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Abstract
In order to improve the performance of deep neural network (DNN) accelerators, it
is necessary to optimize compute efficiency and operating frequency. However, the
implementation of contemporary DNNs often requires excessive resources due to
the heavy multiply-and-accumulate (MAC) computations. In this work proposes a
MAC unit designed with a Co-ordinate Rotation DIgital Computer (CORDIC)-based
architecture, which is both power and area-efficient for 8-bit and higher-bit precision.
The CORDIC-based designs are typically associated with low throughput. To address
this issue, a performance-centric pipelined architecture is investigated that increases
throughput. The study conducts a detailed Pareto analysis of accuracy variation at
different precision levels and required pipeline stages to achieve high performance.
The proposed MAC unit’s post-synthesis results at the 45nm technology node are
provided, and performance is evaluated on a deep neural network usingVertex-7 FPGA
board. The proposed fixed-point MAC architecture is scalable for all bit-precision and
flexible for the decimal point implication. The study finds that the proposed Fixed
Q3.5 precision with five pipeline stage-based MAC shows better performance metrics
compared to the recursive CORDIC-based MAC design. The proposed MAC design
has a lower area-delay-product (ADP)which is 1.13×, and higher throughput of 2.73×
compared to the recursiveCORDIC-basedMAC. The study evaluated the performance
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of the proposed MAC unit using the fully connected NN for the MNIST dataset and
found that the throughput 1.89× better compared to the conventional MAC-based
design.

Keywords Deep neural networks (DNNs) · Multiply-and-accumulate (MAC) unit ·
CORDIC-based architecture · Performance-centric pipelined architecture ·
Throughput

1 Introduction

In the last decade, deep learning has demonstrated remarkable progress [16]. Despite
its potency, the cost of implementing a deep learning model can be exorbitant [31].
One of the most widely used learning networks is deep neural networks (DNNs),
which have numerous applications in solving nonlinear detection problems, such as
lane detection, pattern recognition, fault detection, and industry monitoring [17, 21].
Nonetheless, in edge devices where low power, minimum area, and high throughput
are imperative, it is crucial to accelerate neural network inference while minimizing
computational resources and reducing on-chip power consumption [3, 27, 40].

DNNs demand extensive multiply-and-accumulates (MACs) per image. To imple-
ment DNN accelerators, GPUs, FPGAs, and ASICs are used as platforms. GPU-based
solutions exhibit good parallelism but suffer from inefficient resource utilization,
resulting in high power consumption. On the other hand, FPGAs offer configurable
architecture and superior resource utilization, making them a preferred choice for
high-precision computation, given their digital signal processing (DSP) elements with
fixed dynamic bit width [32]. For example, the Xilinx FPGA mainly utilizes DSP48
blocks that come with 18-bit input precision and 48-bit output precision hard-coded
hardware architecture [29]. However, in lower precision (<12-bit), the MAC architec-
ture implementation will consume a complete 18-bit precision DSP block, leading to
inefficient resource utilization and inherently higher power consumption. In contrast,
CLBs-based implementations make better use of hardware resources. On the other
hand, ASICs feature specialized architecture, resulting in efficient resource utilization
and minimum power consumption.

DNNs have a resource-intensive architecture due to their high computational
demands, and the throughput performance of DNNs is also a critical parameter that
requires parallelism [19]. In edge-AI and mobile applications, area and power are
restricted. To enhance the architecture, approximate computing techniques have been
extensively researched in the field ofDNNaccelerators. Approximation enables reduc-
ing the area and power consumption of the DNN accelerator with minimal accuracy
loss. To reduce on-chip area and power consumption while retaining high throughput,
recursive Coordinate Rotation DIgital Computer (CORDIC)-based architecture has
been investigated in [28]. This architecture employs the recursive CORDIC algorithm
for MAC implementation, which performs computation iteratively. The CORDIC
algorithm employs shift-and-add operation, which demands minimal hardware imple-
mentation area and power. The iterative CORDIC architecture necessitates N+1 clocks
for signed N-bit precision computation, with each iterative calculation being mutually
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exclusive [27]. Hence, the pipeline architecture provides an opportunity to improve
the throughput performance at the expense of area and power overhead.

Several essential hardware parameters must be considered when developing deep
learning networks, such as high main memory bandwidth, low latency, and fast regis-
ters [5]. Efficient processing engines in DNNs require multiple-and-accumulate units
and associated register banks, which demand more hardware resources. Therefore,
it is crucial to design DNN architectures based on the available resources. Layer-
reused and approximation in arithmetic are suitable choices for constrained hardware
resources, but they may result in accuracy and throughput loss. However, if resources
are not a constraint, high-precision architecture, and a parallel processing engine can
be adopted to achieve better throughput. Arithmetic precision, MAC operation, data
parallelism, bit-quantization, and feature complexity are the primary determinants of
hardware selection for implementation [34]. For edge-AI applications, the parallel
computation can provide high throughput at the cost of increased hardware usage [4].
In contrast, IoT applications demand the least amount of hardware and limited power.
Therefore, for IoT applications, the recursive computation can benefit from iterative
MAC architecture [28], while pipeline MAC design can improve performance with
large throughput for edge-AI applications.

Efforts to improve MAC performance have been the focus of research in the last
decade. Efficient design techniques such as libraries [22], FINN [34], ShiftCNN [9],
power reductionmethods [5], and Sub-MACs [20] have been developed to achieve this
goal. The implementation ofCORDIC-basedMAChas a high computational delay due
to its recursive architecture, resulting in lower throughput [28]. Therefore, this article
addresses high-throughput MAC architecture for DNN applications and proposes an
enhanced performance CORDIC algorithm-based MAC hardware efficient pipeline
architecture. To reduce the area and power overheads associated with the pipeline
architecture, we provide a Pareto study to determine the necessary number of CORDIC
pipeline stages. As the DNN algorithm is error-resilient, we conducted a performance-
centric analysis to determine the optimal number of pipeline stages that would achieve
area and power efficiency while maintaining accuracy. Our evaluation revealed that a
minimum number of pipeline stages could significantly reduce the required area for
implementation. Outlined below are the key contributions of our research:
• Aperformance-centric Pareto analysis is conducted to determine the optimal num-
ber of pipeline stages for the CORDIC pipelined architecture, which typically
incurs area and power overhead. Our analysis focused on the MNIST and CIFAR-
10 datasets, and we evaluated the impact of reducing the number of pipeline stages
on overall output accuracy.

• Fixed Qp.q arithmetic is employed to evaluate our results and facilitate hardware
implementation and Pareto study conducted to identify the optimal values of p
and q for improved accuracy and hardware performance.

• An error metrics is evaluated for the proposed architecture with a reduced number
of pipeline stages, precisely five stages. In addition, we implemented a fully con-
nected DNN with dimensions 196:64:32:32:10 using the proposed MAC on
an FPGA and analyzed the physical performance, throughput, and accuracy.

• The physical performance parameters are extracted for the proposed MAC with
five pipeline CORDIC stages using 45nm technology and compared them to other
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relevant metrics. Additionally, a post-layout Monte Carlo simulation is conducted
to assess the impact of process variation and mismatch on power consumption.

The study presents an enhanced performance MAC and based DNN implementa-
tion. The DNN network is trained until maximum accuracy is achieved, and it shows
a less than 1% accuracy loss when compared to accurate Tensor libraries for MNIST
and CIFAR-10 datasets. The research also includes a Pareto study that focuses on vari-
able notation for signed 9-bit Fixed Qp.q arithmetic, where ‘p’ represents the number
of integer bits, ‘q’ indicates fractional bits, and one signed bit in a fixed-point 9-bit
precision format. Furthermore, the study shows that fully connected NN implemented
on Vertex-7 performs nearly two times better than Xilinx MAC-based computation.
The physical parameters of the design are extracted for the 45nm node and compared
with previous work. The experimental results show that the proposed pipeline archi-
tecture design has nearly five times higher throughput than the iterative architecture.
Additionally, the area-latency-power (ALP) is 12% better than the iterative CORDIC
and 21% better than other best state-of-the-art designs.

The remainder of this article is organized as follows. Section2 provides a brief on
related work and the motivation behind our research. Section3 introduces CORDIC
optimization and MAC realization. We discuss the tuning parameters for improving
the performance of MAC computation in detail in Sect. 4. Section5 describes the
experimental setup, followed by the presentation of simulation results and discussion
in Sect. 6. Finally, we conclude our findings in Sect. 7.

2 RelatedWork andMotivation

Deep neural networks, including fully connected and convolutional neural networks,
have shown great promise in image recognition and classification tasks. However,
the MAC computation used in these networks is resource-intensive and consumes
significant power, especially for higher bit-precision computation. Previous studies
have proposed efficient custom MAC designs for both ASICs and FPGAs. While
ASIC-based implementation of DNN accelerators is efficient in terms of area, power,
and throughput, it suffers from reconfigurability and development process limitations
[39]. State-of-the-art techniques have trade-offs between physical performance param-
eters, throughput, and accuracy [13, 34]. Additionally, hardware implementation of
accelerators faces a challenge with bandwidth limitations. Therefore, research has
analyzed performance parameters for multi-bit precision (8, 16, 24, or 32-bit) design
in hardware-based acceleration [28, 40].

The approach with iterative computation with shift-and-add multiplication method
simplifies the logic arithmetic complexity and requires relatively fewer hardware
resources [9]. Further, the Vedic multiplier-based efficient design of MAC unit for
lower arithmetic precision has also been presented [35]; however, it is not scalable
for high-precision architectures due to its increasing critical path and propagation
delay. The modified Booth’s algorithm for multiplication has been investigated to
save resource utilization [5]. In addition, a Wallace tree-based MAC design has been
implemented and analyzed for physical performance parameters [15]. However, its
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architecture design using AND and OR planes becomes more complex with increasing
bit precision. Another approach is an in-memory computing architecture that has bet-
ter physical parameters but limits bit resolution [37]. Besides all, a CORDIC-based
MAC design has been proposed [28], but it suffers from low throughput performance
due to its iterative computations. An n-bit barrel shifter and n-1 additions are required
for n-bit precision computation with iterative design [28]. Therefore, this article has
introduced the CORDIC algorithm’s pipeline architecture and discussed MAC for
DNN in high-throughput applications.

Several techniques have been explored to improve power and energy efficiency in
MACcomputation, such as the use of an approximate partial product accumulation tree
presented in [14], the application of integral stochastic computing formore straightfor-
ward arithmetic inDNN in [2], and the implementation of inaccurate logic compressors
in the multiplier that show promising results, as discussed in [36]. Approximate com-
putation is preferred for error-resilient applications, and an approximate multiplier
in MAC computation can reduce circuit delay and on-chip power consumption, as
reported in [8]. Additionally, the weight-sharing scheme is effective in reducing MAC
computational complexity and constant storage capacity. A high-performance array
multiplier with reversible logic structure has been developed, increasing the through-
put performance, as reported in [38]. However, these techniques may lack generality
for multi-precision signed/unsigned computation. The use of nested RNS (NRNS) in
DNN for object detection is presented in [23], leading to high clock frequencywith less
area on FPGA. The author decomposed aMACunit into 4 bits and realized it by LUTs,
resulting in significantly improved performance-power efficiency in hardware imple-
mentation. In addition, stochastic computing MAC with optimization techniques has
been proposed for DNN applications, showing better results than conventional tech-
niques, as discussed in [30]. Nevertheless, the architecture’s complexity may increase
with precision scaling.

In addition to optimizing theMAC, there have been advancements in neural network
architecture design. The fully connected layer circuit’s memory bandwidth bottleneck
has been addressed by proposing a sequential-input parallel-output circuit that uses
neuron pruning to reduce weight memory and improve memory access speed and
power consumption [6]. The computational and storage complexity of DNN has also
been minimized by using Boolean logic for training [24]. Additionally, a comprehen-
sive study on energy-efficient DNN implementation on micro-AI platforms has been
conducted to understand recent developments in this area [19]. The floating-point
arithmetic inMAC implementation can improve the system’s accuracy, but it comes at
the expense of increased area and power consumption [33]. However, it is possible to
achieve accuracy comparable to floating-point arithmetic by using fixed-point arith-
metic with a simple quantization method, which utilizes powers of 2 as scale factors
in an optimal bit-width optimization algorithm [25]. The authors evaluated the perfor-
mance accuracy at different bit-precision using fixed-point arithmetic. They found that
an 8-bit precision computation shows significant performance improvement compared
to 16-bit precision while saving 4× memory bandwidth at the cost of less than 1.5%
accuracy loss [28].

The study also includes a comparison between different MAC architectures, such
as array, boot, Wallace, Vedic, DSP-based, iterative CORDIC, and approximate MAC
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units, withDNNapplications, as summarized in Table 1.Our research aimed to address
the trade-off between area, power, and throughput for DNN accelerators by assessing
the performance of an improved CORDIC-based MAC unit. We employed pipeline
CORDIC stages to address the throughput issue and evaluated the optimal number
of stages needed to manage area overhead. By varying the pipeline stages, we were
able to understand the trade-off between accuracy and the number of pipeline stages
required. Our study includes a Pareto analysis to determine the necessary number of
CORDIC pipeline stages for reducing area and power overhead, given that pipeline
architecture entails area and power overhead.

3 Multiply-and-accumulate (MAC) Architecture Using CORDIC
Computation

This section has discussed the MAC architecture using CORDIC computation. The
section includes sub-sections on background of CORDIC algorithm, MAC with itera-
tive CORDIC, and a proposed architecture for an enhanced performance MAC design
through pipelining. Further, we have discussed a Pareto study that was conducted to
fix the optimum pipeline stage in order to achieve a performance-centric design.

3.1 Co-ordinate Rotation Digital Compute Algorithm (CORDIC)

ACORDIC is an iterative algorithm that calculates the two-dimensional vector rotation
in the different coordinate systems to derive awide range ofmathematical relationships
[1]. The basic CORDIC iteration describes a rotation of a plane vector (Xn ,Yn) to
(Xn+1, Yn+1). Zn keeps track of the rotation angle, i.e., αn . The real rotation of a plane
vector follows a circular path instead of a linear one, making it tricky to calculate
the coordinates. So, to easily find out (Xn+1, Yn+1) from (Xn ,Yn), pseudo-rotations
are used as they follow a linear path. Similarly, the CORDIC uses a pseudo-rotation
calculation, a scaled version of real rotation [28]. The coordinate calculation equations
for pseudo-rotation are given as follows:

X(n+1) = Xn − Yn × tan αn

Y(n+1) = Yn + Xn × tan αn

Z(n+1) = Zn − αn (1)

The CORDIC Eq. 1 shows pseudo-rotation computation for the trigonometric
calculations. Furthermore, pseudo-rotation coordinate equations converged to linear
CORDIC form as shown in Eq.2 [28].

Xn+1 = Xn − m × dn × Yn × 2−n

Yn+1 = Yn + dn × Xn × 2−n

Zn+1 = Zn − dn × En

dn ∈ {−1, + 1}; n = 0, 1, 2, ......, N (2)



6096 Circuits, Systems, and Signal Processing (2023) 42:6089–6115

+-
Add
Sub
+-

Add
Sub
+-

X0 [N:0]

mdn

dn

-dn

dn
Sign-Bit Z0[N]

Y0 [N:0]

Z0 [N:0]

Shi�
Add
Sub

Register

Shi�
Register

Re
gM

U
X

Re
gM

U
X

Re
gM

U
X

Output 
Register

Output 
Register

State sel1
sel2
sel3

sel1

sel2

sel3

Xn [N:0]

Yn [N:0]

Zn [N:0]

Machine

Output 
Register

En

-

Fig. 1 Signed N-bit precision recursive CORDIC architecture realize Multiply-Accumulate computation
in linear mode (m = 0 & Ei = 2−i) [28]

here mode m ∈ {1, 0,−1} indicates a circular, linear, and hyperbolic coordinate
system, respectively. The dn signal generates from sign(Zn)which give the direction
for either addition or subtraction. Further,En is the memory elements and for different
modes is equal to tan−1(2−n), 2−n, and tanh−1(2−n) for circular, linear and
hyperbolic rotation computation mode, respectively, for nth iterations.

One can observe from Eq. 2 that CORDIC hardware implementation requires an
addition/subtraction, bit-shift operation, and memory elements. In linear mode, set as
m ∈ {0} and En is 2−n, i.e., pre-calculated memory element at each iteration.

The equation presented in Eq. 2 can be realized using a generic iterative CORDIC
hardware architecture, as illustrated in Fig. 1. Although this implementation requires
fewer hardware resources, it suffers from low throughput due to its iterative nature,
where the output of one iteration becomes the input for the next. To address this issue, a
pipeline architecture has been employed. By simplifying Eq. 2, the hardware resources
required for the pipeline architecture have been reduced. It should be noted that the
hardware architecture used can perform all modes of CORDIC operations, but for our
purpose, we have selected the linear mode of operation with m = 0 and Ei = 2−i. To
express the revised form of Eq. 2 in the linear mode of operation, we use the value
of m = 0, resulting in the new form of the equation, Eq. 3c. This revised equation is
well-suited for performing the MAC computation, which is a critical component in
DNN accelerators. We further discuss the linear mode of operation and its advantages
for MAC computation.

Xn+1 = Xn − 0 × dn × Yn × 2−n ⇒ Xn+1 = Xn (3a)

Yn+1 = Yn + dn × Xn × 2−n (3b)

Zn+1 = Zn − dn × 2−n

dn ∈ {−1,+1} & n = 0, 1, 2, ...., N (3c)
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Fig. 2 The CORDIC-based MAC computation design flow, which stops when the conditions Zn+1 ≈ 0 or
n ≥ N are met

3.2 Iterative CORDIC-basedmultiply-and-accumulate (MAC) Computation

Computing architecture optimization for multiply and accumulate operation has
been significantly explored. The algorithms can be either implemented iterative or in
a parallel manner. The iterative nature consumes fewer resources and minimum power
but often induces delay and affects the throughput. Sequential logic generally involves
repetitions of single or multiple steps. Thus, on the contrary, the parallel or pipelined
nature reduces latency, thus increasing the throughput at the cost of increased resource
utilization [18]. Primarily, Neuron processing engine consists of a MAC unit followed
by nonlinear transformation, whereas the arithmetic relation between input and output
of a MAC in the l th layer is given by Eq. 4.
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xl =
J∑

j=1

wl
j · x j

(l−1) + bl (4)

Here, x j is the input feature map, w j is the weight for the j th input, and bn is a bias
of the corresponding neuron in l th layer. Note that the output of the layer (l − 1)th is
the input to the layer l.

CORDIC algorithm architecture uses multiplexer, shift-register, adder/subtractor,
and memory constants. However, the proposed architecture realized for Eq. 3c where
the output atYn+1 performs the accumulation ofYn and the shifted version ofXn for nth

iteration.AsZn keeps track of the rotation angle,Zn → 0 ensures final evaluation of the
coordinates.Moreover, in CORDIC architecture, operations perform using a shift-and-
add method, which allows maximum N + 1 shifts for N -bit input precision. Further,
accuracy has been evaluated for the lower to higher bit precision. We observed that
the higher bit precision than 8-bit has not significantly helped improve the accuracy in
simple andmoderate feature classifications. In the CORDIC, the iterative computation
has to be performed until the output atZn → 0, whichmeans the number of iterations is
purely dependent onZin and themaximum is N+1, where N is the input bit-precision.
TheMAC computation has been realized using CORDIC in a linear mode of operation
[28]. From Eq. 3c, it can see that the output at Yn+1 is an accumulation of Yn and the
Xn shifted version for nth iteration and the process will continue till the Zn reaches to
the zero. In order to perform theMACoperationCORDIC input parametersXn ,Yn and
Zn are taken as input, bias and corresponding weight, respectively. It is noted
that right shift and accumulate of input Xn till Zn → 0 performers the multiplication
between input Xn and Zn as shown in Eq. 3c. Therefore, the computation insights
multiply-accumulate operation atYn+1 is validwhen theZ0 → 0. The implementation
technique is similar to the standard shift-and-add for multiplication except for the bit-
shift direction, which supports both signed and unsigned calculations. In [28], results
for MAC operation have reported using iterative architecture at the cost of throughput
loss. The computation requires n clock cycles to evaluate the final output for N-bit
precision operation.

The X0 have taken as a input feature, and Z0 will be the corresponding weight,
whereas Y0 is the neurons’ bias constant in the evaluation of CORDIC Eq. 3c. After
nth iteration, the final form of the equations is shown in Eq. 5 [28]. An n-bit precision
computation needs to iterate a set of equations until we get w0 ⇒ 0 or a maximum
of n iterations [28]. Thus, implementation is efficient for area and power at the cost
of lower throughput. Therefore, we have optimized the CORDIC architecture firstly
for MAC operation for lower area utilization. Secondly, we have designed a pipelined
architecture for high throughput performance. Overall CORDIC equations in linear
mode perform MAC computation where simplified form is shown in Eq. 3c. Further,
a CORDIC-based MAC evaluation flowchart in a linear mode of operation is shown
in Fig. 2. It observed that Xn right-shift and add iteratively with itself until Zn →
0 at Yn port. Finally, computation performs multiplication operations between Xn

and Zn . Each CORDIC iteration produces 1-bit accuracy; it is important to notice that
output accuracy depends on the input features’ precision, i.e., n-bit precision CORDIC
produces an error around 2−n when Zn reaching to zero.
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Fig. 3 Data representation with decimal point implication used for arithmetic calculation

Xn = X0 ⇒ Xout = Xin (5a)

Yn = Y0 + X0 ∗ Z0 ⇒ Yout = Yin + Xin ∗ Zin (5b)

Zn � 0 (5c)

3.3 Pipeline Architecture for EnhancedMAC Performance

The computations in the iterative CORDIC architecture are independent of each other.
Further, architecture is area and power-efficient. However, the downside is that it
requires N+1 clock cycles to produce the final output for an N-bit input, which is
not ideal for achieving high throughput. To overcome this, pipeline stages have been
introduced to improve the MAC performance at the cost of area and power overhead.
This design is especially suitable for edge-AI and mobile applications where suffers
from power and area overhead. Therefore, Pareto’s points have been evaluated to
optimize the performance, and the results are discussed in a subsequent section. A
conventional n-stage pipeline architecture would require n× hardware compared to
the iterative architecture. However, the proposed pipelined architecture eliminates
need of n pipeline stage that obtained through Pareto analysis and also reduce the
need for multiplexers, feedback registers, and barrel shifter blocks, making it more
area-efficient.

Thedesign and implementationof theCORDIC-basedMACcomputationutilize the
signed fixed-point Q3.5 arithmetic notation, as illustrated in Fig. 3a. The arithmetic
computation for the first CORDIC stage is shown in Fig. 3b. In this computation,
the most significant bit (MSB) of the fixed-point represents the signed bit used for
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generating dn in Eq. 3c. Additionally, in Fig. 3, the MSB bit of Zn is utilized to
calculate dn , as per the CORDIC-basedMACcomputation design flow depicted in Fig.
2. Specifically, the value of dn is +1 or -1, which is the sign of Zn in the previous
iteration. In Fig. 3b, the value of d1 is +1, as the sign of Zn is positive. Similarly, when
Zn is negative, it uses a value of 1 with a negative sign.

The proposed enhanced performanceMACarchitecture based on pipelineCORDIC
is shown in Fig. 4. This pipeline architecture is relatively efficient in area and power
consumption, as it does not require feedback registers andmultiplexers, unlike iterative
architecture [28]. Additionally, the proposed design uses an n-bit shift register instead
of a barrel shifter, resulting in the desired output generated after the first N-clock
cycles, providing n-times higher throughput computation compared to the iterative
architecture.

The implementation of parallel multipliers and adder tree for MAC in neuron
computation is costly and burdensome for ASICs and tiny FPGAs. Although a sin-
gle multiplier followed by accumulation architecture is preferred due to its minimal
resource utilization, it suffers from low throughput. The proposedMACarchitecture of
w-bit precision, as shown inFig. 4, utilizes a singlemultiplier followedby accumulator.
In DNN, the current layer output is an input to the subsequent next layer, and there-
fore, the same input and output format is preferred. We use ibin= ibout=ib, fbin=fbout=fb
and win=wout = w, where ib represents the integer bits excluding the sign bit, fb
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represents the fractional bits, andw represents the total number of bits at input/output.
However, the final choice in the case of fixed-point format must be based on a target
application that gives maximum accuracy with desired precision. The conventional
w-bit precision MAC has 	2w + k
 output bits, where the w-bit multiplier generates
the 2w-bit output bit-width. On the other hand, CORDIC-based design has the same
input and output precision (w), as shown in Fig. 4. The CORDIC-based architecture
has an (n-1) bit shift, which conventionally comes with 2n-bit precision. However,
the proposed architecture does 1-bit shift operation in every iteration and has one bit
lost at the same time, which inherently comes with n-bit precision. Moreover, due to
the accumulation in the MAC, we have used extra overhead bits, i.e., k=	log2 J (l)
,
where J (l) is the number of inputs to the MAC unit in the corresponding lth layer of
DNN.

The resources-efficient multiplication followed by successive accumulation in
MAC has been successfully implemented, which computes the weighted sum in j +n
clocks, where j represents the number of inputs in the MAC computation and n repre-
sents the number of pipeline stages in the CORDIC computation. To resize the output
bit size intow-bits (9-bits) with dynamic fixed-point arithmetic representation Q3,5, a
rounding scheme has been used at the MAC output, utilizing the numeric_std library
package of VHDL. This allows for the same input and output precision for MAC
implementation, as shown in Fig. 4. The proposed enhanced performance MAC is
suitable for both convolution and fully connected layers. In fully connected layers, the
bias must accumulate in the MAC computation, which is accomplished by loading it
into the sum register for the first clock of MAC computation. The total clock overhead
in the lth layer, due to the performance Enhance CORDIC MAC architecture (TE )

in comparison with Conventional single clock multiplication evaluated architecture
(TC ) [29], is expressed using Eq. 6, where n is the number of CORDIC pipeline
stages.

TE (l) = TC (l) + (n − 1) (6)

Therefore, the total clock overhead for complete DNN acceleration, due to the
pipelined CORDIC-based MAC, is further dependent on the overall layers l =
1, 2, ..., L available in the DNN accelerator. It is essential to notice that the enhanced
performance CORDIC architecture has an initial L clock cycles overhead. After that,
the circuit generates the output at every clock cycle. However, the critical delay of each
stage is comparatively minimal, allowing it to operate at a higher frequency, enabling
theMAC unit to be used for high-throughput applications. By applying the property of
relative clocks evaluation, the simplified equation for comparable clock computation
for the DNN with L-layers is expressed using Eq. 7.

TE =
L∑

l=1

TE (l) =
L∑

l=1

(
TP (l) + n

)

=
L∑

l=1

TP (l) + L · (n − 1)

(7)
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Fig. 5 Inference accuracy forMNIST dataset Tensor CNNmodel. Here, we observed the accuracy variation
at different precision and different positioning of dynamic Fixed-point

4 Efficient MAC Design: Pareto-driven Pipeline Stages Selection

This section discusses two key aspects of the research article related to the design of
efficient hardware for DNNs. The first part presents a Pareto study to determine the
optimal integer bit-width for fixed-point arithmetic, which is crucial for achieving high
accuracy in DNN applications. The second part focuses on identifying the minimum
number of pipeline stages required for efficient multiplication operations in DNN
hardware, while maintaining acceptable accuracy levels.

4.1 Pareto-study for Accuracy Variation with Dynamic Binary Point Implication

The various bit-precisions utilized include 8-bit, 12-bit, 16-bit, and 32-bit, for our
experimental evaluation. For the representation of these precisions, we allocated one
additional bit for the sign and three bits for the integer part. For instance, in the case of
8-bit precision, we adopted a 9-bit number format representation, where one bit was
reserved for the sign, three bits for the integer part, and five bits for the fractional part.
This representation is symbolically written as Q3.5. We employed the Q3.5 arithmetic
to evaluate the proposed MAC performance. We designed the proposed MAC-based
LeNET and Tensor CNN model on a software platform, and for accuracy evaluation
and Pareto studies, we employed the MNIST dataset. By varying the position of the
binary point implication for different arithmetic precisions, we observed the accuracy
variation depicted in Fig. 5.

The use of dynamic fixed-point arithmetic with variable integer and fractional bits
in DNN implementation can result in variable accuracy in object detection and clas-
sification applications [7]. Therefore, we performed a Pareto study to determine the
optimal integer bit implication in the fixed-point arithmetic representation. In our anal-
ysis, we observed two significant conclusions from the Pareto study. Firstly, higher bit
precisions yield nearly the same classification accuracy, which is particularly evident
in larger datasets. However, this factor is less pronounced in simpler datasets such as
MNIST, where even a 4-bit and 8-bit fixed-point precision model returns comparable
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Fig. 6 Inference accuracy forMNIST dataset Tensor CNNmodel. Here, we observed the accuracy variation
at different precision and different pipeline stages used within the MAC computation

accuracy. Secondly, increasing the integer bit width is not effective as the inference
accuracy graph for integer bit widths indicates that 2-3 significant digits to the left of
the decimal point are sufficient. More integer bits do not improve accuracy.

4.2 Identification of a Number of Pipelining Stages

The CORDIC-based MAC unit has designed for DNN applications and has enhanced
throughput by implementing pipeline stages. Traditionally, N-bit precision multipli-
cation operations require N+1 pipeline stages, but implementing the N+1 pipeline
stages for 8-bit and higher precision computation is challenging and costly. The iter-
ative CORDIC-based MAC has a hardware-efficient architecture, but it has a more
critical delay that can be overcome by implementing a pipeline architecture. However,
the pipeline architecture comes with larger resource utilization and more power con-
sumption. As neural networks are error-resilient, systematic approximate computing
can be employed to minimize pipeline stages and design efficient (area, power, delay)
performance architecture, which inherently comes with computation approximation
[10]. Therefore, we performed a Pareto study between the number of pipeline stages
and accuracy and validated the results. The study helped us determine the minimum
pipeline stage with optimum accuracy. Initially, we fixed the dynamic fixed-point
implication for better performance, i.e., the number of integer bits and fractional bits
found by the Pareto study, which is Q3.5.

The research article demonstrates that the use of pipeline architecture in DNN
computation with Q3.5 arithmetic representation results in better accuracy. As the
number of pipeline stages increases, the accuracy of computation improves until Zout

approaches zero, but at the cost of increased area overhead. Therefore, we performed
Pareto analysis to determine the optimal number of CORDIC pipeline stages. Exper-
imental results show that for all precision levels greater than or equal to 8-bit, MAC
computation with five or more pipeline stages yields comparable accuracy, as depicted
inFig. 6. In this, the accuracyof theLeNetmodel on theCIFAR-10dataset has beenval-
idated using a small sample set of data consisting of 1000 images. The results obtained
are promising, with an accuracy of nearly 80%. To enhance the performance-centric
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Table 2 A pipeline architecture for high-performance MAC computation using CORDIC in linear mode
for fixed Q3.5 representation, with iteration-level calculation shown at each nth stage

n dn Xn+1 = Xn Yn+1 = Yn+ dn Xn ∗ 2-n Zn+1 = Zn- dn ∗ 2-n

Pipelined (n + 1)th Initial Conditions/Inputs

stage iteration Input = 0.6562510 bias = 0.0010 weight= 1.0937510
initial – 000.101012 000.000002 001.000112
0 +1 000.101012 000.101012 000.000112
1 +1 000.101012 000.111112 -000.011012
2 –1 000.101012 000.110102 -000.001012
3 –1 000.101012 000.110002 -000.000012
4 –1 000.101012 000.101112 /0.718710 000.000012 (≈ 0)

MAC unit, we implemented five pipeline CORDIC stages. Results are compared with
state-of-the-art methods, and the use of a single-input CORDIC calculation with five
pipeline stages is shown in Table 2. It can be observed that at the 4th and 5th stages,
the results for Zn closely approach zero.

5 Experimental Workflow and Evaluation

The performance-enhancing MAC for the DNNmodel is evaluated using Pareto anal-
ysis. The analysis is aimed at determining the minimum number of pipeline stages
required for the CORDIC-based MAC unit. The model description is presented using
HDL, and the V irtex − 7 FPGA is utilized for hardware implementation and design
validation. The design is further validated using Synopsys-design_vision [11], and
post-synthesis results are presented to assess the scalability of the MAC architec-
ture in ASIC. The following experiment is carried out to validate and compare the
performance of the proposed design.

• An optimum pipeline stage for the proposed high-performance MAC using
CORDIC has been evaluated using Pareto analysis. Since a limited number of
pipeline stages come with approximation, error metrics have been evaluated for
the optimum (five) stages-based MAC computation. Additionally, the accuracy
has been analyzed on TensorFlow DNN models for MNIST and CIFAR datasets.

• A five-stage enhanced performance MAC was evaluated using Pareto analysis,
and error metrics were analyzed for optimum computation. The performance of
the MAC was compared to state of the art, and a fully parallel ANN model was
developed and evaluated on Virtex-7 FPGA for MNIST and CIFAR datasets. The
network had a five-layer configuration and was tested for ten output classes.

• The compatibility of the architecture for ASIC implementation has been evalu-
ated, and the post-synthesis physical parameters have been assessed for the 45nm
technology node.

• At lower technology modes, power is more sensitive to process variation and
mismatch. To address this, the MACRTL digital design was converted to a CMOS
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design using the Siemens-v2lvs. The dynamic power variation was then projected
using Monte Carlo simulations.

6 Performance Analysis and Discussion

The deep neural network’s computationally dominant part is theMAC, which requires
high computational power and more chip area. Moreover, the multiplier circuit has a
significant critical delay, which increases in large scale for high-precision arithmetic.
To address these issues, we propose an optimized MAC design architecture. The
proposed MAC performance has been analyzed by extracting the results at different
abstraction levels. An enhanced performance MAC unit has been introduced, which
has better physical parameters at the cost of insignificant accuracy loss (<1.5%). This
section presents the results evaluation and comparison for bothASIC and FPGA-based
implementations.

6.1 PerformanceMetric (Error Measures) and Accuracy Validation

The compatibility of the proposed architecture in aDNNmodel is verified by customiz-
ing with the LeNet model, using which inference accuracy is evaluated for MNIST
and CIFAR-10 datasets. The different dynamic fixed-point representations with 4, 8,
16, and 32-bit precision are for the accuracy evaluation and comparison. The inference
results show that there is an insignificant accuracy loss (<1.5%) in moving for higher
32-bit to lower 8-bit precision computation in MNIST and CIFAR-10 dataset appli-
cations. In conventional combinational logic based designs, splitting higher precision
multiplication operation (e.g., 16-bit), splitting two 16-bit operands into lower bit
operands (8-bit) requires 4 (8 x 8) multiplications and adder circuitry for the addition.
Hence, the area for 16-bit multiplier with conventional design is 4–5 times the area
overhead than 8-bit multiplier. It means if 16-bit MAC architecture requires nearly 5×
hardware resources than 8-bit architecture. Further, bandwidth increases by 2×which
increases the power and reduces the throughput performance. Whereas, CORDIC-
based MAC implementation has only 2 to 2.5× resources overhead for 8-bit to 16-bit
precision operand as reported [28].

The proposed architecture supports all fixed-point arithmetic precisionwith variable
binary implications. Whereas, results focus on 8-bit precision design implementa-
tion and performance comparison. The inference accuracy of the proposed MAC and
comparison with state-of-the-art is shown in Table 3. In combinational logic-based
architecture implementation, we referred to exact computation in software and hard-
ware platform-based results evaluation, which comes with superior accuracy at the
cost of area power overhead. The proposed MAC uses approximation in arithmetic
computation, saving huge hardware resources and improving other physical perfor-
mance parameters at the cost of insignificant accuracy loss, which is nearly less than
1.5%. The CORDIC-basedMAC architecture is efficient for higher precision since the
scaling area overhead is less with increasing precision. It is observed that by limiting
the number of pipeline stages of CORDIC, one can save huge hardware resources
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Table 3 Inference accuracy metrics on multi-bit precision network with proposed MAC-based LeNet for
the different datasets

Bit-precision Inference accuracy@LeNet (%)
Dynamic MNIST CIFAR-10

Fixed-point Tensor [28] PipeMAC Tensor [28] PipeMAC

32-bit 99.3 98.7 81.7 81.2

16-bit 98.9 98.5 81.2 79.8

12-bit 98.9 98.1 80.8 79.1

8-bit 98.8 97.9 80.7 78.4

4-bit 97.4 96.2 77.9 77.4

by compromising with a maximum of nearly 1.2% accuracy loss compared to exact
computing in the case of MNIST and CIFAR-10. The number can be variable for dif-
ferent datasets, and therefore, before hardware implementation, the number of pipeline
stages can be fixed using Pareto analysis.

The demand for efficient hardware design in terms of physical performance is high
in real-time applications.DeepNeuralNetworks (DNNs) have an error-resilient feature
that allows for approximation in computation. To address performance enhancement
architecture, approximation computation has been attempted. Pareto analysis helped
to determine the minimum number of pipeline stages required in MAC computation.
The limited number of pipeline stages allows for significant savings in area resources
and power consumption. As discussed in detail in Sect. 6.2, the proposed architecture
has lower area and power consumption compared to the state of the art. Furthermore,
the design is highly efficient for precision scaled architecture [28]. The design has
been optimized for area and power by evaluating the required number of pipeline
CORDIC stages in the MAC implementation. It has been observed that the five-stage
pipeline architecture shows comparative results and reduces on-chip area utilization
and power consumption. However, the reduced number of pipeline stages results in
errors in output computations. To validate the output calculation, different error metric
equations have been used, including mean square error, mean absolute error, average
error, and standard deviation. The analysis in Table 4 is for the 8-bit precisionCORDIC
computation with five pipeline stages. The errors are considered for fixed-point Q3.5
representation and were observed to have a negligible error count in the overall output
results with five pipelines CORDIC stage-based MAC computation.

6.2 Hardware Resources Utilization and Comparison

The MAC unit and MAC-based DNN model have been implemented using Vivado-
Xilinx for the purpose of evaluating the results. TheVirtex-7 FPGAVC707 Evaluation
Kit has been used to evaluate the physical parameters of resource utilization, power
consumption, and delay analysis. Results extraction has been conducted using signed
fixed-point Q3.5 arithmetic notation and compared to state-of-the-art techniques. The
proposed MAC design has been implemented using HDL for enhanced performance.
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Post-implementation results have been extracted, demonstrated, and presented inTable
5.

The performance parameters ofMAC architectures with various design techniques,
including Vedic multiplier, Wallace tree, Booth algorithm, shift-add, and CORDIC-
based implementation, were extracted and compared to state-of-the-art techniques.
The results summary is presented in Table 5. We reported the MAC level results in
Table 5 to validate the proposed MAC performance benefits. The proposed design
utilizes less hardware compared to state-of-the-art techniques, and in addition, it has
a minimum critical delay, providing high throughput and a lower power-delay prod-
uct. The proposed MAC design employs CORDIC computation, which involves two
fundamental operations: n-bit right-shift and n-bit addition, and use of pre-calculated
memory constants in the calculation. The proposed design employs the right-shift
function, enabling both signed and unsigned computation, unlike the left shift-and-add
operation [9]. Furthermore, unlike conventional shift-and-add calculation [9], which
requires n-clocks to generate the final desired output for n-bit precision computation,
the proposed design needs only a single clock cycle.

The implementation report of the proposed architecture has been extracted and
presented in Fig. 4. As previously noted, CORDIC-based computation traditionally
required nine pipeline stages and resulted in area overhead with a single stage for n-bit
precision. Therefore, we optimized the hardware architecture by reducing the required
computing resources by limiting pipeline stage, as discussed in Section 3. We used
Pareto analysis to determine the necessary pipelining, which revealed that five stages
are sufficient for MAC evaluation. The initial output of the proposed pipelined design
takes five clocks, and each additional clock generates the output specified in Sect. 3.We
have demonstrated the results for the compute unitwith 8-bit precision (i.e.,w=8). The
iterative CORDIC-based architecture proposed in [28] has a smaller size and power
budget than other state-of-the-art architectures, but each final calculation requires
five clocks. The results have been obtained for signed fixed-point 8-bit precision
representation. The MAC with five pipelined stages consumed 58 LUTs, while the
recursive CORDIC architecture used 23 LUTs. The reason for the 2.3× resource
scaling is the absence of feedback registers and multiplexers in the proposed design,
unlike the recursive CORDIC architecture. Additionally, the proposed design does not
require a barrel shifter, unlike conventional iterativeCORDICarchitectures. Therefore,
the resource utilization did not increase proportionally with the number of pipeline
stages. The MAC with pipeline CORDIC used 2.3× resource utilization compared to
[28]; however, it improves the throughput performance by five times, and the Power-
Delay product is lower compared to the iterative architecture. The critical delay of the
recursive CORDIC architecture is reported for five iterations in Table 5. Moreover,
the power-delay product was calculated to evaluate the overall performance which is
46% less compared to the iterative CORDIC-based architecture design in [28] and
67% less compared to the best state-of-the-art technique.

The proposed MAC design achieves higher performance throughput per watt, but
with a trade-off of 0.35% accuracy loss compared to Xilinx IP accurate MAC com-
putation, as shown in Table 6. The hardware resources utilization report is presented
in Table 5, where it is observed that Xilinx IP [29] consumes 2.24× LUTs compared
to the proposed architecture. Additionally, the iterative CORDIC [28] architecture
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Table 5 Resource utilization and performance parameters at ‘fixed-point Q3.5’ for MAC

Resources utilization LUT (17600) FF (35200) Critical path delay (ns) Power-delay product(pJ )

Vedic [35] 159 245 4.48 6.11

IEEE [29] 130 49 3.98 5.63

Wallace [15] 105 112 2.59 3.29

Booth [5] 83 61 3.08 3.07

Shift-add [9] 75 58 5.44 4.17

CORDIC [28] 23 22 9.06 1.90

Proposed 58 74 1.86 1.01

Table 6 Performance parameters for fully connected NN 196:64:32:32:10 at ‘fixed-point Q3.5’ with
different MAC unit implementation. Results are produced using Vertex-7 FPGA

Parameters Xilinx IP MAC [29] Iterative CORDIC [28] Proposed pipeline CORDIC

On-chip power
(W)

2.194 0.67 1.13

Computational time
(in # clock
cycles)

344 1640 360

Throughput (GOPS) 4.650 0.977 4.450

Performance
(GOPs/W)

2.11 1.45 3.94

Accuracy (%) 95.41 95.06 95.06

consumes fewer resources than the proposed design. Both designs are evaluated for
overall architecture-level performance in Table 6. The conventional designs require
344 clock cycles, whereas the pipeline CORDIC-based architecture needs four extra
clocks in each layer, resulting in 360 cycles for final evaluation. However, the proposed
MAC-based DNNs can be operated at a higher clock rate, with nearly half the critical
path delay. The proposed DNN design architecture computes 15,963 Multiplication
operations, 15,963 addition operations, and 138 AF operations at 50MHz in these 344
cycles, giving about 4.65 GOPs. Similarly, for proposed pipeline-based architecture
requires 360 clock cycles. Here, Table 6 reports the throughput for the first image
inference. However, after the first image inference, the Xilinx IP-based architecture
will take 201 clock cycles, whereas in the case of the pipeline architecture, it will take
205 clock cycles. Based on these values, the proposed design achieves 1.89× better
performance throughput per watt than conventional MAC-based fully parallel neural
network.
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6.3 Physical Performance Parameters Evaluation of CORDIC-basedMAC and
Comparison with State of the Art

The proposed architecture has been validated for the ASIC design development pro-
cess, and physical parameters have been evaluated and compared with state-of-the-art
methods. The architecture’s performance parameters, including area, on-chip power,
and critical logic delay at the 45nm technology node, have been examined. The post-
synthesis parameters for the proposed work and state-of-the-art designs are reported
in Table 7, using Synopsys-design_vision. In this table, N represents the number of
input features discussed in Sect. 3. To reduce area overhead compared to the iterative
architecture [28], an n-bit shifter was used instead of a barrel-shifter in this design.
Although the shift-and-add method [9] has fewer physical parameters, it requires N-
clock cycles for N-bit (8-clocks for 8-bits) precision computation, which reduces the
throughput performance and renders it unsuitable for edge computing applications.

The proposed design employs a pipeline architecture, while the state-of-the-art
design uses iterative computation that takes N clock cycles for each computation,
resulting in high latency [28] (nearly 5 times that of the five pipeline stages), and a
relative ADP of 1.13 times. The iterative architecture is better suited for situations
where area and power are highly constrained, and low throughput is acceptable. How-
ever, the proposed design uses a pipeline architecture, which inherently has more area,
but the overall performance is relatively good (such as ADP) due to hardware archi-
tecture optimization. The relative area overhead in this design is smaller than that in
the iterative architecture because we used an n-bit shifter instead of a barrel shifter
and removed feedback registers. Despite having better physical parameter reports,
the shift-and-add approach [9] requires N-clock cycles for each N-bit (8 clocks for 8
bits) of precision computing, which reduces throughput performance and makes the
method less efficient and incompetent in DNN accelerators.

The high-precision computation in DNN returns better accuracy for more exten-
sive and complex datasets. The CORDIC-based MAC in DNN implementation is an
admirable choice for 8-bit and higher precision computation [28]. Whereas, in the
worst-case scenario with 8-bit precision, physical parameters are evaluated as shown
in Table 7. In this table, N represents the number of accumulations performed by
the MAC, which further depends on the number of input features at the input of the
MAC unit. To evaluate the overall chip cost, we have used the figure-of-merit, the
area, latency, and power product (ALP=area ×latency×power). The ALP is 12% and
21% less compared to the iterative CORDIC-based architecture proposed in [28] and
other best of state-of-the-art works [9], respectively. It is essential to notice that the
iterative CORDIC-based MAC requires 5-clock cycles for each multiplication, and
therefore, in each neuron, we need 5n clock cycles for n multiplications and accumu-
lation. Consequently, such designs can be helpful where area and power are on a tight
budget and throughput can be compromised. The proposed architecture uses 5 clocks
for the first multiplication due to its pipelined nature, and afterward, it computes each
multiplication at every clock cycle as depicted in Eq. 7. It is helpful for many modern
AI applications, which would be better in terms of physical performance along with
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Fig. 7 Dynamic Power consumption by CORDIC based MAC unit having five pipeline stages. The Monte
Carlo with process variation and mismatch simulation is perform for 2500 samples

enhanced throughput, applications like speech recognition, image recognition, video
analysis, medical data analysis, robotics, etc.

6.4 Process Variation andMismatch Analysis

In the context of integrated circuit manufacturing, process variation refers to the
properties of the device and peripheral components such as length, breadth, and oxide
thickness. At process nodes smaller than 65nm, process variation becomesmore appar-
ent as it constitutes a larger proportion of the device’s overall length or breadth, and
because feature sizes are closer to the basic dimensions used for lithographymasks. As
a result, process variation and device mismatch become crucial in determining the sta-
bility and reliability of physical circuit characteristics at lower technology nodes. Static
current varies significantly due to process variation and mismatch, and power-delay
product at lower technology nodes is more sensitive to naturally occurring variation.
To observe this variation, Monte Carlo simulation calculates the probabilistic distri-
bution of dynamic power variation due to process variation and device mismatch in
the characteristics of similar design devices, occurring during the manufacturing of
ICs. Hence, we carried out Monte Carlo simulation for 10,000 samples to validate
the power variation due to process and mismatch. The RTL design was extracted into
custom-CMOS circuit design using v2lvs-Mentor Graphics. We performed the Monte
Carlo simulation in Virtuoso-Cadence for 2500 samples as shown in Fig. 7. The simu-
lation result was obtained at the 45nm technology node. The proposed design exhibits
less dynamic power variation and standard deviation. The mean dynamic power and
σ deviation at the 45nm node are 319.7uW and 2.45uW .

7 Conclusion

This study has demonstrated the effectiveness of a pipeline CORDIC-based approach
with minimal pipeline stages and less critical delay, leading to improved MAC perfor-
mance in DNN applications. Our results have shown that limiting the pipeline stages
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can lead to erroneous computation. However, by adopting the proposed approach,
we observed better overall performance. Software implementation of DNN with five
pipeline stages in the MAC showed less than 1% accuracy loss in DNN inference.
Furthermore, we have demonstrated that the proposed MAC architecture allows for
both signed and unsigned computations, and our comparison with alternative design
approaches demonstrated better relative performance. The proposed MAC unit can
adapt to various inferencing applicationswith high throughput computations by select-
ing appropriate circuit design parameters such as bit-precision, # of integer bits, and #
of pipeline stages. The implemented CORDICMAC-based fully connected neural net-
work operated at 66MHz with better performance parameters. The standalone MAC
unit could run at 460MHz, indicating that the pipelineMAC architecture has mitigated
the low throughput issue present in the iterative architecture. Our proposed technique
has outperformed earlier designs for implementing and evaluating FPGA and ASIC.
The proposed system architectural methodology for performance optimization opens
up new possibilities for the reduced area and power with better performance design,
particularly in Edge-AI DNN accelerators.
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