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Abstract
In this paper, the problem of single-channel blind source separation (SCBSS) is
addressed using a novel approach that combines the adaptive mode separation-based
wavelet transform (AMSWT) and the density-based clustering with sparse recon-
struction. The proposed method is performed in the time–frequency domain and in a
reverberant environment. First, using the Fourier transform, the amplitude spectrum of
the observed mixture signal is obtained. Then, using variational scaling and wavelet
functions, the AMSWT is used to adaptively extract spectral intrinsic components
(SICs). To obtain a better time–frequency resolution, the AMSWT is applied to each
mode. Thus, the SCBSS problem is transformed into a non-underdetermined. Then,
for each frequency bin, the density-based clustering, reformulated to the eigenvec-
tor clustering problem, is performed to estimate the mixing matrix. Finally, sparse
reconstruction is used to reconstruct the sources. The proposed method is evaluated
using objective measures of separation quality. A computational complexity evalua-
tion based on time consumption is also performed. Simulation results show that the
proposed method is very effective for solving the SCBSS problem and provides better
separation performances than the reference methods. However, the proposed method
is computationally expensive.
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1 Introduction

Blind source separation (BSS) aims to separate the source signals from the mixed
signals without any information. The BSS has been applied in many areas such as
medical imaging and engineering [2, 44], astrophysics [40], image processing [11],
geophysical data processing [35], speech processing [21–23, 32], detection and radar
localization [28], communication systems [43], automatic transcription of speech [13],
musical instrument identification [34], mechanical flaw detection [18], multichannel
telecommunications [38], multispectral astronomical imaging [33] and speech recog-
nition [4].

In the literature, the BSS methods are classified as being linear and nonlinear,
instantaneous and convolutive, and overcomplete and underdetermined. The convolu-
tive mixture model of BSS is an effective way to represent the speech signal mixing
mechanism in a reverberant environment [7, 30]. The BSS problem can be formulated
either in the time domain or in the frequency domain. The BSS can be also treated in
the joint time–frequency (TF) domainwhere computationally efficient BSS algorithms
are available.

In most situations and for many practical uses, only one-channel recording of
mixture signals is available. This particular instance of the underdetermined source
separation problem called single-channel source separation (SCSS) has been the sub-
ject of many studies. To address the single-channel audio source separation problem,
numerous strategies have been proposed in the literature [12]. In [14], the authors
attempted to combine the maximum-likelihood estimation and nonnegative matrix
factorization (NMF) based on the Itakura–Saito divergence measurement. The short-
time Fourier transform (STFT) representation of the observed single-channel signal
has been subjected to the NMF-based approach in [39]. The method requires the use
of extra training data. A combination of the empirical mode decomposition (EMD)
and independent component analysis (ICA), as well as wavelet transformations, has
been suggested in [31]. However, the wavelet transform needs some specified basis
functions to represent a signal, and there is no rigorous mathematical theory under-
pinning the EMD or its improved algorithms [20]. The bark scale aligned wavelet
packet decomposition has been introduced in [26] where the separation step has been
performed using theGaussianmixturemodel (GMM), whichwas employed before the
Fourier transform. In [45], the authors proposed the variational mode decomposition
(VMD) method to solve the SCBSS problem. The separation process is performed
using joint approximate diagonalization based on the fourth-order cumulant matrices.
In [36], the authors presented a novel method for SCBSS in a noisy environment.
The method is based on selecting the TF units of signal presence and computing the
mixture spectral amplitude. The separation process is performed using TFmasking. In
[25], an adaptive signal separation has been proposed. Themethod uses a time-varying
parameter that adapts locally to instantaneous frequencies and a linear chirp (linear
frequency modulation) to model the signal components. The single-channel technique
has been explored for muscle artifact removal from multichannel EEG [6].

The classic TF representation is computed using the STFT. The STFT does not
reflect the time-varying information. Moreover, it yields a time–frequency repre-
sentation with only uniform time and frequency resolution. A new adaptive mode
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separation-based wavelet transform (AMSWT) has been proposed in [24] based on
[10, 16]. The AMSWT method involves solving a recursive optimization problem to
adaptively extract spectral intrinsic components (SICs). The limited support of each
spectral mode is implemented to establish the spectral boundaries for wavelet bank
configuration. Then, the spectral boundaries of the created wavelet bank configuration
are used to highlight the spectral information. The AMSWT strategy is fully adaptive
in the sense that one does not require prior knowledge.

In [41], a new method to solve the underdetermined BSS problem for convolutive
mixture has been proposed. Themethod operates in the time–frequency domain, and it
combines the density-based grouping and sparse source reconstruction. The density-
based clustering is introduced to estimate the mixing matrix, which is converted to an
eigenvector clustering issue. The rank-one structure of the local covariance matrices
of themixture TF vectors is first used to extract the eigenvectors. By combiningweight
clustering and density-based clustering, the eigenvectors are subsequently grouped and
tweaked to provide an approximatedmixingmatrix. The source reconstruction is trans-
formed into a l p-norm minimization using an iterative Lagrange multiplier method.
The Lagrange multiplier used to solve optimization problems under constraints aims
to enforce the constraint, while the quadratic penalty improves the convergence. In
the iterative formula, both the primal and dual variables are updated iteratively.

In this paper, a new method to solve the SCBSS problem is proposed. The method
combines the AMSWT [24] and density-based clustering with the sparse reconstruc-
tion method introduced in [41]. The method is performed in three stages: (i) The
amplitude spectrum of the observed mixture signal is obtained using STFT. The con-
volution in the time domain can be approximated by a multiplication in the STFT
domain. (ii) A better TF resolution is obtained using the variational scaling andwavelet
functions, which are applied to the spectral intrinsic components (SICs) extracted
adaptively using the AMSWT. By creating virtual multichannel signals of the TF
representation, the underdetermined single-channel problem is transformed to a non-
underdetermined problem. (iii) For each TF representation and each frequency bin,
the density-based clustering, which is converted to an eigenvector clustering problem,
and the sparse reconstruction, which is converted to a minimization problem, are,
respectively, performed to estimate the mixing matrix and sources.

The BSSeval toolbox [15] is used to evaluate the proposed method’s performance.
The evaluation is performed in terms of many criteria such as source-to-distortion
ratio (SDR), source-to-artifact ratio (SAR) and source-to-interference ratio (SIR).
The proposed method is compared to the variational mode decomposition (VMD)
method [45], adaptive spectrum amplitude estimator and masking method [36] and
the nonnegative tensor factorization of modulation spectrograms method [3].

The following sections make up the remaining content. The SCBSS problem for-
mulation is presented in Sect. 2. The AMSWT method, the density-based clustering
method and the source reconstruction are the main focus of Sect. 3. Simulation results
are presented in Sect. 4. Finally, conclusions and discussions are given in Sect. 5.
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2 Convolutive Mixture Model

Let x(t) � [x1(t), .., xM (t)]T be a vector of M observed sources obtained via the
mixing of N independent sources s(t) � [s1(t), .., sN (t)]T . The BSS problem aims to
estimate the N sources from the M mixtures. The convolutive mixture occurs through
the propagation of the sound through space and multiple paths caused by reflections
from different objects, especially in rooms and closed environments. The convolutive
mixture is modeled as follows:

x j (t) �
N∑

i�1

K−1∑

k�0

h ji (k)si (t − k), j � 1, . . . , M (1)

The matrix form is given as:

x(t) � H ∗ s(t) �
K−1∑

k�0

Hk s(t − k) (2)

where h ji denotes the impulse response from source i to sensor j , and H is an MxN
matrix that contains the kth filter coefficients.

Inmost cases and formany practical purposes, only one-channel recording is acces-
sible. Numerous studies have examined this instance known as single-channel source
separation. In this case,M � 1. The convolutive SCBSS in the time–frequency domain
is described as follows:

X(t, f ) �
N∑

i�1

Xi (t, f ) (3)

where Xi(t, f ) is the STFT of xi(t).
The conventional source separation techniques are ineffective in this scenario. The

issue in SCBSS might be viewed as a single observation combined with numerous
unidentified sources.

3 Single-Channel Blind Source SeparationMethod

The different steps of the proposed method for single-channel blind source separation
are summarized by the flowchart shown in Fig. 1.

The spectrum of the observed signal is obtained by the STFT. The convolution
in the time domain is transformed into a multiplication in the STFT domain. The
AMSWT approach is used to obtain an optimal spectral mode separation. Thus, the
SCBSS problem is transformed into a non-underdetermined problem by establishing
virtual multichannel signals of the TF representation of the observed signals. Then, the
M time–frequency representations of the mixture are divided into Q nonoverlapping
blocks.
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Fig. 1 Proposed method for single-channel blind source separation.

As a preprocessing step at themixingmatrix estimation stage, the TF representation
of the observed signal is whitened for each frequency bin xd . The whitening process is
performed using the eigenvectormatrixUx and the eigenvaluematrix�x of E(xdxd H ),
and it is expressed by xdw � �

−1/2
x UH

x xd .
The estimation of the mixing matrix is reformulated into an eigenvector clustering

issue. The ambiguity of scaling is solved by rescaling the estimated mixing matrix by
restricting the first row. The order of the reconstructed sources is aligned, by grouping
the nearby source TF vectors based on their correlation, in terms of power ratio, to
resolve the permutation ambiguity [10].

The post-processing stage involves de-whitening the predicted mixing matrix by
Ĥ � Ux�

1/2
x H̃. Then, the source reconstruction is reformulated into a sparse min-

imization problem, whose solution was achieved using an initialization-corrected
iterative Lagrange multiplier approach.

Finally, the estimated sources are obtained in the TF domain, which are transformed
into the time domain using the modified method proposed in [27].

3.1 Adaptive Mode Separation-BasedWavelet Transform

The STFT is a TF representation, which has an even bandwidth distribution across
all frequency channels and suffers from the TF resolution limitation due to the fixed
window size. The speech signal is substantially nonperiodic and nonstationary. There-
fore, the use of the STFT will result in mistakes, particularly when complex transitory
phenomena like voice mixing occur in the signal.

The AMSWT performs a time–frequency analysis using variational scaling and
wavelet functions. Themethod is built on the alternating directionmethod ofmultiplier
(ADMM) solver [19], which then defines a bank of variational scaling functions and
wavelets depending on the spectral boundaries that have been defined. As a result, the
approximation coefficients are obtained as the inner product of the analyzed signal
x with variational scaling function. The inner product of the analyzed signal x with
variational wavelets yields the detail coefficients, which are expressed as:

Wx (t, 0) � 〈x, ∅1〉 �
∫

x(τ )∅1(τ − t)dτ (4)
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and

Wx (t, k) � 〈x, ψk〉 �
∫

x(τ )ψk(τ − t)dτ (5)

where x is the input signal.
In [24], under the amplitude-modulated and frequency-modulated (AM-FM)

assumption, the intrinsic modes u(t) have distinguishable features in the frequency
domain. Using the ADMM solver, the spectral modes can be adaptively obtained sim-
ilarly to the intrinsic mode functions (IMFs) extraction, to estimate compact modes:

min
uk ,ωk

{∑
k ‖∂t

[(
δ(t) + j

π t

)
∗ uk(t)

]
e jωk t‖2

2

}

s.t .
∑

K uk � x(t)
(6)

where x(t) is the signal to be decomposed under the constraint that over all modes’
summation should be equal to the input signal, δ(.) is the Dirac impulse and(
δ(t) + j

π t

)
∗ uk(t) denotes the original data and its Hilbert transform. The vari-

ables uk , ωk and k denote the modes, their central frequencies and the mode number,
respectively.

The spectral segmentation boundary number can be determined empirically as
follows:

K̃ � min
{
n ∈ Z

+|n ≥ 2ρlnN
}

(7)

where N is the signal length and ρ is the scaling exponent determined by the detrended
fluctuation analysis (DFA).

According to [24], (6) is solved using a quadratic penalty term; the parameter λ

denotes the Lagrangian multiplier used to render the problem unconstrained

(8)

L (uk, ωk, λ) � η
∑

k

∥∥∥∥δt
[(

δ (t) +
j

π t

)
∗ uk(t)

]
e jωk t

∥∥∥∥
2

2

+ 〈λ, x −
∑

K

uk〉 +
∥∥∥∥∥x −

∑

K

uk

∥∥∥∥∥

2

2

Therefore, uk is determined recursively as

ûn+1k (ω) � X(ω) −∑
i 	� j û

n+1
i (ω) + λ̂n

2

1 + 2η(ω − ωn
k )

2 (9)

where X(ω), ûi (ω) and λ̂(ω) denote, respectively, the Fourier transforms of the input
signal x(t), the mode function ui (t) and λ(t). η denotes the balancing parameter of
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the data-fidelity constraint. The center frequencies ωn+1
k are updated as the center of

gravity of the corresponding mode’s power spectrum using the following equation

ωn+1
k �

∫∞
0 ω

∣∣̂un+1k (ω)
∣∣2dω

∫∞
0

∣∣̂un+1k (ω)
∣∣2dω

(10)

As a result, rather than using a predefined wavelet bank, we create adaptive wavelet
banks based on spectral modes and their corresponding center frequencies, which
represent the intrinsic components.

Authors in [24] used the mode bandwidth and central frequencies to define the
boundaries between each mode; however, in the literature, some authors just used
the average of the two central frequencies as spectral boundary, which ignores the
spectrum distribution.

Consider the kth mode with an average frequency ωk and a spectral bandwidth βk .
Then, the boundary �k between the kth mode and the (k + 1)th mode is given by

�k � ωk +
βk
2 + ωk+1 − βk+1

2

2
(11)

where �0 � 0 and �k � π .
The authors apply the same principle used in the production of both Littlewood—

Paley and Meyer’s wavelets [9] for variational scaling functions and wavelets based
on spectral boundaries. ∅̂k and ψ̂k are, respectively, defined by the following equa-
tion, with γ is the parameter that ensures no overlap between the two consecutive
transitions.

∅̂k �
⎧
⎨

⎩

1, ω ≤ (1 − γ )�k

cos
(

π
2 α(γ ,�k)

)
, (1 − γ )�k ≤ ω ≤ (1 + γ )�k

0 otherwise
(12)

and

ψ̂k �

⎧
⎪⎪⎨

⎪⎪⎩

1, (1 + γ )�k ≤ ω ≤ (1 − γ )�k+1

cos
(

π
2 α(γ ,�k+1)

)
, (1 − λ)�k+1 ≤ ω ≤ (1 + λ)�k+1

sin
(

π
2 α(γ ,�k)

)
, (1 − λ)�k ≤ ω ≤ (1 + λ)�k

0 otherwise

(13)

where α(γ ,�k) � β{
(

1
2γ�k

)[|ω| − (1 − γ )�k
]}] and β(ν) is an arbitrary function

defined as follows:

β(ν) �
⎧
⎨

⎩

0, ν ≤ 0
1, ν > 1
β(ν) + β(1 − ν) � 1, 0 < ν < 1

(14)
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The adaptive mode separation-based wavelet transform algorithm is summarized
as follows:

Step 1: Time–frequency representation
Input: Observed mixture.

• Using the Fourier transform, obtain the amplitude spectrum signal.
• Obtain the appropriate spectrum spectral modes (segments). Execute the first
inner loop and the second inner loop to update uk according to (9), and update
ωk according to (10), respectively

• Compute the proper spectral boundaries using (11). Then, using (12) and (13), the
bank of variational scaling functions and wavelets based on the spectral bound-
aries is defined.

• Finally, using (4) and (5), respectively, apply variational scaling and wavelet
functions to each mode to obtain the time–frequency distribution.

Output: time–frequency distribution of the observed mixture.

3.2 Density-Based Clustering

In [41], the authors introduced the eigenvector clustering as an alternative to estimate
the mixing matrix. The eigenvector clustering is based on two factors, which are the
local density ρq and the minimum distance δq that may be taken between the point q
and any additional points with a higher density. They are given, respectively, by

ρq �
∑

k 	�q

e
− υ2qk

τ2c (15)

and

δq � min
k:ρk>ρq

(υqk) (16)

where the region for each data point is defined by a cut-off distance τc, and υqk are
the elements of the similarity matrix:

V �

⎡

⎢⎣
υ11 · · · υ1Q
...

. . .
...

υQ1 · · · υQQ

⎤

⎥⎦ (17)
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From the eigenvectors A whose elements are aq , the similarity matrix V is gen-

erated as follows:υqk � ‖aq − (aHq ak)‖2F , where ‖.‖F denotes Frobenius norm [29]
expressed as follows:

(18)

∥∥∥aq − (aH
q ak)

∥∥∥
2

F
�

Q∑

q�1

Q∑

k�1

∣∣∣aq − (aH
q ak)

∣∣∣
2

� trace

((
aq −

(
aH
q ak

)) (
aq − (aH

q ak)
)H)

where (.)H denotes the conjugate transpose.
The eigenvector extraction is based on the local covariance matrix RX

q �
∑N

i�1 σ 2
i,qhi h

H
i where hi is called the steering vector representing each direction

of the mixing matrix. According to [41], there is at least one subblock indexed as qi
for which the associated local covariance RX

qi has roughly a rank-one structure. This
condition is exploited in [16] where the authors applied the eigenvalue decomposition
(EVD) to the local covariance matrix RX

q , which results in the following equation:

RX
q � Uq�qUH

q (19)

where Uq and �q denote the eigenvector matrix and eigenvalue matrix, respectively.
The extracted vector denoted aq corresponds to the largest eigenvalue of �q and

also represents the first eigenvector in Uq . To obtain the eigenvector matrix A �
[a1, . . . , aQ], the eigenvector extraction is done subblock wisely.

According to [41], the global maximum in the density indexed as q∗ has aminimum
distance δq∗ defined as follows:δq∗ � max

q,k�1,...,Q
(υqk) if ρq∗ � max

q�1,...,Q
(ρq )(20)

The two components are multiplied together to provide the following score:

γq � ρq × δq (21)

To get
{
γq
}Q
q�1 , the scores from (20) are applied to all of the subblocks. The

obtained scores are then arranged in a decreasing order. As a result, the eigenvectors
with the greatest N scores define the clusters, which are denoted by C � [c1, ..., cN ].

As mentioned in [41], it would be difficult to cluster the eigenvectors using solely
the density-based strategy described above. To address this issue, a weight clustering
approach to further tune the projected clusters is used [42]. The procedure of the
weighted eigenvector clustering can be summarized in three steps.

First, the eigenvector is weighted by a kernel function defined as follows:

bqk � eω2
qk/τ

2
0 aq (22)

where k � 1, .., N and ωqk � ‖aq − (
aq H ck

)
ck‖2F .
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Then, the weighted covariance matrix is created as:

Rb
k �

Q∑

q�1

bqkbqk H (23)

Finally, the EVD is applied to the weighted covariance matrix Rb
k :

Rb
k � Uqk�qkUqk

H (24)

As an updated of cluster ck where k � 1, ..., N , the eigenvector that corresponds
to the largest eigenvalue from the equation (24) is extracted.

The mixing matrix estimation algorithm is summarized as follows:

Step 2 : Mixing matrix estimation
Input :Xwhich represents the TF representation of the observed signalwhose elements
xd .

For each block q ∈ Q do

• Calculate the local covariance matrix of RX
q using R̂X

f ,q �
1
p

∑qP
d�q(P−1)+1 x f ,dxHf ,d

• Construct the eigenvector matrix A using (19).

End

• Using the eigenvector matrix A, compute the similarity matrix defined by (17)

For each block q ∈ Q do

• Calculate the local density ρq and the minimum distance δq and the score γq
using (15), (16) and (21), respectively

End

• Calculate δq∗ using (20), then, obtain the score sequence ϒ � [γ1, . . . , γQ].
• To obtain the score sequence ϒ , record the eigenvector matrix with the same
permutation of decreasing alignment. So, to get the estimated clusters C �
[c1, . . . , cN ], truncate the first N reordered eigenvectors.

For k � 1 to N do
For each subblock q ∈ Q do

• Calculate theweighted eigenvectorbqk using aq and ck, then calculateRb
qk using

(22) and (23), respectively.
• Calculate h̃k using (24)

End
End

Output: Estimated mixing matrix Ĥ .
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3.3 Source Reconstruction

In [41], the sparsity-based method has been introduced as an alternative to recon-
struct the estimated source signal using a l p-norm-based minimization measurement.
(The convergence is guaranteed for 0 < p < 1.) The method consists of converting
the source reconstruction problem to a sparse reconstruction minimization problem.
A designed iterative Lagrange multiplier approach with an appropriate initialization
procedure is used to solve this minimization problem.

The source reconstruction is performed to find the sparsest term of sd . For this, the
maximum posterior likelihood of sd is expressed as:

max
sd

N∏

i�1

P
(∣∣si,d

∣∣)

s.t .xd � Ĥsd (25)

where the complex-valued super-Gaussian distribution P
(∣∣si,d

∣∣) is given by:

P
(∣∣si,d

∣∣) � p
γ 1/p

�( 1p )
e−|si,d |p (26)

where p and γ control the shape and variance of the probability function, � denotes
the gamma function and Ĥ represents the estimated mixing matrix.

The problem returns to solve the equivalent optimization problem given as follows:

min
sd

N∑

i�1

|si,d |p

s.t .xd � Ĥsd (27)

The Lagrange multiplier method is used to solve the optimization problem. Hence,
the problem is reformulated to an unconstrained optimization problem as follows:

min
sd ,α

F(sd , α) �
N∑

i�1

|si,d |p + αH (xd − Ĥsd ) (28)

where α is the Lagrange multiplier.
The implicit solution of the problem is given as follows:

sd � �−1(sd )ĤH (Ĥ�−1(sd )Ĥ
H
)
−1

xd (29)

where �−1(sd ) �

⎡

⎢⎣
|s1,d |2−p · · · 0

...
. . .

...
0 · · · |sN ,d |2−p

⎤

⎥⎦
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The iterative scheme to obtain the solution sd is given as follows:

ŝ(i ter+1)
d �

⎧
⎪⎨

⎪⎩

�−1
(
ŝ(iter)
d

)
ĤH

(
Ĥ�−1

(
ŝ(iter)
d

)
ĤH

)−1
xd i f ‖̂s(iter)

d ‖0 ≥ M

�−1
(
ŝ(iter)
d

)
ĤH

(
Ĥ(�−1

(
ŝ(iter)
d

)
+ εI)−1ĤH

)−1
xdelsei f ‖̂s(iter)

d ‖< M

(30)

The source reconstruction algorithm is summarized as follows:

Step 3: Estimation of the TF representation of the sources
Input: Time–frequency representation of the observed signal denoted X whose ele-
ments xd and estimated mixing matrix Ĥ

For each frequency bin do

• Initialize the sources as ŝ(0)d � ∑CM
N

j�1 ω jy j,d

Repeat
• Update ŝ(iter)

d using (30)
• i ter � i ter + 1
Until ‖̂s(iter)

d ‖p

p − ‖̂s(iter+1)
d ‖p

p
is less than a given threshold.

End
Aware that ‖̂s(iter)

d ‖p

p �
∑N

i�1 |s(iter)
i,d |p .

Output: time–frequency representation of the estimated sources.

For each frequency bin d, since the iterative method computes successive approx-
imations to the solution of the problem, the stopping criterion minimizes the iterative
absolute error. The tolerance or threshold of the stopping criteria is determined to
guarantee the best algorithm performance without resulting in a high computing time.

4 Simulation Results

To investigate the effectiveness of the proposed method, numerical simulations have
been performed in a reverberant environment. TheTIMITdatabase [37] andNOIZEUS
database [1] were used to build the speech dataset, which was chosen at random
(available online). The sampling rate of the speech signals is fs � 16kHz, and the
speakers might be either female or male. Using the technique outlined in [17], the
propagation environment is simulated as a reverberant room shown in Fig. 2.

The room impulse response from the source i to the sensor is illustrated in Fig. 3. By
adjusting the reverberant time, a variety of convolutive mixed signals can be produced.
It is crucial to evaluate the transmission duration of the signal decay to 60 dB to reflect
the room reverberation.

As an illustration, let the three sources shown in Fig. 4a. The three sources are con-
volutedly mixed in the virtual room shown in Fig. 1 using the room impulse responses
shown in Fig. 2. The observed single-channel signal is shown in Fig. 4b. Figure 4c
shows a frame of 1024 sample length of the observed signal. The obtained modes are
shown in Fig. 4d. For this example, the decomposition of the observed signal results
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Fig. 3 Room impulse responses from the source i to the microphone.

in 24 modes. The TF representations of the obtained modes are shown in Fig. 4e. A
comparison between the STFT of the estimated frame and the original frame of the
observed signal is shown in Fig. 4f. The estimated sources are shown in Fig. 4g. A
comparison between the TF representations of original sources and estimated sources
is shown in Fig. 4h.

As can be seen, the estimated sources are highly similar to the original sources.
The proposed method based on the AMSWT method and density-based clustering
with sparse reconstruction provides an accurate estimate of the source signals and
results in a spectral content located with high accuracy.

The BSSeval toolbox [15] is used to analyze the performance of the proposed
approach. The estimated sources are expressed as ŝ � starget + einterf + enoise + eartif
for the objective performance criteria measurement, where starget refers to the source
signals, einterf stands for interference from other sources, enoise stands for distortion
brought on by noise and eartif includes all other artifacts introduced by the separation
algorithm.

The parameter p of the l p-norm-based minimization method can have a significant
impact on source reconstruction performance [41]. Many tests have been performed
using different values of p to assess its effect on the source-to-distortion ratio (SDR)
using the given dataset. Table 1 displays the obtained SDRs for the parameter p varying
from 0.1 to 0.9 by a step of 0.2.
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(b) Observed single-channel signal 

(c) A frame of the observed signal and its Fourier transform 

(d) The obtained 24 modes  
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Fig. 4 Illustration example of the single-channel separation of a convolutive mixture of three speech signals
based on the proposed method.
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(f) Comparison between the STFT of the estimated frame and the original frame of the observed 
signal. 
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Fig. 4 continued

Table 1 SDRs evaluation for different values of the parameter p

Parameter p value 0.1 0.3 0.5 0.7 0.9

SDR 9.73 10.02 10.42 14.12 13.39

As can be seen, the SDR marginally increases as p increases and reaches its max-
imum when p � 0.7. The parameter p is set to 0.7 in the subsequent experiments.
Changing the value of the parameter p to take advantage of the source sparsity proves
that the sparse reconstruction based on l p-norm-based minimization method is very
effective.

The estimated sources’ performances are evaluated using the SDR, the source-to-
artifact ratio (SAR) and the source-to-interference ratio (SIR) criteria, and compared
with the performances of the estimated sources obtained via the VMD method [45],
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adaptive spectrum amplitude estimator and masking method [36] and the nonnegative
tensor factorization of modulation spectrograms method [3]. The SDR, SAR and SIR
are defined as follows:

SDR � 10log10
‖starget‖2

‖einterf + enoise + eartif‖2
(31)

SAR � 10log10
‖starget + einterf + enoise‖2

‖eartif‖2
(32)

SIR � 10log10
‖starget‖2
‖einterf‖2

(33)

Figure 5 shows the mean square error (MSE) between the original signal and the
estimated sources obtained via the proposed method and reference methods. The com-
parison is performed for different reverberation conditions where the reverberation
time is varied from 100 ms to 500 ms by a step of 50 ms. As observed, the proposed
method provides the smallest MSE even in a highly reverberant environment.

Figures 6, 7 and 8 show, respectively, the SDR, SAR and SIR obtained by the
proposed method and reference methods for different reverberant times. As can be
seen, the proposed method results in a better performance in terms of the three crite-
ria compared to the VMD, adaptive spectrum amplitude estimator and masking and
nonnegative tensor factorization of modulation spectrogram methods in a reverberant
environment. The proposed method results in higher performance criteria even in a
highly reverberant environment.

The proposed method has been compared to the reference methods in terms of
time computing. In general, the computational complexity [5, 8] is a measure of the
execution time. The Fourier transform of a signal of lengthN has a computational com-
plexity of O(NlogN ) [5, 8]. Then, using variational scaling and wavelet functions, the
AMSWT is introduced to adaptively extract spectral intrinsic components (SICs). The
AMSWT method is built on the ADMM solver, with a computational complexity of
O
(
n2
)
. The density-based clustering has a computational complexity of O

(
n3
)
. The
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Fig. 5 Comparison in terms of mean square errors (MSEs) between the original signal and the estimated
sources obtained via the proposed method and reference methods.
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Fig. 6 Comparison in terms of SDR between the original signal and the estimated sources obtained via the
proposed method and reference methods.

Fig. 7 Comparison in terms of SAR between the original signal and the estimated sources obtained via the
proposed method and reference methods.

Fig. 8 Comparison in terms of SIR between the original signal and the estimated sources obtained via the
proposed method and reference methods.
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Fig. 9 Comparison between the computational complexity of the proposed method and reference methods
in terms of time running (sec).

computational complexity required to compute the similarity matrix is O
(
n2
)
, and

the sparse reconstruction used to reconstruct the estimated source has a computational
complexity of O

(
n3
)
. The sparse methods are computationally expansive.

The experiments have been carried out using a PC with a 2.4 GHz processor and 4
GB of RAM. The comparison has been performed for reverberation time conditions
of 100 ms and 400 ms. The obtained results are shown in Fig. 9. As can be seen,
the proposed method has a computational cost than the reference methods both in a
weakly reverberant environment and in a highly reverberant environment. The SCBSS
methods in the time–frequency domain are computationally expensive.

5 Conclusion

A new method to solve the SCBSS problem has been presented. The method com-
bines the adaptive mode separation-based wavelet transform (AMSWT) with adaptive
mode separation and the density-based clustering with sparse reconstruction. The
SCBSS problem is transformed into a non-underdetermined. The method operates
in the time–frequency domain and a reverberant environment. The proposed method
has been tested on speech datasets constructed from TIMIT and NOIZEUS databases
for various reverberation time conditions. Simulation experiments indicate that the
proposed method results in the smallest MSE and the highest values of SIR, SAR
and SDR compared to the reference methods. The simulation results demonstrate the
effectiveness of the proposed method to solve the SCBSS problem even in a highly
reverberant environment. In terms of computational complexity, the proposed method
is expensive.
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