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Abstract
In this paper, a family of novel diffusion adaptive estimation algorithms is proposed
from the asymmetric cost function perspective by combining diffusion strategy and
the linear–linear cost, quadratic-quadratic cost, and linear-exponential cost at all
distributed network nodes, and named diffusion LLCLMS (DLLCLMS), diffusion
QQCLMS (DQQCLMS), and diffusion LECLMS (DLECLMS), respectively. Then,
the stability of mean estimation error and computational complexity of those three
diffusion algorithms are analyzed theoretically. Finally, several experiment simula-
tion results are designed to verify the superiority of those three proposed diffusion
algorithms. Results show that DLLCLMS, DQQCLMS, and DLECLMS algorithms
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are more robust to the input signal and impulsive noise than the diffusion sign-error
LMS, diffusion robust variable step-size least mean square (DRVSSLMS), and least
mean logarithmic absolute difference algorithms. In brief, theoretical analysis and
experiment results show that those proposed DLLCLMS, DQQCLMS, and DLE-
CLMS algorithms perform better when estimating the unknown linear system under
the changeable impulsive noise environments and different environments types of
input signals.

Keywords Asymmetric cost function · Adaptive diffusion algorithm · Impulsive
noise · Input signals

1 Introduction

So far, adaptive filter algorithms are often used in channel equalization, active inter-
ference control, echo cancellation, biomedical engineering [7, 15, 21, 28, 30, 31], and
many other fields [23, 33, 34]. In recent years, especially in the research on wireless
sensor networks, in other words, diffusion adaptive filtering algorithms have been
widely studied due to their unique performance, which is an extension of adaptive fil-
tering algorithms over network graphs [31]. Besides, three collaborative strategies for
adaptive filtering/estimation algorithms on the distributed network are widely used,
including incremental, consensus, and diffusion strategies. However, these three col-
laborative strategies have different performances; specifically, the consensus technique
has an asymmetry problem, which can cause unstable growth. The diffusion strategies
show good performance for unstable, and they can remove the asymmetry problem and
real-time adaptation learning over distributed networks. So, diffusion strategies have
been used frequently in the past decade, and they also include the adapt-then-combine
(ATC) scheme [22] and the combine-then-adapt (CTA) scheme [5, 31]. Of course, the
performance between these two schemes is also different; in response to this compari-
son, the specific explanation is that in theCTA formulation of the diffusion strategy, the
name combine-then-adapt is that the first step involves a combination step, while the
second step consists of an adaptation step; a similar implementation can be obtained
by switching the order of the combination and adaptation steps. Moreover, Cattivelli
and colleagues analyzed these two schemes, indicating that the ATC is better than the
CTA [22]. With this conclusion, in the following research, the ATC scheme becomes
a research focus in distributed adaptive filtering algorithms [2–4, 16, 19, 22, 24, 25,
39].

The Wiener filter principle is the fundamental adaptive filtering algorithm based
on the minimum mean square estimation error to construct an efficient convex cost
function [38]. We can know the core position of the cost function in the design of
adaptive filtering algorithms. Besides, most of the cost functions were designed in the
adaptive filtering algorithm field to satisfy symmetry, such as LMS [38], LMF [35],
symmetric Gaussian kernel function [21], and hyperbolic function [18, 36]. It is worth
noting that the mainstream cost function design constructs the independent variable as
a function of the estimation error. Still, the estimation error is closely related to themea-
surement interference/noise. Not all the measurement interference/noise distributions
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satisfy symmetrical distributions, such as among the asymmetric interference/noise,
impulsive noise is the most representative asymmetrical distribution. Impulsive noise
will significantly affect adaptive estimation accuracy and most diffusion adaptive
estimation/filtering algorithms over a network graph. Therefore, designing a robust
distributed filtering algorithm for impulsive noise is necessary.

For this purpose, many papers have been written so far [1, 13, 17, 20, 26, 27, 37].
The diffusion least mean p-power (DLMP) algorithm was proposed by Wen [37],
which is robust to the generalized Gaussian noise distribution environments and prior
knowledge of the distribution. However, the DLMP algorithm was proposed with
a fixed power p-value, so the parameter p-value is the critical factor, which means
the DLMP algorithm performance is highly susceptible to the p-value. Based on the
minimization of theL1-normsubject to a constraint on the adaptive estimate vectors,Ni
and colleagues designed adiffusion sign subband adaptivefiltering (DSSAF) algorithm
[26]. The DSSAF algorithm performs better, but the computational complexity of
DSSAF is relatively large.

Besides, by combining the diffusion least mean square (DLMS) algorithm [4] and
the sign operation to the estimated error at each iteration moment point, Ni and col-
leagues derived a diffusion sign-error LMS (DSELMS) algorithm [27]. The DSELMS
algorithm has a simple architecture, but the DSELMS algorithm has a significant
drawback, i.e., the steady-state estimation error is high [11]. Based on the Huber cost
function, a similar set of diffusion adaptive filtering algorithms byGuan and colleagues
[20],Wei and colleagues [17], andSoheila and colleagues [1] have beenproposed as the
DNHuber, DRVSSLMS, and RDLMS algorithms, respectively. Nevertheless, among
them, the RDLMS algorithm is impractical for impulsive noise. Discussing impulsive
noise and input signals can be more comprehensive for the DNHuber algorithm. The
DRVSSLMS algorithm has high algorithm computational complexity not conducive
to implementing practical engineering. Besides, inspired by the least mean logarith-
mic absolute difference (LLAD) operation, Chen and colleagues designed another
distributed adaptive filtering algorithm, i.e., the DLLAD algorithm [5]. But analysis
of the robustness of the distributed algorithm to the input signal and impulsive noise
has yet to be performed. To solve this problem, Guan and colleagues proposed a diffu-
sion probabilistic least mean square (DPLMS) algorithm [13] by combining the ATC
scheme and the probabilistic LMS algorithm [10, 16] at all distributed network nodes.

Can an asymmetric function be used to design a cost function in an adaptive filter-
ing algorithm? It is a problem that needs urgent attention to ensure the effectiveness
of adaptive filtering algorithms. The asymmetric cost function usually performs very
well, especially when the estimated error variable is of symmetric distribution. How-
ever, symmetry and asymmetry are complementary concepts, so does the estimation
error change symmetrical when running an adaptive filtering algorithm? Usually, the
change in the estimation error cost function will be affected by measurement interfer-
ence/noise. The distribution of most interference or noise does not satisfy symmetry.
So, for asymmetric estimation error distribution, the symmetric cost function is inap-
propriate and cannot adapt to the error distribution well.

Therefore, for these asymmetric interferences, it is feasible to use the asymmetric
function to design the cost function to construct a novel adaptive filtering algorithm.
Combining the content of the above paragraph, we can see that most of the above
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distributed adaptive filtering algorithms are proposed using the symmetry cost func-
tions [29]. So, to address the asymmetry estimated error distribution issue, we offer
a family diffusion adaptive filtering algorithms by using three different asymmetric
cost functions (i.e., the linear–linear cost (LLC), quadratic-quadratic cost (QQC), and
linear-exponential cost (LEC) [6, 8, 9], namely theDLLCLMS,DQQCLMS, andDLE-
CLMS algorithms. The stability of the mean estimation error of those three proposed
diffusion algorithms is analyzed, and the computational complexity is also analyzed
theoretically. Simulation experiment results indicate that theDLLCLMS,DQQCLMS,
and DLECLMS algorithms are more robust to the input signal and impulsive noise
than the DSELMS, DRVSSLMS, and DLLAD algorithms.

The rest parts of this article are organized as follows. The proposed DLLCLMS,
DQQCLMS, and DLECLMS algorithms will be described in detail in Sect. 2. The
statistical stability behavior, computation complexity, and parameters (a and b) of
DLLCLMS, DQQCLMS, and DLECLMS algorithms are studied in Sect. 3. The sim-
ulation experiment is described in Sect. 4. Finally, conclusions are provided in Sect. 5.
Note: Bold type refers to vectors, [ ]T denotes the transpose, [ ]-1 denotes the inverse
operation, and | | denotes the absolute value operation.

2 Proposed the Diffusion Algorithms Using the Asymmetric Function

This sectionmainly describes designing theDLLCLMS,DQQCLMS, andDLECLMS
algorithms. The specific plan is that the first step is to propose three adaptive filtering
algorithms based on asymmetric cost functions (i.e., the LLC, QQC, and LEC func-
tions). Then, the second step is to modify those three adaptive filtering algorithms by
extending to all distributed network agents to propose the DLLCLMS, DQQCLMS,
and DLECLMS algorithms.

2.1 Three Adaptive Filtering Algorithms Based on Asymmetric Cost Functions

Setting an unknown linear system with the length M of the system coefficient Wo,
andW(i) be the adaptive estimated weight vector at iteration i ,X(i) denotes the input
signal vector of the adaptive filtering algorithm. The estimation error e(i) between the
desired signal d(i) and the estimation output y(i) can be expressed as Eqs. (1)–(2).
Additionally, v(i) is this unknown linear system measurement noise.

{
d(i) � WoTX(i) + v(i)
y(i) � WT(i)X(i)

(1)

e(i) � d(i) − y(i) � WoX(i) + v(i) − WT(i)X(i) (2)

Next, three asymmetric cost functions, including the LLC, QQC, and LEC func-
tions, are used to design three adaptive filtering algorithms.
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Firstly, LLC adaptive filtering algorithm aims to minimize the LLC cost function
of estimation error defined as

JLLC(i) �
{
a e(i)
b e(i)

, if e(i) > 0
, if e(i) ≤ 0

(3)

Secondly,QQCadaptivefiltering algorithmaims tominimize theQQCcost function
of estimation error defined as

JQQC(i) � 1

2

{
ae2(i)
be2(i)

, ife(i) > 0
, ife(i) ≤ 0

(4)

Thirdly, LEC adaptive filtering algorithm aims to minimize the LEC cost function
of estimation error defined as

JLEC(i) � b
[
exp(ae(i)) − ae(i) − 1

]
(5)

In Eqs. (3), (4), and (5), a, b > 0 is the cut-off value.
Parameters a and b determine the shape and characteristics of each cost function;

how to set it is critical. Parameters a and b facilitate the adjustment of the asymmetric
cost of error functions to the empirical cost situation because they determine the sever-
ity of a given estimation error type. For example, setting a � b reduces QQC to the
mean squared error, whereas LLC is reduced to the mean absolute error. From Eq. (3),
the LLC cost function behaves as a sign-error cost function estimator. Therefore, the
LLC cost function can combine the sign-error cost function and asymmetric estimated
error. From Eq. (4), the QQC cost function behaves as a square error cost function
estimator. Therefore, the QQC cost function can combine the square error cost func-
tion estimator and asymmetric estimated error. From Eq. (5), the LEC cost function
behaves as an exponential estimator. Therefore, the LEC cost function can combine
the exponential function estimator and asymmetric estimated error. From the above
analysis, it can be seen that these three cost functions are worthy of further study and
then, used to design adaptive filtering algorithms.

According to the steepest descent method, the weight vector update of the LLC
adaptive filter algorithm is

W(i + 1) �
{
W(i) + μa sign(e(i))X(i)
W(i) + μb sign(e(i))X(i)

, if e(i) > 0
, if e(i) ≤ 0

�W(i) +
μ

2

[
a(1 + sign(e(i))) + b(1 − sign(e(i)))

]
X(i) (6)

In Eq. (6), sign(·) denotes the sign function, and μ is the step size.
According to the steepest descent method, the weight vector update of the QQC

adaptive filter algorithm is

W(i + 1) �
{
W(i) + μae(i)X(i)
W(i) + μbe(i)X(i)

, if e(i) > 0
, if e(i) ≤ 0

(7)
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In similar operations, according to the steepest descent method, the weight vector
update of the LEC adaptive filter algorithm is

W(i + 1) � W(i) + μab((exp(ae(i)) − 1))X(i) (8)

In Eq. (8), the symbol exp(·) denotes the exponential function, and μ is the step
size.

2.2 Three Asymmetric Adaptive Diffusion Filtering Algorithms

As described in part of the introduction, recent research on wireless sensor networks
has been widely studied due to their unique performance. So, according to the design
results of the previous subsection, three adaptive filtering algorithms, combined with
a schematic diagram of distributed network structure in our previous research papers
[13, 20], set a distributed network of N agent sensor nodes (as Fig. 1).Xn(i) and dn(i)
are the input signals and estimation output signals at agent n, respectively. It needs to
be stated that this paper is different from our previous work [13, 20]. The similarity is
how to realize the practical distributed adaptive estimation in impulsive interference.
This paper uses three asymmetric functions to design three cost functions to construct
a novel family adaptive filtering algorithm to address the asymmetry estimated error
distribution issue. Moreover, explore the robustness of the algorithm developed in this
paper to the input signal and impulsive interference.

Based on Fig. 1, by using minimizes the global cost function, we can seek the
optimal linear estimator at each time instant i:

J global(W(i)) �
∑
n

J localn (W(i)) (9)

Each sensor node n ∈ {1, 2, · · · , N } has access to some zero-mean random pro-
cess {dn(i),Xn(i)}, dn(i) is a scalar, and Xn(i) is a regression vector. Suppose these
measurement signals follow a standard computational model given by:

dn(i) � WoTXn(i) + vn(i) (10)

whereWo is the unknown parameter vector with lengthM, and vn(i) is the unknown
linear distributed network system measurement noise with variance σ 2

v,n .

Fig. 1 A distributed network con
N agent sensor nodes [13, 20]
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The DLMS algorithm [4] is obtained by minimizing a linear combination of the
local mean square estimation error:

J localn (W(i)) �
∑
l∈Nn

cl,nE
[
(el(i))

2
]

�
∑
l∈Nn

cl,nE

[(
dl(i) − Xl(i)WT(i)

)2]
(11)

The set of distributed network nodes connected to the n-th node (including the n-th
node itself) is denoted by Nn and is called the neighborhood of distributed network
nodes n. The weighting coefficients cl,n are real and satisfy

∑
l∈Nn

cl,n � 1. cl,n forms
a nonnegative combination matrix C.

Cattivelli and colleagues analyzed ATC and CTA, and the ATC is better than the
CTA [22]. So, using the ATC scheme, there are two steps in the DLMS algorithm:
adaptation and combination. The order of these two steps is as follows

⎧⎨
⎩

ϕn(i) � Wn(i − 1) + μnXn(i)en(i)
Wn(i) � ∑

l∈Nn

cl,nϕl(i) (12)

where μ is the step size (learning rate), and ϕn(i) is the local estimates at distributed
network node n.

They were combining Eqs. (6)~(8) and Eq. (15), and three asymmetric adaptive
diffusion filtering algorithms are designed as follows.

2.2.1 The DLLCLMS Algorithm

Combining Eqs. (6) and (15), a summary of theDLLCLMS algorithm procedure based
on the above analysis is given in Table 1. From Table 1, we know the DLLCLMS algo-
rithm can be regarded as a general algorithm structure of the DSELMS algorithm. If
a � b, the DLLCLMS algorithm is the DSELMS algorithm. In other words, the DLL-
CLMS can be seen as a mixture of a DSELMS algorithm for different estimated error
e(i) at a different network node and dynamic switching according to the relationship
between e(i) and 0.

Table 1 The DLLCLMS algorithm summary

Initialize
{
wn,−1 � 0

}
for all agentsn, a, b

Set nonnegative combination weights cl,n for each time i ≥ 0 and each agent n, and repeat:

ϕn(i) �
{
Wn(i − 1) + μnasign(en(i))Xn(i)

Wn(i − 1) + μnbsign(en(i))Xn(i)

, ifen(i) > 0(I )

, ifen(i) ≤ b(I I )
(16)

Wn(i) � ∑
l∈Nn

cl,nϕl(i) (17)
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Table 2 The DQQCLMS
algorithm summary Initialize

{
wn,−1 � 0

}
for all agentsn, a, b

Set nonnegative combination weights cl,n for each time i ≥ 0 and
each agent n, and repeat:

ϕn(i) �
{
Wn(i − 1) + μnaen(i)Xn(i)

Wn(i − 1) + μnben(i)Xn(i)

, ifen(i) > 0(I )

, ifen(i) ≤ b(I I )
(18)

Wn(i) � ∑
l∈Nn

cl,nϕl(i) (19)

2.2.2 The DQQCLMS Algorithm

Combining Eqs. (7) and (15), a summary of the DQQCLMS algorithm procedure
based on the above analysis is given in Table 2. FromTable 2, we know the DLLCLMS
algorithm can be regarded as a general algorithm structure of the DLMS algorithm.
If a � b, the DLLCLMS algorithm is the DLMS algorithm. In other words, the
DLLCLMS can be seen as amixture of aDLMS algorithm for different estimated error
e(i) at a different network node and dynamic switching according to the relationship
between e(i) and 0.

2.2.3 The DLECLMS Algorithm

Combining Eqs. (8) and (15), a summary of theDLECLMS algorithm procedure based
on the above analysis is given in Table 3. Table 3 shows that the DLECLMS algorithm
can be an adaptive filter based on an asymmetric exponential function estimator and
extend in a distributed network (Table 4).

3 Performance of Proposed Diffusion Algorithms

After completing those three diffusion adaptive filtering algorithms design, the perfor-
mance of those three algorithms should be analyzed theoretically. This subsection will
discuss the performances of the diffusion asymmetric adaptive filtering algorithms,
including mean behavior and computational complexity.

To facilitate performance analysis, we make the following assumptions:

Assumption 1 The distributed network system measurement noises are independent
of other signals.

Table 3 The DLECLMS
algorithm summary Initialize

{
wn,−1 � 0

}
for all agentsn, a, b

Set nonnegative combination weights cl,n for each time i ≥ 0 and
each agent n, and repeat:
ϕn(i) � Wn(i − 1) + μnab((exp(aen(i)) − 1))Xn(i) (20)

Wn(i) � ∑
l∈Nn

cl,nϕl (i) (21)
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Table 4 The computational complexity of the DSELMS, DRVSSLMS, DLLAD, and three proposed diffu-
sion adaptive filtering algorithms

Algorithm Computational cost per iteration

Recursion × + || sign(·) exp(·)

DSELMS Equation 1a in [27] (2M + 1)N +M (3M-1)N 0 N 0

Equation 1b in [27] NM (N-1)M 0 0 0

DRVSSLMS Equation 11 in [17] > (3M + 1)N +
M

(3M-1)N 0 0 0

Equation 11 in [17] > (3M + 1)N +
M

(3M-1)N 0 N 0

Equation 12 in [17] NM (N-1)M 0 0 0

DLLAD Equation 16 in [5] 2MN + M (3M-1)N N 0 0

Equation 17 in [5] NM (N-1)M 0 0 0

DLLCLMS Equation 16(I) in this
paper

(2M + 2)N +M (3M-1)N 0 N 0

Equation 16(II) in this
paper

(2M + 2)N +M (3M-1)N 0 N 0

Equation 17 in this
paper

NM (N-1)M 0 0 0

DQQCLMS Equation 18(I) in this
paper

(2M + 3)N +M (3M-1)N 0 N 0

Equation 18(II) in this
paper

(2M + 3)N +M (3M-1)N 0 N 0

Equation 19 in this
paper

NM (N-1)M 0 0 0

DLECLMS Equation 20 in this
paper

(2M + 5)N +M 3MN 0 0 N

Equation 21 in this
paper

NM (N-1)M 0 0 0

where: “×” denotes “Multiplications”; “ > ” denotes “larger than”; “ + ” denotes “Additions”; “||” denotes
“Absolute”

Assumption 2 X(i) is zero-mean Gaussian, temporally white, and spatially indepen-
dent with Rxx,n � E

[
Xn(i)Xn

T (i)
]
.

Assumption 3 The regression vector Xn(i) is independent of Ŵn( j) for all distributed
networks n and j < i. All distributed network system weight vectors are approximately
independent of all input signals.

Assumption 4 The distributed network system measurement noises vn(i) at then-th
agent is assumed to be a mixture signal of zero-mean white Gaussian noise gn(i) of
variance σ 2

g,n , and impulsive noise Imn(i), i.e., vn(i) � gn(i)+ Imn(i). The impulsive
noise can be described using Imn(i) � Bn(i)Gn(i), where Bn(i) is a Bernoulli process
with the probability of P[Bn(i) � 1] � Pr and P[Bn(i) � 0] � 1− Pr, and Gn(i) is
a zero-mean white Gaussian process of variance Inσ 2

g,n with In � 1.
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Then, let us define some equations at agent n and time i ,
Ŵn(i) � Wo − Wn(i),̂ϕn(i) � Wo − ’n(i), which are then collected to form
the network weight error vector and intermediate network weight error vector, i.e.,
W(i) � col{W1(i),W2(i), · · · ,WN (i)}, ’(i) � col

{
ϕ1(i),ϕ2(i), · · · ,ϕN (i)

}
,

Ŵ(i) � col
{
Ŵ1(i), Ŵ2(i), · · · , ŴN (i)

}
, ϕ̂(i) � col

{
ϕ̂1(i), ϕ̂2(i), · · · , ϕ̂N (i)

}
,

µA � diag
{
aμ1, aμ2, · · · , aμN

}
, µB � diag

{
bμ1, bμ2, · · · , bμN

}
, µAB �

diag
{
abμ1, abμ2, · · · , abμN

}
, and e(i) � col{e1(i), e2(i), · · · , eN (i)}.

3.1 MeanWeight Vector Error Behavior

Two noteworthy performances of adaptive filtering algorithms are convergence and
steady-state characteristics. So, by studying the mean weight estimation error vector,
the convergence and steady-state error properties of those three proposed diffusion
adaptive filtering algorithms can be explored. The following will analyze the mean
behavior performance of these three diffusion algorithms.

3.1.1 The DLLCLMS algorithm

Equations (16) and (17) can be written as

ϕ̂(i) �
{
Ŵ(i − 1) − SµASSe(i)X(i)
Ŵ(i − 1) − SµBSSe(i)X(i)

, if e(i) > 0 (I )
, if e(i) ≤ 0 (I I )

(13)

Ŵ(i) � CTϕ̂(i) (14)

where C � C ⊗ I, SµA � µA ⊗ I, SSe(i) � Se(i) ⊗ I, X(i) �
col{X1(i),X2(i), · · · ,XN (i)}, Se(i) � diag{sign(e(i))}, and ⊗ denotes the Kro-
necker product operation.

Taking the expectation of Eq. (22) and Eq. (23),

E
[
Ŵ(i)

]
�

⎧⎨
⎩
CTE

[
Ŵ(i − 1)

]
− CTSµAE

[
SSe(i)X(i)

]
CTE

[
Ŵ(i − 1)

]
− CTSµBE

[
SSe(i)X (i)

] , i f e(i) > 0 (I )
, i f e(i) ≤ 0 (I I )

(15)

Denote the measurement noise vector by V(i) �
col{v1(i), v2(i), · · · , vN (i)}, g(i) � col{g1(i), g2(i), · · · , gN (i)}, Im(i) �
col{Im1(i), Im2(i), · · · , ImN (i)}, Sg(i) � diag{sign(g(i))}, SIm(i) �
diag{sign(Im(i))}, SX (i) � diag{X1(i),X2(i), · · · ,XN (i)} . So, from Eq. (1),
we have e(i) � SX

T(i)Ŵ(i − 1) + V(i) � eo(i) + V(i).

Then, let

{
eg(i) � eo(i) + g(i)

eIm(i) � eo(i) + Im(i)
,

{
SSg (i) � Sg(i) ⊗ I

SSIm (i) � SIm(i) ⊗ I
.

So,
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E
[
SSe(i)X(i)

] � (1 − Pr )E
[
SSg(i)X(i)

]
+ PrE

[
SSIm (i)X(i)

]
(16)

Let

{
σ2eg,n (i) � Tr

[
Rww,n(i − 1)Rxx,n

]
+ σ2g,n(i)

σ2eIm,n
(i) � Tr

[
Rww,n(i − 1)Rxx,n

]
+ σ2Im,n(i)

,

⎧⎨
⎩
Xg(i) �

√
2
π
diag

{
σ−1
g,1(i), σ

−1
g,2(i), · · · , σ−1

g,N (i)
}

XIm(i) �
√

2
π
diag

{
σ−1
Im,1(i), σ

−1
Im,2(i), · · · , σ−1

Im,N (i)
} ,

{
SXg (i) � Xg(i) ⊗ I
SXIm (i) � XIm(i) ⊗ I

.

Then,

{
E

[
SSg(i)X(i)|W(i − 1)

] � Xg(i) diag
{
Rxx,1,Rxx,2, · · · ,Rxx,N

}
Ŵ(i − 1)

E
[
SSIm(i)X(i)|W(i − 1)

] � XIm(i) diag
{
Rxx,1,Rxx,2, · · · ,Rxx,N

}
Ŵ(i − 1)

(17)

Substituting (26) into (25), we have

E
[
SSe(i)X(i)

]
≈ E

[
E

[
SSe(i)X(i)|W(i − 1)

]]
� [

(1 − Pr )SSg(i) + PrSSIm(i)
]
diag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}
E

[
Ŵ(i − 1)

] (18)

Finally, substitute (27) with (24) obtains

E
[
Ŵ (i)

]

�
⎧⎨
⎩

CT
[
I NM − S¯A

(
(1 − Pr )SSg (i) + PrSSIm (i)

)
diag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
E

[
Ŵ (i − 1)

]
, if e (i) > 0 (I )

CT
[
I NM − S¯B

(
(1 − Pr )SSg (i) + PrSSIm (i)

)
diag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
E

[
Ŵ (i − 1)

]
, if e (i) ≤ 0 (I I )

(19)

From Eq. (28), one can see that the asymptotic unbiased-
ness of the DLLCLMS algorithm can be guaranteed if the matrix
CT

[
I NM − SµA

(
(1 − Pr )SSg(i) + PrSSIm(i)

)
diag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
, and

CT
[
I NM − SµB

(
(1 − Pr )SSg(i) + PrSSIm(i)

)
diag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
are

stable.Bothof thematrix
[
I NM−SµA

(
(1 − Pr )SSg(i) + PrSSIm(i)

)
diag{Rxx,1,Rxx,2,

· · · ,Rxx,N }] and
[
I NM − SµB

(
(1 − Pr )SSg(i) + PrSSIm(i)

)
diag{Rxx,1,Rxx,2, · · · ,

Rxx,N }] are a block-diagonal matrix, and it can be easily verified that it is stable if its
block-diagonal entries

[
I − aμnXv(i)Rxx,n

]
, and

[
I − bμnXv(i)Rxx,n

]
are stable,

where Xv(i) ≤
√

2
π

[
(1 − Pr )σ

−1
g,1(i) + Prσ

−1
Im,1(i)

]
. So, the condition for stability of
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the mean weight error vector is given by

{
0 < μn < 2

aXv(i)ρmax(Rxx,n)
,

0 < μn < 2
bXv(i)ρmax(Rxx,n)

,

if en(i) > 0 (I )
ifen(i) ≤ 0 (I I )

(20)

where ρmax denotes the maximal eigenvalue of Rxx,n . So, based on Eq. (29) and
Eq. (24), we obtain E[Ŵ(∞)] � 0.

3.1.2 The DQQCLMS Algorithm

Equations (18) and (19) can be written as

ϕ̂(i) �
{
Ŵ(i − 1) − SµASSe(i)X(i),
Ŵ(i − 1) − SµBSSe(i)X(i),

if e(i) > 0 (I )
if e(i) ≤ 0 (I I )

(21)

Ŵ(i) � CTϕ̂(i) (22)

where C � C ⊗ I, SµA � µA ⊗ I, SSe(i) � Se(i) ⊗ I, X(i) �
col{X1(i),X2(i), · · · ,XN (i)}, Se(i) � diag{e(i)}, and⊗ denotes theKronecker prod-
uct operation.

Taking the expectation of Eqs. (21) and (22),

E
[
Ŵ(i)

]
�

⎧⎨
⎩
CTE

[
Ŵ(i − 1)

]
− CTSµAE

[
SSe(i)X(i)

]
,

CTE
[
Ŵ(i − 1)

]
− CTSµBE

[
SSe(i)X(i)

]
,

if e(i) > 0 (I )

if e(i) ≤ 0 (I I )
(23)

Denote the measurement noise vector by V(i) � col{v1(i), v2(i), · · · , vN (i)},
g(i) � col{g1(i), g2(i), · · · , gN (i)}, Im(i) � col{Im1(i), Im2(i), · · · , ImN (i)},
Sg(i) � diag{g(i)}, SIm(i) � diag{Im(i)},SX (i) � diag{X1(i),X2(i), · · · ,XN (i)}.
So, from Eq. (1), we have e(i) � SX

T(i)Ŵ(i − 1) + V(i) � eo(i) + V(i).

Then, let

{
eg(i) � eo(i) + g(i)

eIm(i) � eo(i) + Im(i)
,

{
SSg (i) � Sg(i) ⊗ I

SSIm (i) � SIm(i) ⊗ I
.

So,

E
[
Ŵ(i)

]
�

⎧⎪⎨
⎪⎩
CT[

I NM − SµAdiag
{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
E

[
Ŵ(i − 1)

]

CT[
I NM − SµB diag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
E

[
Ŵ(i − 1)

] , if e(i) > 0 (I )

, if e(i) ≤ 0 (I I )

(24)

From Eq. (33), one can see that the asymptotic unbi-
asedness of the DQQCLMS algorithm can be guaranteed if

the matrix CT
[
I NM − SµAdiag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
, and

CT
[
I NM − SµBdiag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
are stable. Both
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of the matrix
[
I NM − SµAdiag

{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
and[

I NM − SµBdiag
{
Rxx,1,Rxx,2, · · · ,Rxx,N

}]
are a block-diagonal matrix, and they

can be easily verified that it is stable if its block-diagonal entries
[
I − aμnRxx,n

]
,

and
[
I − bμnRxx,n

]
are stable. So, the condition for stability of the mean weight

error vector is given by

⎧⎨
⎩
0 < μn < 2

aρmax(Rxx,n)

0 < μn < 2
bρmax(Rxx,n)

, if en(i) > 0 (I )

, if en(i) ≤ 0 (I I )
(25)

where ρmax denotes the maximal eigenvalue ofRxx,n . So, based on Eqs. (23) and (25),
we obtain E[Ŵ(∞)] � 0.

3.1.3 The DLECLMS algorithm

Based on Eq. (20), let J fDLECLMS (i) � exp(aen(i))−1, and then, this can be observed
from the Taylor series expansion of J fDLECLMS (i) around en(i) � 0,

JfDLECLMS(i) � exp(aen(i)) − 1 � a
+∞∑
k�1

1

k!
ekn(i) (26)

As desired, since theweight of the k− th errormoment is 1
k! , it is given to lower-order

moments. Notice also that for small error values, the error cost functions become,

JfDLECLMS(i) � exp(aen(i)) − 1 � a
+∞∑
k�1

1

k!
ekn(i) ≈ aen(i) (27)

Equations (20) and (21) can be written as

ϕ̂(i) � Ŵ(i − 1) − SµABSSe(i)X(i) (28)

Ŵ(i) � CTϕ̂(i) (29)

where C � C ⊗ I, SµAB � µAB ⊗ I, SSe(i) � Se(i) ⊗ I, X(i) �
col{X1(i),X2(i), · · · ,XN (i)}, Se(i) � diag{exp(ae(i)) − 1} ≈ diag{ae(i)}, and ⊗
denotes the Kronecker product operation.

Taking the expectation of Eqs. (28) and (29),

E
[
Ŵ(i)

] � CTE
[
Ŵ(i − 1)

] − CTSµABE
[
SSe(i)X(i)

]
(30)

Denote the measurement noise vector by V(i) � col{v1(i), v2(i), · · · , vN (i)},
g(i) � col{g1(i), g2(i), · · · , gN (i)}, Im(i) � col{Im1(i), Im2(i), · · · , ImN (i)},
Sg(i) � diag{g(i)}, SIm(i) � diag{Im(i)},SX (i) � diag{X1(i),X2(i), · · · ,XN (i)}.
So, from Eq. (1), we have e(i) � SX

T(i)Ŵ(i − 1) + V(i) � eo(i) + V(i).



5824 Circuits, Systems, and Signal Processing (2023) 42:5811–5837

Then, let

{
eg(i) � eo(i) + g(i)
eIm(i) � eo(i) + Im(i)

,

{
SSg (i) � Sg(i) ⊗ I
SSIm(i) � SIm(i) ⊗ I

.

So,

E
[
Ŵ(i)

]
� CT[

I NM − SµABdiag
{
aRxx,1, aRxx,2, · · · , aRxx,N

}]
E

[
Ŵ(i − 1)

]
(31)

From Eq. (31), one can see that the asymptotic unbiased-
ness of the DLECLMS algorithm can be guaranteed if the matrix
CT

[
I NM − SµABdiag

{
aRxx,1, aRxx,2, · · · , aRxx,N

}]
is stable. The matrix[

I NM − SµABdiag
{
aRxx,1, aRxx,2, · · · , aRxx,N

}]
is a block-diagonal matrix and

can be easily verified that it is stable if its block-diagonal entries
[
I − a2bμnRxx,n

]
are stable. So, the condition for stability of the mean weight error vector (as Eq. (31))
is given by

0 < μn <
2

a2bρmax
(
Rxx,n

) (32)

where ρmax denotes the maximal eigenvalue ofRxx,n . So, based on Eqs. (31) and (32),
we obtain E[Ŵ(∞)] � 0.

3.2 Computational complexity

Another important indicator to measure the performance of an adaptive filtering algo-
rithm is the computational complexity because it directly determines whether the
adaptive filtering algorithm is easy to implement in engineering. The computational
complexity of the diffusion adaptive filtering algorithm is the number of arithmetic
operations per iteration of the weight vector or coefficient vector. That is the number of
multiplications, additions, et al. The time-consuming procedure of the multiplication
operation is far greater than the addition operation, so the multiplication operation
occupies a large proportion of the diffusion adaptive filtering algorithm. Therefore,
computational complexity is an important property that affects the performance of the
diffusion adaptive filtering algorithm. The DLLCLMS, DQQCLMS, and DLECLMS
algorithms have two parameters: a and b, during an exponential function in the DLE-
CLMS algorithm, so the computational complexity of the DLLCLMS algorithm, the
DQQCLMS algorithm, and the DLECLMS slightly larger than the DSELMS [27],
DRVSSLMS [17], DLLAD [5] algorithms. Furthermore, when M increases, those
algorithms have the same computational complexity.

3.3 Parameters a and b for the Proposed Algorithms

As described early, parameters a and b determine the shape and characteristics of
each cost function because, as an essential core parameter, how to set it is critical. So
the choice of a and b in Eqs. (16)~(21) plays a vital role in the performance of the
DLLCLMS, DQQCLMS, and DLECLMS algorithms. The optimum cut-off value, a
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Fig. 2 MSD curve with different a of the DLLCLMS algorithm (μ � 0.4) when network topology and
neighbors to be decided by probability (probability � 0.2) with α � 1.6, β � 0.05, γ � 0, and δ � 1000:
(Left) Rxx,n � σ 2

x,nIM . (Right) Rxx,n � σ 2
x,n(i)IM , i � 1, 2, 3, · · · , M

and b, under different input signals, impulsive noise, and network structures can be
used for both the theoretical derivation and simulation experimental methods. For the
theory derivation method, although the optimal parameters aandb of the proposed
three diffusion adaptive filtering algorithms are obtained based on minimizing the
mean-square deviation (MSD) at the current time, the problem with this operation
is that iterative formulas will increase the computational complexity. In this paper,
the experimental simulation method will get the parameters aandb of the proposed
three diffusion adaptive filtering algorithms. The following will explore the optimal
parameters aandb of these three diffusion algorithms. In simulation experiments with
an unknown linear system, we set M � 16, and the parameters weight vector is
selected randomly. Each distributed network topology consists of N � 20 nodes. For
impulsive noises, in [32], we can compute the impulsive noises by using the Levy
alpha-stable distribution with setting α, β, γ , andδ in MATLAB software (2016b).
Besides, we set the impulsive noises as spatiotemporally independent. We apply the
uniform rule for the adaptation weights in the combination step and the combination
weights in the combination step, i.e., cl,n � 1/Nn . We use the network MSD to
evaluate the performance of diffusion adaptive filtering algorithms, where MSD(i) �
1
N

∑N
n�1 E[|Wo − Wn(i)|2]. In addition, the independent Monte Carlo number is 20,

and each run has 1000 iteration numbers.

3.3.1 For the DLLCLMS Algorithm

Parametera We evaluate varying a estimators based on their MSD using the DLL-
CLMS algorithm. The choice of a in Eq. (16) is vital in the DLLCLMS algorithm
performance. Besides choosing the optimum cut-off value a under various input sig-
nals, different intensities of impulsive noises, and different network structures, we set
four groups of the experiment in a system identification application. In Figs. 2 and 3,
considering the convergence rate and the steady-state MSD, we know the DLLCLMS
algorithm is robust for different probability densities of impulsive noises when a �
0.8 and b � 6.
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Fig. 3 MSD curvewith different a of the DLLCLMS algorithm (μ � 0.4) when network topology and neigh-
bors to be decided by closeness in the distance (radius� 0.3)withα � 1.2, β � 0.05, γ � 0, and δ � 1000:
(Left)Rxx,n is a diagonal matrix with possibly different diagonal entries chosen randomly. (Right)Rxx,n �
σ 2
x,n(i)IM, i � 1, 2, 3, · · · , M

Fig. 4 MSD curve with different b of the DLLCLMS algorithm (μ � 0.4) when network topology and
neighbors to be decided by probability (probability � 0.2) with α � 1.6, β � 0.05, γ � 0, and δ � 1000:
(Left) Rxx,n � σ 2

x,nIM, and Pr � 0.8. (Right) Rxx,n � σ 2
x,n(i)IM, i � 1, 2, 3, · · · , M

Parameter b We evaluate the relative efficiency of varyingb estimators based on
their MSD using the DLLCLMS algorithm. The choice of b in Eq. (16) is vital in
the DLLCLMS algorithm performance. Besides choosing the optimum cut-off value
b under different input signals, different intensities of impulsive noises, and different
network structures, we set four groups of the experiment in a system identification
application. In Figs. 4 and 5, considering the convergence rate and the steady-state
MSD, we know the DLLCLMS algorithm is robust for different probability densities
of impulsive noises when b � 4 and a � 0.8.

3.3.2 For the DQQCLMS Algorithm

Parametera We evaluate varying a estimators based on their MSD using the DQQ-
CLMS algorithm. The choice of a in Eq. (18) plays a vital role in the DQQCLMS
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Fig. 5 MSD curve with different b of the DLLCLMS algorithm (μ � 0.4) when network topology and neigh-
bors to be decided by closeness in the distance (radius� 0.3)withα � 1.2, β � 0.05, γ � 0, and δ � 1000:
(Left)Rxx,n is a diagonal matrix with possibly different diagonal entries chosen randomly. (Right)Rxx,n �
σ 2
x,n(i)IM , i � 1, 2, 3, · · · , M

Fig. 6 MSD curve with different a of the DQQCLMS algorithm (μ � 0.4) when network topology and
neighbors to be decided by probability (probability � 0.2) with α � 1.6, β � 0.05, γ � 0, and δ � 1000:
(Left) Rxx,n � σ 2

x,nIM . (Right) Rxx,n � σ 2
x,n(i)IM , i � 1, 2, 3, · · · , M

algorithm’s performance. Besides choosing the optimum cut-off value a under dif-
ferent input signals, different intensities of impulsive noises, and different network
structures, we set four groups of the experiment in a system identification application.
In Figs. 6 and 7, considering the convergence rate and the steady-state MSD, we know
the DQQCLMS algorithm is robust for different probability densities of impulsive
noises when a � 0.8 with b � 6.
Parameter b We evaluate the relative efficiency of varying b estimators based on
their MSD using the DQQCLMS algorithm. The choice of b in Eq. (18) is vital in
the DQQCLMS algorithm performance. Besides choosing the optimum cut-off value
b under different input signals, different intensities of impulsive noises, and different
network structures, we set four groups of the experiment in a system identification
application. In Figs. 8 and 9, considering the convergence rate and the steady-state
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Fig. 7 MSDcurvewith different a of theDQQCLMSalgorithm (μ� 0.4)when network topology and neigh-
bors to be decided by closeness in the distance (radius� 0.3)withα � 1.2, β � 0.05, γ � 0, and δ � 1000:
(Left)Rxx,n is a diagonal matrix with possibly different diagonal entries chosen randomly. (Right)Rxx,n �
σ 2
x,n(i)IM, i � 1, 2, 3, · · · , M

Fig. 8 MSD curve with different b of the DQQCLMS algorithm (μ � 0.4) when network topology and
neighbors to be decided by probability (probability � 0.2) with α � 1.6, β � 0.05, γ � 0, and δ � 1000:
(Left) Rxx,n � σ 2

x,nIM , and Pr � 0.8. (Right) Rxx,n � σ 2
x,n(i)IM, i � 1, 2, 3, · · · , M

Fig. 9 MSDcurvewith different b of theDQQCLMSalgorithm (μ� 0.4)when network topology and neigh-
bors to be decided by closeness in the distance (radius� 0.3)withα � 1.2, β � 0.05, γ � 0, and δ � 1000:
(Left)Rxx,n is a diagonal matrix with possibly different diagonal entries chosen randomly. (Right)Rxx,n �
σ 2
x,n(i)IM, i � 1, 2, 3, · · · , M
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Fig. 10 MSD curve with different a of the DLECLMS algorithm (μ � 0.4) when network topology and
neighbors to be decided by probability (probability � 0.2) with α � 1.6, β � 0.05, γ � 0, and δ � 1500:
(Left) Rxx,n � σ 2

x,nIM . (Right) Rxx,n � σ 2
x,n(i)IM , i � 1, 2, 3, · · · , M

Fig. 11 MSDcurvewith differenta of theDLECLMSalgorithm (μ�0.4)whennetwork topology andneigh-
bors to be decided by closeness in the distance (radius� 0.3)withα � 1.2, β � 0.05, γ � 0, and δ � 1500:
(Left)Rxx,n is a diagonal matrix with possibly different diagonal entries chosen randomly. (Right)Rxx,n �
σ 2
x,n(i)IM , i � 1, 2, 3, · · · , M

MSD, we know the DQQCLMS algorithm is robust for different probability densities
of impulsive noises when b � 6 and a � 0.8.

3.3.3 For the DLECLMS Algorithm

Parametera We evaluate different a estimators’ relative efficiency based on their
MSD using the DLECLMS algorithm. The choice of a in Eq. (20) is vital in the
DLECLMS algorithm performance. Besides choosing the optimum cut-off value a
under different input signals, different intensities of impulsive noises, and different
network structures, we set four groups of the experiment in a system identification
application. In Figs. 10 and 11, considering the convergence rate and the steady-state
MSD, we know the DLECLMS algorithm is robust for different probability densities
of impulsive noises when a � 0.32 and b � 6.
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Fig. 12 MSD curve with different b of the DLECLMS algorithm (μ � 0.4) when network topology and
neighbors to be decided by probability (probability � 0.2) with α � 1.6, β � 0.05, γ � 0, and δ � 1500:
(Left) Rxx,n � σ 2

x,nIM , and Pr � 0.8. (Right) Rxx,n � σ 2
x,n(i)IM, i � 1, 2, 3, · · · , M

Fig. 13 MSDcurvewith differentbof theDLECLMSalgorithm (μ�0.4)whennetwork topology andneigh-
bors to be decided by closeness in the distance (radius� 0.3)withα � 1.2, β � 0.05, γ � 0, and δ � 1500:
(Left)Rxx,n is a diagonal matrix with possibly different diagonal entries chosen randomly. (Right)Rxx,n �
σ 2
x,n(i)IM, i � 1, 2, 3, · · · , M

Parameter b We evaluate the relative efficiency of different b estimators based on
their MSD using the DLECLMS algorithm. The choice of b in Eq. (20) is vital in
the DLECLMS algorithm performance. Besides choosing the optimum cut-off value
b under different input signals, different intensities of impulsive noises, and different
network structures, we set four groups of the experiment in a system identification
application. In Figs. 12 and 13, considering the convergence rate and the steady-state
MSD, we know the DLECLMS algorithm is robust for different probability densities
of impulsive noises when b � 6 and a � 0.32.

Based on Figs 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, considering the convergence rate
and the steady-stateMSD, we know that the DLLCLMS, DLLCLMS, and DLECLMS
algorithm is robust for different probability densities of impulsive noises when (a �
0.8 and b � 6), (a � 0.8 and b � 6), and (a � 0.32 and b � 6), respectively.
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4 Simulation Results

Because in this paper, we focus on the distributed adaptive filter algorithm and com-
pare the DLLCLMS, DQQCLMS, and DLECLMS algorithms with the DSELMS
[27], DRVSSLMS [17], and DLLAD [5] algorithms in linear system identification.
Then, we want to demonstrate the robustness of the three proposed DLLCLMS, DQQ-
CLMS, and DLECLMS algorithms in different intensities of impulsive noise and
input signals. Several group simulation experiments are set with varying intensities
of impulsive noises and input signal types. For an unknown linear system, we set
M � 16, and the parameters weight vector is selected randomly. Each distributed
network topology consists of N � 20 nodes. For impulsive noises, in [32], we can
compute the impulsive noises by using the Levy alpha-stable distribution with setting
α, β, γ , andδ. Besides, we set the impulsive noises as spatiotemporally independent.
We apply the uniform rule for the adaptation weights in the combination step and the
combination weights in the combination step, i.e., cl,n � 1/Nn . We use the network
MSD to evaluate the performance of diffusion adaptive filtering algorithms, where
MSD(i) � 1

N

∑N
n�1 E[|Wo − Wn(i)|2]. In addition, the independent Monte Carlo

number is 20, and each run has 2000 iteration numbers.

4.1 Simulation Experiment 1

The convergence rate is faster, and the steady-state MSD is lower to show that the
proposed distributed adaptive filter algorithms are more robust to the input signal
than DSELMS, DRVSSLMS, and DLLAD. Set up three experiments; both have the
same network topology, the same impulsive noise, and different input signals. Suppose
any two network topology nodes are declared neighbors. In that case, the connection
probability is greater than or equal to 0.2. The network topology is shown in Fig. 14.
For different types of the input signal, the MSD iteration curves for DRVSSLMS
(μ=0.35), DSELMS (μ=0.35), DNLMS (μ=0.35), and DLLAD (μ=0.35) algorithms

Fig. 14 Random network
topology to be decided by
probability
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in Figs. 15, 16, and 17when themeasurement noise in an unknown system is impulsive
noises with α � 1.6, β � 0.05, γ � 0, and δ � 2000.

Figures 15, 16, and 17 show that although different input signals are used, the DLL-
CLMS, DQQCLMS, and DLECLMS algorithms have a faster convergence rate and
lower steady-state MSD than the DSELMS, DRVSSLMS, and DLLAD algorithms.
Besides, the DLLCLMS, DQQCLMS, and DLECLMS algorithms are more robust to
the input signal. In conclusion, from Simulation experiment 1, we can get that the
DLLCLMS, DQQCLMS, and DLECLMS algorithms are superior to the DSELMS,
DRVSSLMS, and DLLAD algorithms. Furthermore, the order of performance supe-
riority is DLECLMS, DQQCLMS, and DLLCLMS. This result is because the cost
function designed in this paper is asymmetric, which can better track the change of
estimation error due to asymmetrically distributed noise.

Fig. 15 (Left_top) the input signals {Xn(i)} variances at each network node with Rxx,n � σ 2
x,nIM with

possibly different diagonal entries chosen randomly, (Left_bottom) the measurement noise variances εn(i)
at each network node; (Right) Transient networkMSD (dB) iteration curves of the DSELMS, DRVSSLMS,
DLLAD, DLLCLMS, DQQCLMS, and DLECLMS algorithms

Fig. 16 (Left_top) the input signals {Xn(i)} variances at each network node with Rxx,n � σ 2
x,nIM with

the same value in each diagonal entry, (Left_bottom) the measurement noise variances {εn(i)} at each net-
work node; (Right) Transient network MSD (dB) iteration curves of the DSELMS, DRVSSLMS, DLLAD,
DLLCLMS, DQQCLMS, and DLECLMS algorithms
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Fig. 17 (Left_top) the input signals {Xn(i)} variances at each network node with Rxx,n � σ 2
x,n(t)IM , t �

1, 2, 3, · · · , M with a different value in each diagonal entry, (Left_bottom) themeasurement noise variances
{εn(i)} at each network node; (Right) Transient network MSD (dB) iteration curves of the DSELMS,
DRVSSLMS, DLLAD, DLLCLMS, DQQCLMS, and DLECLMS algorithms

4.2 Simulation Experiment 2

Set up three experiments; both have the same network topology, the same input signal,
and different intensities of impulsive noises. If any two network topology nodes are
declared neighbors, a certain radius for each node is larger than or equal to 0.3; the net-
work topology is shown in Fig. 18(Left). TheMSD iteration curves forDRVSSLMS (μ
� 0.35), DSELMS (μ � 0.35), DNLMS (μ � 0.35), DLLAD (μ � 0.35), DLLCLMS,
DQQCLMS, and DLECLMS algorithms in Fig. 19 with α � 1.6, α � 1.1, α � 0.8,
and α � 0.4 with β � 0.05, γ � 0, and δ � 2000, respectively. The convergence rate is
faster, and the steady-stateMSD is lower to show that the proposed distributed adaptive
filter algorithms are more robust to the impulsive noise than DSELMS, DRVSSLMS,
and DLLAD.

Fig. 18 (Left) Random network topology to be decided by a certain radius; (Right_top) the input signals
{Xn(i)} variances at each network node with Rxx,n � σ 2

x,nIM with possibly different diagonal entries
chosen randomly, (Right_bottom) the measurement noise variances εn(t) at each network node
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Fig. 19 Transient network MSD (dB) iteration curves of the DSELMS, DRVSSLMS, DLLAD, DLL-
CLMS, DQQCLMS, and DLECLMS algorithms. (Up_Left) with α � 1.6, (Up_right) with α � 1.1,
and (Down_left) with α � 0.8, and (Down_Right) with α � 0.4

From Fig. 19, we can find that although different probability density of impulsive
noise is considered, the DLLCLMS, DQQCLMS, and DLECLMS algorithms have
a slightly faster rate than the DSELMS, DRVSSLMS, and DLLAD algorithms. The
DLLCLMS, DQQCLMS, and DLECLMS algorithms still have a minor steady-state
error than the DSELMS, DRVSSLMS, and DLLAD algorithms. Simulation experi-
ment 2 shows that the DLLCLMS, DQQCLMS, and DLECLMS algorithms are more
robust to impulsive noise than the DSELMS, DRVSSLMS, and DLLAD algorithms.
Furthermore, the order of performance superiority is DLECLMS, DQQCLMS, and
DLLCLMS. And when noise distribution tends to Gaussian distribution, DLECLMS
and DQQCLMS tend to be the same but better than DLLCLMS. This result is also
because the cost function designed in this paper is asymmetric. No matter the inten-
sity of the impulse interference noise, its distribution is always asymmetrical; the cost
function intended in this paper can better track the change of the estimation error.

5 Conclusion

This paper proposed a family of diffusion adaptive filtering algorithms using three
asymmetric costs of error functions; those three distributed adaptive filtering algo-
rithms are robust to the impulsive noise and input signal. Specifically, those three
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distributed adaptive algorithms are developed by modifying the DLMS algorithm and
combining the LLC, QQC, and LEC functions at all distributed network nodes. The
theoretical analysis demonstrates that those three distributed adaptive filtering algo-
rithms can effectively estimate from an asymmetric cost function perspective. Besides,
theoretical mean behavior interpreted that those three algorithms can achieve accurate
estimation. Simulation results showed that the DLLCLMS, DQQCLMS, and DLE-
CLMS algorithms are more robust to the input signal and impulsive noise than the
DSELMS, DRVSSLMS, and DLLAD algorithms. The DLLCLMS, DQQCLMS, and
DLECLMS algorithms have superior performance when estimating the unknown lin-
ear system under the changeable impulsive noise environments and different types
of input signals, which will significantly impact real-world applications. Besides, the
environment in actual applications is more complex, nonlinear, and time-varying and
needs to be adjusted for different application scenarios [28]. We also need to consider
whether the system parameters to be evaluated are sparsity (such as brain networks
based on fMRI or EEG signals) [12, 14]. In such cases, adding regularized constraint
terms to those adaptive algorithms will be better.
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