimented and evaluated using MATLAB R2018a on a
PC with Intel (R) Core (TM) i7-6700 CPU @ 3.40 GHz of a 64-bit operating system
with RAM-8GB. The performance of the proposed method is tested on natural hazy,
non-hazy and synthetic images of different datasets, viz. Fattal’s (580 images) [10],
NYU2 (650 images) [37], D-HAZY (400 images) [1], Haze-RD (760 images) [46],
and O-HAZE (810 images) [2] and the outcomes are compared with existing DCP
[12] GIF [13], WGIF [26], GGIF [23], EGIF [28], DehazeNet [5], and RYF-Net [9]
haze removal methods for effective analysis.

5.1 Qualitative Analysis

In this paper, the proposed method is tested on about 3200 images of hazy, non-hazy
and synthetic images from Fattal [10], NYU2 [37], D-HAZY [1], Haze-RD [46], and
O-HAZE [2] datasets and the outcomes are compared with 7 state-of-the-art haze
removal methods, out of which DCP [12] is prior-based dehazing method, GIF [13],
WGIF [26], GGIF [23], andEGIF [28] are four edge-preserving image dehazing filters,
and DehazeNet [5] and RYF-Net [9] are two deep-learning-based image dehazing
methods. The refined transmission map by GIF [13], WGIF [26], GGIF [23], EGIF
[28] and the proposed method for input hazy building image [10] is shown in Fig. 2
. It is clear from Fig. 2that the proposed method is refined the raw transmission map
more accurately than the rest of the existing methods. It removes halo artifacts, over-
smoothing, color distortion strongly and preserves edge information more precisely
than the existing GIF [13], WGIF [26], GGIF [23], and EGIF [28] methods. Several
hazy images from different datasets, viz. Fattal [10], NYU2 [37], D-HAZY [1], Haze-
RD [46], and O-HAZE [2], are tested for better analysis of the proposed method, and
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Fig. 2 Comparison of refined transmission maps of different edge-preserving filters. a Input hazy images
[10], bDCP [12]-based transmission map, c refined transmission map by GIF [13], WGIF [26], GGIF [23],
EGIF [28] and the proposed method d Dehazed output

their outcomes are compared with existing DCP [12], GIF [13], WGIF [26], GGIF
[23], EGIF [28], DehazeNet [5], and RYF-Net [9] haze removal methods. The dehazed
outcomes of DCP [12], GIF [13], WGIF [26], GGIF [23], EGIF [28], DehazeNet [5],
and RYF-Net [9] and the proposed method are calculated for five benchmark hazy
images [10] and presented in Figs. 3, 4, 5, 6, and 7, respectively, for effective visual
comparison. It is clear from Figs. 3, 4, 5, 6, and 7 that the proposed method removes
halo artifacts, over-smoothing strongly and preserves edge informationmore precisely
in both flat and sharp regions than the existing DCP [12], GIF [13], WGIF [26], GGIF
[23], EGIF [28], DehazeNet [5], and RYF-Net [9] methods.

5.2 Quantitative Analysis

The objective evaluation of the proposed filter is compared with the existing GIF
[13], WGIF [26], GGIF [23], and EGIF [28] methods using an effective blind object
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(a) Input image (b) DCP [12] (c) GIF [13]

(d) WGIF [26] (e) GGIF [23] (f) EGIF [28]

(g) DehazeNet [5] (h) RYF-Net [9] (i) The proposed

Fig. 3 Dehazed outcomes of different haze removal methods and the proposed method. a Input hazy image
[10], b DCP [12], c GIF [13], d WGIF [26], e GGIF [23], f EGIF [28], g DehazeNet [5], h RYF-Net [9], i
the proposed

Table 1 Objective evaluation on images in Fig. 3 by [31]

GIF [13] WGIF [26] GGIF [23] EGIF [28] The proposed

Input 36.87 36.87 36.87 36.87 36.87

ε = 0.0012 39.64 38.19 39.22 39.07 39.45

ε = 0.052 41.36 42.19 45.38 46.52 46.85

ε = 0.12 35.67 37.46 45.15 46.23 46.72

ε = 0.42 31.26 32.91 43.69 44.51 46.57

ε = 0.82 27.35 29.87 42.53 43.66 46.19

image qualitymetric [31]. Score of these filters are calculated for different values of the
regularization parameter ε and their values are listed in Table 1. As we can seen clearly
from Table 1 that the scores of GIF [13] and WGIF [26] initially increase and then
decrease for large ε value. However, GGIF [23] and EGIF [28] both have higher scores
than GIF [13] and WGIF [26] but they also generate lower scores for large ε values
(ε = 0.42, 0.82), whereas the scores of the proposedmethod increasewith the increase
in ε and decrease slightly even for large ε values. In this paper, some performance
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(a) Input image (b) DCP [12] (c) GIF [13]

(d) WGIF [26] (e) GGIF [23] (f) EGIF [28]

(g) DehazeNet [5] (h) RYF-Net [9] (i) The proposed

Fig. 4 Dehazed outcomes of different haze removal methods and the proposed method. a Input hazy image
[37], b DCP [12], c GIF [13], d WGIF [26], e GGIF [23], f EGIF [28], g DehazeNet [5], h RYF-Net [9], i
the proposed

metrics such as peak signal-to-noise ratio (PSNR) [17], structural similarity index
(SSIM) [40], fog aware density evaluator (FADE) [7], and CIEDE2000 [35] are used
for effective assessment of the proposed method. The performance metrics of DCP
[12], GIF [13], WGIF [26], GGIF [23], EGIF [28], DehazeNet [5], RYF-Net [9] and
the proposed method are calculated for hazy images from Fattal [10], NYU2 [37], D-
HAZY [1], Haze-RD [46], andO-HAZE [2] datasets, and their outcomes are furnished
in Tables 2, 3, 4, 5, and 6, respectively. The blue bold faces in Tables 2, 3, 4, 5, and 6
indicate the best value.

5.2.1 Peak Signal-to-Noise Ratio (PSNR)

The higher peak signal-to-noise ratio (PSNR) [17] indicates better image restoration
result. It is expressed as

PSNR = 10 ∗ log

{
f 2max

MSE

}
, (35)



6150 Circuits, Systems, and Signal Processing (2023) 42:6136–6159

(a) Input image (b) DCP [12] (c) GIF [13]

(d) WGIF [26] (e) GGIF [23] (f) EGIF [28]

(g) DehazeNet [5] (h) RYF-Net [9] (i) The proposed

Fig. 5 Dehazed outcomes of different haze removal methods and the proposed method. a Input hazy image
[1], b DCP [12], c GIF [13], d WGIF [26], e GGIF [23], f EGIF [28], g DehazeNet [5], h RYF-Net [9], i
the proposed

Table 2 Performance
comparison on Fattal dataset
[10]

Methods PSNR SSIM FADE CIEDE2000

DCP [12] 17.38 0.7514 2.725 25.57

GIF [13] 19.51 0.7826 2.101 21.16

WGIF [26] 20.08 0.8205 1.686 18.26

GGIF [23] 23.44 0.8519 1.295 15.08

EGIF [28] 27.69 0.8835 0.817 11.55

DehazeNet [5] 27.91 0.8806 0.779 9.68

RYF-Net [9] 29.58 0.9013 0.795 7.93

The proposed 31.07 0.9291 0.508 5.18

where fmax is the maximum gray level (255 for 8-bit image). The mean squared error
(MSE) measure by the original and the restored image. It is written as

MSE = 1

m × n

m−1∑

i=0

n−1∑

j=0

[ fo(i, j) − fr(i, j)]2 . (36)
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(a) Input image (b) DCP [12] (c) GIF [13]

(d) WGIF [26] (e) GGIF [23] (f) EGIF [28]

(g) DehazeNet [5] (h) RYF-Net [9] (i) The proposed

Fig. 6 Dehazed outcomes of different haze removal methods and the proposed method. a Input hazy image
[46], b DCP [12], c GIF [13], d WGIF [26], e GGIF [23], f EGIF [28], g DehazeNet [5], h RYF-Net [9], i
the proposed

Table 3 Performance
comparison on NYU2 dataset
[37]

Methods PSNR SSIM FADE CIEDE2000

DCP [12] 19.05 0.7794 2.475 23.48

GIF [13] 21.64 0.7906 2.086 20.05

WGIF [26] 22.59 0.8139 1.839 19.17

GGIF [23] 24.77 0.8662 1.416 16.38

EGIF [28] 27.14 0.8791 1.142 12.66

DehazeNet [5] 28.06 0.8838 1.119 10.01

RYF-Net [9] 29.27 0.9171 1.053 8.25

The proposed 31.69 0.9307 0.865 6.64

wherem×n represents the size of the image and fo and fr are the original and restored
images, respectively.

5.2.2 Structural Similarity Index (SSIM)

The structural similarity index (SSIM) [40] metric is used to quantify the structural
difference between the source image and recovered image. It has a range [−1, 1] and
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(a) Input image (b) DCP [12] (c) GIF [13]

(d) WGIF [26] (e) GGIF [23] (f) EGIF [28]

(g) DehazeNet [5] (h) RYF-Net [9] (i) The proposed

Fig. 7 Dehazed outcomes of different haze removal methods and the proposed method. a Input hazy image
[2], b DCP [12], c GIF [13], d WGIF [26], e GGIF [23], f EGIF [28], g DehazeNet [5], h RYF-Net [9], i
the proposed

Table 4 Performance
comparison on D-HAZY dataset
[1]

Methods PSNR SSIM FADE CIEDE2000

DCP [12] 22.69 0.8105 2.681 29.07

GIF [13] 23.95 0.8183 2.135 25.49

WGIF [26] 24.72 0.8371 1.861 21.64

GGIF [23] 25.08 0.8509 1.497 18.25

EGIF [28] 27.43 0.8769 1.005 15.31

DehazeNet [5] 28.79 0.8841 1.169 11.97

RYF-Net [9] 29.88 0.9215 0.985 7.03

The proposed 28.15 0.8803 0.837 8.11

is expressed as

SSIM = F(Lc, Cc, Sc). (37)

where Lc, Cc, and Sc represent the luminance, contrast, and saturation comparison,
respectively.
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Fig. 8 Box plots [27]-based statistical illustration of different haze removal methods. a PSNR [17], b SSIM
[40], c FADE [7], d CIEDE2000 [35]

Table 5 Performance
comparison on Haze-RD dataset
[46]

Methods PSNR SSIM FADE CIEDE2000

DCP [12] 20.41 0.7837 2.208 27.51

GIF [13] 21.86 0.8065 1.964 23.86

WGIF [26] 24.72 0.8214 1.558 20.94

GGIF [23] 25.08 0.8468 1.163 17.25

EGIF [28] 29.88 0.8739 0.927 14.08

DehazeNet [5] 31.38 0.8815 0.862 11.73

RYF-Net [9] 32.04 0.9128 0.895 7.39

The proposed 34.05 0.9411 0.649 4.15
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Table 6 Performance
comparison on O-HAZE [2]

Methods PSNR SSIM FADE CIEDE2000

DCP [12] 21.15 0.8059 2.351 24.51

GIF [13] 23.09 0.8471 2.068 21.93

WGIF [26] 23.87 0.8609 1.885 17.02

GGIF [23] 25.96 0.8673 1.375 13.16

EGIF [28] 28.74 0.9045 1.028 9.94

DehazeNet [5] 28.91 0.9004 0.993 7.68

RYF-Net [9] 30.05 0.9159 0.975 5.03

The proposed 30.61 0.9536 0.731 3.15

5.2.3 Fog Aware Density Evaluator (FADE)

The fog aware density evaluator (FADE) [7] metric evaluate the perceptual fog density
in the restored image. The lower FADE value indicates lower haze concentration.

5.2.4 CIEDE2000

The CIEDE2000 metric [35] measures the color fidelity between source image and
the dehaze image with ranging [0, 100]. The lower CIEDE2000 value indicates better
color correction.

5.3 Discussion

The performance metrics PSNR [17], SSIM [40], FADE [7] and CIEDE2000 [35]
of existing DCP [12] GIF [13], WGIF [26], GGIF [23], EGIF [28], DehazeNet [5],
RYF-Net [9] and the proposed method are calculated for natural hazy, non-hazy and
synthetic images from Fattal [10], NYU2 [37], D-HAZY [1], Haze-RD [46], and
O-HAZE [2] datasets. For the best performance, PSNR [17] and SSIM [40] values
must be higher, whereas FADE [7] and CIEDE2000 [35] values must be lower. These
results are furnished in Tables 2, 3, 4, 5 and 6. The blue bold face values in each
row indicate best measured value. PSNR [17] and SSIM [40] values of EGIF [28],
DehazeNet [5] and RYF-Net [9] methods are comparable and usually, these values
are low for DCP [12] GIF [13], WGIF [26], GGIF [23] methods. Next, RYF-Net [9]
is more comparable method which is capable of retaining structures more accurately
than the rest of existing methods. FADE [7] and CIEDE2000 [35] values should be
small for a better image dehazing. However, these values are higher in DCP [12]
GIF [13], WGIF [26], GGIF [23], and EGIF [28] methods. Usually, deep-learning-
based DehazeNet [5], and RYF-Net [9] methods produced more comparable FADE
[7] values than the existing DCP [12] GIF [13], WGIF [26], GGIF [23], EGIF [28]
methods and similar is the case for CIEDE2000 [35] metric scores. It is clear from
Tables 2, 3, 4, 5, and 6 that for all the aforesaid datasets the PSNR and SSIM values of
the proposed method are higher than the rest of the existing methods, as expected. The
FADE values are the least for all the datasets with the proposed method, as expected,
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Table 7 Execution time (in sec.)-based assessment

Methods Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Average
250×200 550×400 850×600 1000×950 1200×1400

DCP [12] 18.27 21.95 26.64 30.55 39.92 27.46

GIF [13] 11.06 16.47 20.19 24.38 32.15 20.85

WGIF [26] 7.34 12.51 18.52 20.09 27.06 17.10

GGIF [23] 4.71 9.62 15.08 17.45 21.54 13.68

EGIF [28] 1.64 6.39 10.91 13.92 18.16 10.20

DehazeNet [5] 1.38 5.05 8.35 10.37 14.39 7.908

RYF-Net [9] 1.15 3.16 4.15 8.09 11.61 5.632

The Proposed 1.07 1.27 3.79 5.27 9.07 4.046

(a) Input image (b) DCP [12] (c) GIF [13] (d) WGIF [26] (e) GGIF [23]

(f) EGIF [28] (g) DehazeNet [5] (h) RYF-Net [9] (i) The proposed

Fig. 9 Visual outcomes in dense hazy condition

and CIEDE2000 metric values are also the least for Fattal [10], NYU2 [37], Haze-
RD [46], and O-HAZE [2] datasets except D-HAZY [1] dataset. This entails that the
proposed method is better than the existing dehaze methods. The objective assessment
of the performance metrics PSNR [17], SSIM [40], FADE [7], and CIEDE2000 [35]
for different existing dehaze methods and the proposed method are computed and
tested on images of Fattal [10], NYU2 [37], D-HAZY [1], Haze-RD [46], and O-
HAZE [2] datasets. Next, the execution time of DCP [12] GIF [13], WGIF [26], GGIF
[23], EGIF [28], DehazeNet [5], RYF-Net [9], and the proposed method for input
hazy images in Figs. 3, 4, 5, 6, and 7 having a resolution of 250 × 200, 550 × 400,
850× 600, 1000× 950, and 1400× 1200 is calculated and listed in Table 7. It is clear
from Table 7 that the proposed method executes, more faster than the fastest reported
methods. The statistical analysis of quality metrics PSNR [17], SSIM [40], FADE
[7] and CIEDE2000 [35] for DCP [12] GIF [13], WGIF [26], GGIF [23], EGIF [28],
DehazeNet [5], RYF-Net [9] and the proposed method represented by a box plot [27]
shown in Fig. 8a–d, respectively. It is clear from the box plot figures that the proposed
method has a higher median value for PSNR [17] and SSIM [40], whereas lower
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(a) Input image (b) DCP [12] (c) GIF [13] (d) WGIF [26] (e) GGIF [23]

(f) EGIF [28] (g) DehazeNet [5] (h) RYF-Net [9] (i) The proposed

Fig. 10 Visual outcomes in nighttime hazy condition

median value for FADE [7] and CIEDE2000 [35] metrics in comparison with other
existing methods. The horizontal line within the box plot represents median value.
Thus, it proves that the proposed method provides better dehaze outcomes than the
existing DCP [12] GIF [13], WGIF [26], GGIF [23], EGIF [28], DehazeNet [5], and
RYF-Net [9]. Due to limited visibility and poor contrast, the proposed method fails in
case of dense haze and nighttime hazy conditions. The failure case of the existingDCP,
GIF, WGIF, GGIF, EGIF, DehazeNet, RYF-Net methods and the proposed method on
dense haze dataset [3] and nighttime haze dataset [45] is shown in Figs. 9 and 10,
respectively. Finally, it is proved from Figs. 2, 3, 4, 5, 6, 7, and 8 and Tables 1, 2, 3, 4,
5, 6, and 7 that the proposed method removes halo artifacts, over-smoothing strongly
and preserves edge information more accurately than the existing DCP [12] GIF [13],
WGIF [26], GGIF [23], EGIF [28], DehazeNet [5] and RYF-Net [9] methods in both
regions. Moreover, the proposed method is fast and preserves edge information in
sharp region more accurately compared to the existing haze removal methods.

6 Conclusion

In this paper, an effective scale-aware edge-smoothing weighting constraint-based
weighted guided image filter (ESAESWC-WGIF) is proposed to remove haze effi-
ciently. In this filter, a new edge-aware weighting is incorporated into the cost function
of theGIF. It refines the initial transmissionmapmore accurately than the existingGIF,
WGIF, GGIF, and EGIF methods. It removes halo artifacts, over-smoothing strongly
and preserves edge information in both flat and sharp regions. Experimental results
prove that the proposed method has better visual quality than the existing methods.
About 3,200 images from Fattal, NYU2, D-HAZY, Haze-RD, and O-Haze datasets
are used to test the performance of the existing and the proposed dehaze method.
We analyzed performance parameters such as PSNR, SSIM, FADE, and CIEDE2000
on these images and experimental results prove that the proposed method restore the
images with excellent visual quality. Moreover, the proposed method is independent
of the nature of the input image. It performs equally well for all datasets compared to
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the existing dehaze methods. It is noteworthy that the proposed method is faster than
the existing methods for a given resolution of images. But, this method fails in case
of dense hazy and nighttime hazy conditions. The failure results in dense hazy and
nighttime hazy conditions are shown in Figs. 9 and 10, respectively. So, there is a scope
to devise a new method which can satisfy these requirements. We will be exploring
the suitability of the proposed method for wider applications such as satellite image,
underwater image, and low-light images dehazing.

Data Availability The datasets generated or analyzed during the present study are available from the
corresponding author upon reasonable request.
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