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Abstract
Fast finite-time consensus problem of multi-agent systems under diverse topologies
is investigated by a hybrid linear and fractional power protocol, where the linear item
improves convergence performance when the state is far away from the equilibrium,
and the fractional power one accelerates convergence process when the state is close
to the equilibrium. Then a faster convergent rate is achieved in comparison with the
individual asymptotic or finite-time consensus protocol. The leaderless multi-agent
systems are firstly studied under undirected topology, and then it is extended to the
leader-following case under the directed networks. Based on finite-time stability the-
ory, the state consensus tracking errors are guaranteed to be zero within an upper
bound of settling time. Finally, numerical simulations are presented to demonstrate
the effectiveness and performance of the protocols.
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1 Introduction

The consensus problems of multi-agent systems have received considerable attention
in recent years, such as mobile sensor networks, unmanned air vehicles, autonomous
underwater vehicles and multi-spacecraft alignments [10], and the software Evoplex
has provided the extensible platform for simulations with the agent-based models and
multi-agent systems on networks [2]. The main issues are focus on designing appro-
priate protocols for consensus behaviors based on the control theory and algebraic
graph theory [6, 13, 18]. Compared with asymptotic algorithms, the finite-time coop-
erative controller possesses faster convergence speed and better disturbance rejection
property, such that the states of agents could achieve an agreement in the guaranteed
settling time [8, 21]. Based on Lyapunov function and homogeneity with dilation
techniques, finite-time consensus results have been categorized into leaderless and
leader–follower structure [14, 16].

Finite-time consensus of multi-agent systems can be achieved by a discontinuous
or continuous protocol. Finite-time consensus of the first-order integrator dynamics
with bounded disturbances rejection is achieved by the discontinuous interaction rule
[3]. Some criteria for discontinuous finite-time consensus of the nonsmooth opin-
ion dynamics have been applied to solve the distributed optimization problems over
an unbalanced digraph, sufficient finite/fixed-time network modulus consensus cri-
teria over signed digraphs are guaranteed with the sliding mode controller [11, 12].
Both finite-time and fixed-time consensus problems for multi-agent systems with dis-
continuous nonlinear inherent dynamics are studied in a leader-following framework
based onLipschitz continuous condition [9]. Howerver, the discontinuous protocol can
induce chattering both in numerical and practical implementation. General continuous
but nonsmooth interaction ruleswith fractional power itemare considered for bothfirst-
order and second-ordermulti-agent systemswhere undirected network topologieswith
a spanning tree are taken into account [4, 20]. The continuous finite time consensus pro-
tocols are investigated for the bidirectional and the unidirectional interaction cases, and
finite-time stability has been proved for continuous static and time-varying weighted
undirected graphs [17]. Due to the comparison principle, sufficient conditions are
derived to guarantee finite-time consensus of nonlinear multi-agent networks with
undirected switching topology [1]. For first order multi-agent systems with unknown
nonlinear dynamics under undirected fixed and switching network topologies, the
finite-time stability and finite-time parameter convergence are guaranteed by utiliz-
ing the local relative position state information, and linearly parameterized method
[15]. The adaptive finite-time consensus control of nonlinear mechanical systems with
parametric uncertainties are proposed for the multi-agent systems under an undirected
graph [5]. Based on the continuous homogeneous finite-time consensus protocol for
second-ordermulti-agent systems, the continuous integral slidingmode super-twisting
protocols are developed to achieve accurate finite-time consensus [19]. The homoge-
neous functions and the finite-time observers have been applied to solve the finite-time
consensus problem and tracking protocols for high-order linear multi-agent systems
[7]. Multiple time delays and time-varying communication delay are investigated with
finite-time consensus problems in [14]. Fast sliding mode control can guarantee faster
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finite-time convergence rate to reach the sliding surface. Combining with the fast slid-
ing mode control, exponential finite time consensus is achieved for high-order and
fractional-order multi-agent systems, respectively [8].

The effectiveness of the finite-time consensus protocols are evaluated by the con-
vergence rate. According to the fractional power item, the above finite-time convergent
process is slower when the system is far away from the equilibrium. Motivated by the
above investigation, a fast finite-time consensus strategy is studied in this paper, the
main contributions are listed as follows: (1) With aid of an additional linear control
item, a hybrid finite-time consensus protocol is proposed for single-integrator agents
to ensure the consensus and tracking errors converging to zero faster in the whole
process, the fast finite-time consensus under undirected topology is proved that the
settling time is upper bounded for any initial condition. (2) Different from the reported
finite-time consensus in undirected topology, the proposed fast finite-time consensus
protocol is extended to the leader–follower case under directed topology, and with the
semi-positive definite Lyapunov function, the state consensus tracking errors are guar-
anteed to be zero within an upper bound of settling time under directed information
flow.

The rest of this paper is organized as follows. Section 2 introduces some prelimi-
naries and algebraic graph theory. The main results of the fast finite-time consensus
problems under undirected and directed topology are presented in Sect. 3. Section 4
gives a numerical example to verify the correctness. Conclusion is summarized in the
last section.

2 Preliminaries and Problem Formulation

In this section, some basic concepts on information consensus and results on agents
in a network are introduced about fast finite-time stability and algebraic graph theory.

2.1 Algebraic Graph Theory

The communication topology among N agents is represented by a weighted directed
graph G = (V, E, A), where V = {1, 2, . . . , N } denotes the set of nodes, E ∈ (V × V)

denotes the set of ordered pairs of the nodes, called edges. Assume that there is no
self-edge, i.e., (i, i) /∈ E for any i ∈ V , and the set of neighbors of agent j is
N j = {i ∈ V : (i, j) ∈ E}. An edge (i, j) ∈ E in graph G means that agent j can
receive information from agent i , but not necessarily conversely. ai j is the coupling
strength of the directed edge (i, j) satisfying ai j > 0 if (i, j) is an edge of G and
ai j = 0 otherwise. For any pair of vertices (i, j), if ai j = a ji , the graph is called an
undirected graph.Anundirected graph is regarded as connected if a path exists between
any two distinct vertices (i, j). The corresponding adjacency matrix A = (

ai j
)
N×N

is symmetric, i.e. AT = A, and λmin(A) is the minimum eigenvalue of a symmetric
matrix A. The Laplacian matrix L = (li j ) are defined as follows:
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Lemma 1 [21] Let L = [
li j

] ∈ RN×N denote a graph Laplacian, which is defined by

li j =

⎧
⎪⎨

⎪⎩

N∑

k=1,k �=i
aik, i = j

−ai j , i �= j

(1)

then L have the following properties in undirected graph as follows:

1) 0 is an eigenvalue of L and 1N is the associated eigenvector.

2) For any ε = [ε1, ε2, · · · , εn]T ∈ Rn , εT Lε = 1
2

∑n
i=1

∑n
j=1ai j

(
ε j − εi

)2, which
implies that all eigenvalues of L are non-negative real numbers.

3) If the graph is undirected and connected, then the second smallest eigenvalue of L ,

which is denoted by λ2(L), is larger than zero and λ2(L) = minε �=0,1T ε=0
εT Lε
εT ε

.

Therefore, if 1T ε = 0, then εT Lε ≥ λ2(L)εT ε.

A directed path from agent i1 to agent is is a sequence of edges of the form
(ik, ik+1), k = 1, 2, . . . , s − 1. A digraph has a spanning tree if there is an agent
called root, such that there is a directed path from the root to each other agent in the
graph. Then the topology G is strongly connected, and directed topological graphs are
not symmetric. For simplicity, denote LB = L + B, and B is a nonnegative diagonal
matrix defined by B = diag(b1, b2, · · · , bN ), where bi > 0 means that the leader is
accessible by the i th agent, and bi = 0 otherwise. Some preliminary assumption and
lemmas about directed network graph are introduced briefly in the following.

Lemma 2 [19] A network G is strongly connected if and only if its corresponding
Laplacian matrix L is irreducible.

Lemma 3 [6] The Laplacian matrix L has a simple eigenvalue zero, and all the other
eigenvalues have positive real parts if and only if the directed network has a directed
spanning tree.

Lemma 4 [6] Suppose that L is irreducible. Then, L1N = 0, and there is a positive
vector ξ = [ξ1, ξ2, · · · , ξN ]T such that ξ T L = 0. Denote � = diag(ξ1, ξ2, · · · , ξN ).
Then, � > 0 and �−1 > 0.

Assumption 1 Suppose that the underlying topology of leader and followers contains
a directed spanning tree and the subgraph describing the communication topology
among followers is strongly connected.

Lemma 5 [14] Suppose that Assumption 1 holds. Then LB is invertible and �LB +
LT
B� is positive definite.
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2.2 Fast Finite-Time Stability

Finite-time stability means the system state can converge to the equilibrium in finite
time and stay there afterwards, and the corresponding Lyapunov stability theorem is
defined as follows:

Lemma 6 [17] Supposing that function V (t) : [0, ∞) → [0, ∞) is differentiable
and satisfies the condition

dV (t)

dt
≤ −K1V (t) − K2V (t)α (2)

where K1, K2 > 0 and 0 < α < 1, then V (t) reaches zero at t∗ and V (t) = 0, for all
t ≥ t∗.

t∗ = 1

K1(1 − α)
ln
K1V (0)1−α + K2

K2
(3)

Remark 1 For the above differential inequality (2), if K2 = 0, V (t) approaches zero
asymptotically, whereas reaches zero in finite time at a lower rate when K1 = 0.

Furthermore, define s[α] = sign(s)|s|α , where s ∈ R, sign(s) is the sign function
and α > 0 is a constant, and the following Lemmawill be used in the stability analysis.

Lemma 7 [20] If ξ1, ξ2, · · · , ξN ≥ 0 and 0 < α ≤ 1 then

(∑N

i=1
ξi

)α

≤
∑N

i=1
ξα
i ≤ N 1−α

(∑N

i=1
ξi

)α

(4)

2.3 Problem Formulation

The multi-agent systems consist of N dynamic agents, labeled 1 through N . Let
xi (t) ∈ R denote the state of agent i , and x(t) = [x1(t), x2(t), · · · , xN (t)]T . The
dynamical model of each agent is described by

ẋi (t) = ui (t) (5)

where ui (t) is a local state feedback, called the protocol. If ∀xi (0) and∣∣xi (t) − x j (t)
∣∣ → 0 as t → ∞, the closed-loop system with the protocol ui can

reach or achieve consensus asymptotically. It is said to achieve finite-time consensus,
if for ∀xi (0), there is a settling time T ∈ [0, ∞) such that

{
lim
t→T

∣
∣xi (t) − x j (t)

∣
∣ → 0

xi (t) = x j (t),∀t ≥ T
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3 Main Results

The general framework of the fast finite-time consensus protocols is developed with a
group of agents to reach agreement with undirected information flow, then extend the
results to the directed topology.

3.1 Fast Finite-Time Consensus Under Undirected Topology

In this subsection, a multi-agent system (1) is investigated under undirected topology.
The protocol utilized to solve the fast finite-time consensus problem is

ui = −k1

(∑

j∈N j
ai j

(
xi − x j

))−k2

(∑

j∈N j
ai j

(
xi − x j

))[α]

(6)

where k1 > 0, k2 > 0, 0 < α < 1.

Theorem 1 Supposing that communication topology G(A) of the multi-agent sys-
tems (1) is undirected and connected, then the protocol (6) solves the fast finite-time
consensus problem.

Proof Given the undirected and connected topology, ai j = a ji for all i, j ∈ IN ,
IN = {1, 2, · · · , N } then we obtain.

∑N

i=1
ẋi =

∑N

i=1
ui = 0 (7)

The Lyapunov function is taken as

V = 1

2
xT Lx = 1

4

∑N

i=1

∑N

j=1
ai j

(
x j (t) − xi (t)

)2 (8)

According to Lemma 1, V (x(t)) = 0 if and only if x(t) ∈ span{1N }, the symmetry
of the adjacent matrix gives that

∂V (x)

∂xi
= −

∑N

j=1
ai j

(
x j − xi

)
(9)

The derivative of V (x) versus time is

V̇ (x) =
N∑

i=1

∂V (x)

∂xi
ẋi = −

N∑

i=1

⎛

⎝
∑

j∈N j

ai j
(
x j (t) − xi (t)

)
⎞

⎠

×
⎡

⎢
⎣k1

⎛

⎝
∑

j∈N j

ai j
(
x j − xi

)
⎞

⎠ + k2

⎛

⎝
∑

j∈N j

ai j
(
x j − xi

)
⎞

⎠

[α]
⎤

⎥
⎦
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= − k1

N∑

i=1

⎛

⎝
∑

j∈N j

ai j
(
x j (t) − xi (t)

)
⎞

⎠

2

− k2

N∑

i=1

⎛

⎝
∑

j∈N j

ai j
(
x j (t) − xi (t)

)
⎞

⎠

[α+1]

= − k1

N∑

i=1

⎛

⎝
∑

j∈N j

ai j
(
x j (t) − xi (t)

)
⎞

⎠

2

− k2

N∑

i=1

⎛

⎜
⎝

⎛

⎝
∑

j∈N j

ai j
(
x j (t) − xi (t)

)
⎞

⎠

2
⎞

⎟
⎠

[α+1]
2

(10)

Given that (α + 1)/2 ∈ (0, 1), with Lemma 7, we have

V̇ (x) ≤ −k1
∑N

i=1

(∑

j∈N j
ai j

(
x j (t) − xi (t)

)2
)

− k2N
[1−α]

2

(
∑N

i=1

(∑

j∈N j
ai j

(
x j (t) − xi (t)

))2
) [α+1]

2

(11)

The semi-positive property of L ensures L = QT Q, Q ∈ RN∗N is a semi-positive
matrix. For V (x) �= 0, then

∑N
i=1

(∑
j∈N j

ai j
(
x j − xi

))2

V (x)
= xT LT Lx

1
2 x

T Lx
= 2xT QT QQT Qx

xT QT Qx
≥ 2λ2

(
QQT

)
= 2λ2(L)

(12)

where λ2(L) > 0, then

V̇ (x) ≤ −k1(2λ2(L)V (x)) − k2N
[1−α]

2 (2λ2(L))
[1+α]

2 V (x)
[1+α]

2
(13)

If V �= 0, let z = (2λ2(L)V (x))
1
2 , then

ż = −λ2k1z − k2N
[1−α]

2 λ2z
[α]

(14)

1
z[α]

dz
dt = −

(
k2N

[1−α]
2 λ2 + λ2k1z[1−α]

)
, it follows

1

k2N
[1−α]

2 λ2 + λ2k1z[1−α]
dz[1−α] = −[1 − α]dt

Let ϕ
(
z[1−α]

) = ∫ z[1−α]

0
1

k1N
[1−α]

2 λ2+λ2k2z[1−α]
dz[1−α]. The derivative of ϕ

(
z[1−α]

)
is

ϕ
′(
z[1−α]

) = 1

k1N
[1−α]

2 λ2+λ2k2z[1−α]
> 0, then the function ϕ

(
z[1−α]

)
is monotonically

increasing.
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Integrating both sides of the equation yields

ϕ
(
z[1−α](t)

)
= ϕ

(
z[1−α](0)

)
− [1 − α]t

Since ϕ
(
z[1−α]

) = 0 if and only if z[1−α] = 0, which means V = 0. Then
lim

t→T (z0)
V (x) = 0, the settling time function is given by

T (z0) = 1

1 − α
ϕ
(
z[1−α](0)

)
= 1

1 − α
ϕ
(
(2λ2(L)V (x))

[1−α]
2 (0)

)

where the settling time is bound by

lim
z0→∞ T (z0) = lim

z0→∞
1

1 − α
ϕ
(
z[1−α](0)

)

= lim
z0→∞

1

1 − α

(
z[1−α]

∫
0

1

k1N
[1−α]

2 λ2 + λ2k2z1−α
dz[1−α]

)

= 1

k1λ2(1 − α)
ln
k2N

[1−α]
2 λ2 + k1λ2(2λ2V (0))

1−α
2

k2N
[1−α]

2 λ2

IfV (x) = 0, then xi = x j . Therefore, the proposedprotocol guarantees the system’s
stability and solves the fast finite-time consensus problem.

Remark 2 The hybrid protocol consists of non-linear and linear terms, which solves
the fast finite-time consensus problem. The upper bound of convergence time offered
by Theorem 1 only relates to the parameters of protocol (6), the order N of the multi-
agent system, and the algebraic connectivity of G(A). When α = 1, the protocol is
typical linear consensus protocol, whereas is typical finite-time consensus protocol
when k1 = 0.

3.2 Fast Finite-Time Leader-Following Consensus Under Directed Topology

In this part, the tracking consensus protocol under the directed networks is considered.
The dynamics of the leader has the following form:

ẋ0 = u0 = 0

Remark 3 Here the leader’s control input is assumed as u0 = 0 for clear expression.
As a fact, if u0 �= 0, we can design a distributed observer for each follower to estimate
it in finite time.

The protocol guarantees the system’s stability and solves the fast finite-time lead-
er–follower consensus problem
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ui (t) = −k1

[∑N

j=1
ai j

(
xi − x j

) + bi (xi − x0)

]

− k2

[∑N

j=1
ai j

(
xi − x j

) + bi (xi − x0)

][α]
(15)

where k1 > 0, k2 > 0, 0 < α < 1.

Theorem 2 Supposing that Assumption 1 holds. Then, the fast finite-time leader-
following consensus tracking problem for multi-agent systems (1) with the leader
ẋ0 = u0 can be solved by the protocol (15).

Proof Given that the topology is directed and connected. Set ei = xi − x0, for all
i, j ∈ In .

ėi = ẋi − ẋ0 = −k1

⎡

⎣
N∑

j=1

ai j
(
xi − x0 − (

x j − x0
)) + bi (xi − x0)

⎤

⎦

− k2

⎡

⎣
N∑

j=1

ai j
(
xi − x0 − (

x j − x0
)) + bi (xi − x0)

⎤

⎦

[α]

Then the error system is

ėi = −k1

[∑N

j=1
ai j

(
ei − e j

) + bi ei

]
− k2

[∑N

j=1
ai j

(
ei − e j

) + bi ei

][α]
(16)

Based on Lemmas 2 and 3, the dynamics of agents can be written in a compact
vector form

ė = −k1(LBe) − k2(LBe)
[α] (17)

Denote y = [y1, · · · , yN ]T = LBe, then

ẏ = −k1LB y − k2LB(y)[] (18)

Choose a Lyapunov candidate

V = k1
2

N∑

i=1

ξi |yi |2 + k2
α + 1

N∑

i=1

ξi |yi |α+1 (19)

Take the derivative of V along the trajectory, based on Lemma 4, it follows that:

V̇ = k1

N∑

i=1

ξi |yi |sign(yi )ẏi + k2

N∑

i=1

ξi |yi |αsign(yi )ẏi
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= k1y
T�ẏ + k2

(
y[α]

)T
�ẏ = (

k1y + k2y
[α])T�ẏ

= −(
k1y + k2y

[α])T�LB
(
k1y + k2y

[α])

= −1

2

(
k1y + k2y

[α])T
(
�LB + LT

B�
)(
k1y + k2y

[α])

≤ −1

2
λ̄
(
k1y + k2y

[α])T (k1y + k2y
[α])

= −1

2
λ̄

n∑

i=1

(
k1yi + k2y

[α]
i

)T (
k1yi + k2y

[α]
i

)

= −1

2
λ̄

n∑

i=1

(
k21 |yi |2 + 2k1k2|yi |1+α + k22 |yi |2α

)
(20)

According to Lemma 5, λ = λmin
(
�LB + LT

B�
)

> 0. Then

V = k1
2

∑N

i=1
ξi |yi |2 + k2

α + 1

∑N

i=1
ξi |yi |α+1 (21)

V ≤ ξmaxkmax

α + 1

(∑N

i=1
|yi |2 +

∑N

i=1
|yi |α+1

)
(22)

where ξmax = max{ξi } is the largest element of the eigenvector in Lemma 4, i ∈ In ,
kmax = max{k1, k2} is the larger gain of the linear one and fractional power one.

Consider V = ∑N
i=1 |yi |2 + ∑N

i=1 |yi |α+1, (1 + α)/2 < 1, according to Lemma
7, it follows that

(∑N

i=1
|yi |2 +

∑N

i=1
|yi |α+1

) 1+α
2 ≤

(∑N

i=1
|yi |2

) 1+α
2 +

(∑N

i=1
|yi |α+1

) 1+α
2

=
∑N

i=1
|yi |1+α +

∑N

i=1
|yi | (1+α)2

2 (23)

where Lemma 7 is inserted in view of (α + 1)2/2− 2 < 0 and (α + 1)2/2− 2α > 0.

∑N

i=1
|yi | (1+α)2

2 ≤
∑N

i=1
|yi |2 +

∑N

i=1
|yi |2α

Combining the above formula results in

V
1+α
2 ≤

∑N

i=1
|yi |1+α +

∑N

i=1
|yi |2 +

∑N

i=1
|yi |2α ≤

∑N

i=1

(
|yi |1+α + |yi |2 + |yi |2α

)

(24)

Similarly, |yi |α+1 ≤ |yi |2α + |yi |α+1,

∑N

i=1
|yi |2 +

∑N

i=1
|yi |α+1 ≤

∑N

i=1
|yi |2 +

∑N

i=1
|yi |2α +

∑N

i=1
|yi |α+1
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It follows that:

V ≤
∑N

i=1
|yi |2 +

∑N

i=1
|yi |2α +

∑N

i=1
|yi |α+1 ≤

∑N

i=1

(
|yi |2 + |yi |2α + 2|yi |α+1

)

Then,

V̇ ≤ −1

4
kmaxλ

[
V + V

α+1
2

]
= −K1V − K2V

α+1
2 (25)

where K1 = 1
4
kmax
ξmax

λ(α + 1) and K2 = 1
4kmaxλ

(
α+1
ξmax

) α+1
2
. According to Lemma 6, y

reaches to zero, i.e., consensus tracking is achieved, in finite time T0.

T0 ≤ 2

K1(1 − α)
ln
K1V (0)

1−α
2 + K2

K2
(26)

Remark 4 A transformation and some inequality approaches are utilized in Theorem2.
It is shown that the upper bound of the convergence time is related to the topology,
the designed parameters and the initial states.

4 Simulation

In this section, three examples are provided to illustrate the effectiveness of the fast
finite-time strategy by comparing with the typical finite-time ones in [16, 17, 21].
Without loss of generality, it is assumed N = 6 for all the examples.

Example 1 [17]: Consider the case of the fast finite-time consensus protocol (7)
under undirected topology. Set control gain k1 = k2 = 1, the weight of all edges
is 1 in this study. The initial state is [−1,−0.5,−0.2, 0.2, 0.5, 1]T . The communi-
cation topology is shown in Figs. 1, 2 shows the fast finite-time state trajectories
of agents when α = 0.5, 0.8. Comparisons with the traditional finite-time (dotted

line)ui = −k2
(∑

j∈N j
ai j

(
x j − xi

))[α]
using the same design parameters show that

the convergence time of protocol (7) is faster.

Example 2 [21]: Set nonzero weights ai j = 2, two initial scenarios: (a)
[−5,−3, 3, 8, 4, 5]T , (b) [10,−20,−3, 5, 2,−24]T , the parameters k1 = k2 = 2.

Fig. 1 The undirected
communication topology of six
agents
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Fig. 2 The state trajectories of agents under protocol (6) with different fractional power (solid line with
k1 = k2 = 1 and dotted line with k1 = 0, k2 = 2)

The algebraic connectivity of Fig. 3 is 0.83. Figure 4 shows that the settling time of
the fast finite-time protocol (7) under different initial conditions are about 1.05 s and
1.22 s, which is less conservative for estimated bounds. The fast finite-time conver-
gence time is shorter than the typical finite-time (dotted line) consensus protocol.

Example 3 [16]: Consider a multi-agent system consists of 5 followers and 1 leader
with the controller (15). The communication topology is shown in Fig. 5. The param-
eters are chosen k1 = k2 = 3, α = 0.4, and ai j is defined in Fig. 5. The initial

Fig. 3 The communication
topology of six agents 1 2 3
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Fig. 4 The state trajectories of agents under protocol (6) with different initial state. (solid line with k1 =
k2 = 2 and dotted line with k1 = 0, k2 = 4)
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Fig. 5 The directed
communication topology with 5
followers and 1 leader

Fig. 6 State trajectories of leader and followers under protocol (15) (solid line with k1 = k2 = 3 and dotted
line with k1 = 0, k2 = 6)

condition is [250,−200, 140,−50, 300] for the followers, x0 = 100 for the leader.
Figures 6 and 7 show that the fast finite-time convergence process of the state and error
ei = |xi − x0| trajectories (solid line) is faster than the traditional finite-time (dotted
line) respectively.

5 Conclusions

In this paper, the framework of fast finite-time consensus protocols have been inves-
tigated under undirected and directed topologies. First, the fast finite-time nonlinear
protocol is proposed based on semi-positive definite function to achieve the state
agreement under undirected topology. The Lypunov function chooses the states error
with neighbors instead of error between states with average. The comparison princi-
ple of differential equation is used for finite-time stability. Then it is extended to the
leader-following case under the directed networks. The Lypunov function choosing
the error between agents and leader, mathematical transformation and inequality is
used to prove stability. The effectiveness of the fast finite-time controllers is illus-
trated in three communication topologies. Future research work will concentrate on
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Fig. 7 Error trajectories of followers under protocol (15) (solid line with k1 = k2 = 3 and dotted line with
k1 = 0, k2 = 6)

the fast finite-time consensus protocols to multi-agent systems with port-Hamiltonian
and Euler-Lagrangian dynamics.
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