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Abstract
This paper is concerned with asynchronous finite-time H∞ control for a class of
discrete-time switched linear systems via admissible edge-dependent average dwell
time (AED-ADT) approach. Firstly, by considering the switching time delay between
the system and the state feedback controller, appropriate Lyapunov functions are con-
structed for asynchronous and synchronous switching, respectively. Secondly, for the
existence of a set of state feedback controllers, a sufficient condition which guarantees
the finite-time boundedness of the closed-loop system with AED-ADT is proposed.
Thirdly, a sufficient condition for finite-time H∞ control with a prescribed H∞ perfor-
mance is further developed based on the obtained result. Finally, a numerical example
is given to verify the validity of the proposed theoretical results.
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1 Introduction

Switched systems are an extremely momentous set of dynamic hybrid systems that
can be used to model a large class of controlled objects in the real world, such as phys-
ical or man-made systems that show switching characteristics. Generally speaking, a
switched system consists of two parts, that is, a family of finite number of continuous
or discrete subsystems and a switching signal that determines how to switch between
these subsystems [32, 35]. Switched systems have been the subject of intense interest
in the past few decades, not only because of their rich and diverse theoretical values
[25], but also because of their widespread and profound practical applications [1, 19].
Moreover, there have been fruitful research results on the stability analysis and con-
trol synthesis of switched systems under certain constrained switching signals, such
as stability and stabilization [31, 34], control and filtering [9, 30].

The so-called asynchronous switching actually refers to the switching behavior in
which the switching signal of the controller does not match the one of the subsystems
[29]. As we all know, sometimes asynchronous switching will inevitably occur in the
process of system operation, which is very likely to reduce the overall performance of
the system, even may cause system instability [9]. Moreover, there are many reasons
for asynchronous switching, such as time delay, uncertainty and disturbance [21]. In
this paper, asynchronous phenomenon due to switching time delay will be mainly
considered. If the delay is ignored, the obtained switching control law must be con-
servative, that is to say, it is crucial to consider the asynchronous phenomenon in the
process of studying the stability of the switched system [22]. In addition, in terms of
practical value, the application of research results in asynchronous switching theory
has a great impact on many practical fields [21].

Finite-time stability is mainly proposed in the research work of Weiss and Infante
[20]. A system is called finite-time stable, which means that for a given range of initial
conditions, the state will not exceed a certain bound within a specific time interval.
This kind of stability and Lyapunov asymptotic stability are two independent con-
cepts, and it has been shown that a system can be finite-time stable but not Lyapunov
asymptotically stable, and vice versa [26]. Lyapunov asymptotic stability discusses
the system performance in a sufficiently long time interval, while finite-time stability
studies it in a finite interval, which is more suitable for practical situations where
many state variables do not exceed a given bound in a short interval, and the result is
more accurate [2, 8]. In the discrete-time systems, the L∞ performance refers to the
energy-to-peak attenuation of a certain signal, while the H∞ performance represents
the energy-to-energy attenuation of this signal. When the external disturbance w(k)
is known, the disturbance suppression performance of H∞ is better. In the past time,
many researchers have developed a strong interest in finite-time stability and H∞ con-
trol of the system, followed by a series of significant research results. For instance, a
finite-time H∞ control design scheme for continuous-time switched systems is pro-
posed in [10], which is extended to discrete-time case subsequently in Ref. [18]. And
for discrete-time switched systems, there are finite-time H∞ control [26], finite-time
boundedness and l2 gain analysis [7], finite-time control [11], etc.

The existence of switching time delay has a crucial impact on the properties of
the system. In the switching delay systems, the analysis of stability and the design
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of the controller have always been of interest to everyone. However, it is very dif-
ficult to find a common Lyapunov function for all subsystems in a switching delay
system, which motivates the application of the multiple Lyapunov function technique,
which is obviously a fairly efficient way to study the stability of switched systems
under constrained switching signals [28]. The average dwell time (ADT) [3] indi-
cates that the switching times in a finite interval are limited, and the average time
between consecutive switchings is not less than a constant, which generalizes dwell
time (DT) [15] to a certain extent. By using the ADTmethod, sufficient conditions for
the globally uniformly exponentially stability of closed-loop systems are deduced in
the presence of asynchronous switching controllers [29]. And the design of adaptive
output feedback controller [16] and state feedback tracking control [17] for stochastic
nonlinear switched systems are studied. However, since the parameters used to calcu-
late the ADT are mode-independent, the results obtained are somewhat conservative.
This also prompted the proposal of mode-dependent average dwell time (MDADT)
switching, which allows each mode in the underlying system to have its own ADT,
which greatly relaxes the constraints of ADT switching [31]. In recent years, the
research results obtained by using the MDADT method are also quite rich, such as
asynchronous control problem [22], quasi-time-dependent H∞ controller [12, 33], and
finite-time H∞ control [10].

Subsequently, a new admissible edge-dependent average dwell time (AED-ADT)
[6, 23, 24, 27] switching is proposed, which is more flexible and less conservative than
MDADT switching, and its switching behavior is based on a directed switching graph,
each admissible transition edge represents a directed switch between subsystems. The
rational application of this method provides great help to the research of switching,
such as time-varying H∞ control [25], the global uniform exponential stability of
discrete-time switched systems [5], input-to-state stability of nonlinear discrete-time
switched systems [36], l2−l∞ filtering [4], and asynchronous l2−l∞ filtering [14]. All
in all, the applicationof the currentAED-ADTswitchingmethodcan effectively reduce
the conservativeness of the research results. However, to the best of our knowledge,
in the existing research work, there are relatively few results related to analyzing the
asynchronous finite-time H∞ control problem by using the AED-ADT switching,
which motivated us to carry out our study.

Inspired by the above literature works, we will mainly study the asynchronous
finite-time H∞ control problem of discrete-time switched linear systems using AED-
ADT approach in this paper. There are three main contributions: (1) In the study of
discrete-time switched linear systems, the existence of switching time delay is mainly
considered. In contrast to those studies where systems and controllers are defaulted to
be switched synchronously, this paper is more suitable for practical applications. (2)
For the sake of obtaining less conservative research results, the AED-ADT switching
signal, which is more flexible and applicable than MDADT switching, is used. (3)
An asynchronous finite-time H∞ control design scheme with AED-ADT switching is
proposed for discrete-time switched linear systems.

The remainder of this paper is organized as follows. Section2 gives the problem
statements, along with some necessary definitions and lemmas. In Sect. 3, by using the
AED-ADT approach for the resulting closed-loop system, the design of a state feed-
back controller under asynchronous switching is considered, and a sufficient condition
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to guarantee its finite-time boundedness is derived. In addition, based on the obtained
result, the H∞ performance analysis of the closed-loop system is also performed.
In Sect. 4, the numerical simulation is addressed to demonstrate the reasonability and
effectiveness of the proposedmethod. In the end, some conclusions are given in Sect. 5.

Notations In the paper, the notations used are fairly standard. Let Rn be the space
of n-dimensional real vectors, and R

n×m be the set of all (n × m)-dimensional real
matrices. And Z

+
0 is the nonnegative integer set. For a matrix P , P > 0 (P < 0)

signifies that P is symmetric positive definite (negative definite) matrix, and P ≥ 0
(P ≤ 0) signifies that P is symmetric semi-positive definite (semi-negative definite)
matrix. P−1 and PT denote the inverse and transpose of P , respectively. And the
asterisk (∗) denotes the symmetrical items in a symmetricmatrix.λmin(P) andλmax(P)

represent the minimum and maximum eigenvalue of matrix P , respectively. I and 0
are identity matrix and zero matrix. l2[0,∞) is the space of square-summable infinite
sequence over [0,∞). In addition, if not explicitly stated, it is assumed that thematrices
have the compatible dimensions for algebraic operations.

2 Problem Statement and Preliminaries

2.1 Switched System

In this paper, consider the discrete-time switched linear systems as follows:

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k) + Dσ(k)w(k), x(0) = x0,

y(k) = Cσ(k)x(k) + Eσ(k)u(k) + Fσ(k)w(k),
(1)

where x(k) ∈ R
n is the system state, x(0) = x0 is the initial state, u(k) ∈ R

m is the
control input, and w(k) ∈ R

p is the disturbance input, which belongs to l2[0,∞),
y(k) ∈ R

q is the output. The switching signal of the system (1) is given by σ(k) :
Z

+
0 → M̄ = {1, 2, · · · , M}, M > 1 is the number of switched subsystems. Ai , Bi ,

Di , Ci , Ei , Fi , i ∈ M̄ , are known constant matrices with appropriate dimensions. For
a time sequence 0 = k0 < k1 < · · · < ki < ki+1 < · · · , which is the switching
instant of σ(k), when k ∈ [ki , ki+1), we say that the σ(ki )th subsystem is active, and
hence the trajectory x(k) of the system (1) is just the trajectory of this subsystem.

2.2 State Feedback Controller

A state feedback controller can be considered for the discrete-time switched systems
(1); the specific form is as follows:

u(k) = Kσ(k)x(k), (2)

where Kσ(k) is the control gain matrix to be determined.
In fact, in the process of system switching, it takes a certain time to identify the

activated subsystem, which will cause the system to switch to the next subsystem, but
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the controller still stays in the current subsystem. Only after the activated subsystem is
successfully identified, the controller can switch to the next subsystem, which causes
the switching delay of the controller. This situation is common in practical applications,
and we will consider it in this paper.

Due to the existence of the controller switching time delay, the state feedback
controller in this paper should take the following form:

u(k) = Kσ ′(k)x(k), (3)

where Kσ ′(k) is the control gain matrix to be determined, σ ′(k) is the switching signal
of the state feedback controller (3), we say that (3) is called the asynchronous switching
controller [9, 21].

Due to the existence of the switching time delay of the state feedback controller,
the switching of the controller is often later than the switching of the system. Denote
[ki , ki+1) = [ki , ki + �i )

⋃[ki + �i , ki+1), where 0 ≤ �i ≤ ki+1 − ki − 1, i ∈ Z
+
0

and �0 = 0. And �i is an integer, which denotes the period that the switching
instants of the controller have a delay with respect to that of the system. Therefore,
when k ∈ [ki , ki + �i ), σ(k) 	= σ ′(k), the switching of the system itself does not
match the switching of the controller, and the mismatched period is called the time
of asynchronous switching. In addition, �i ≤ ki+1 − ki − 1 guarantees that there
always exists a period which the controller and the system operate synchronously in
any switching interval. That is to say, when k ∈ [ki + �i , ki+1), σ (k) = σ ′(k), the
switching signal of the controller is consistent with that of the system, and this period
is called the matched period.

Denote

ν : {(k0, σ (k0)), (k1, σ (k1)), · · · , (ki−1, σ (ki−1)), (ki , σ (ki )), (ki+1, σ (ki+1)), · · · }
(4)

as the switching sequence of the system, where ki means the i th switching instant.
Then, the switching sequence of the controller can be described as follows:

ν′ : {(k0, σ ′(k0)), (k1 + �1, σ
′(k1 + �1)), · · · , (ki−1 + �i−1, σ

′(ki−1 + �i−1)),

(ki + �i , σ
′(ki + �i )), (ki+1 + �i+1, σ

′(ki+1 + �i+1)), · · · }
(5)

where σ(k0) = σ ′(k0), which indicates that the system and the controller switch
simultaneously at the initial moment. Moreover, denote σ(ki ) = σ ′(ki + �i ), where
i ∈ Z

+
0 .

When the lth subsystem is activated at switching instant ki−1, the i th subsystem is
activated at switching instant ki , and the j th subsystem is activated at switching instant
ki+1. Due to the existence of asynchronous switching, the corresponding switches of
the controller occur at the instant ki−1+�i−1, ki +�i , and ki+1+�i+1, respectively.
That is to say, assume σ(ki−1) = l, σ(ki ) = i , and σ(ki+1) = j , then we have
σ ′(ki−1 + �i−1) = l, σ ′(ki + �i ) = i , and σ ′(ki+1 + �i+1) = j , where l, i, j ∈ M̄ ,
as shown in Fig. 1.

Given any k > 0, there are Nσ(k0,k) switches for σ(k) in the interval [k0, k), the
switching instants of the system are set as {k1, k2, · · · kNσ(k0,k)}. Denote 0 = k0 < k1,



4558 Circuits, Systems, and Signal Processing (2023) 42:4553–4584

Fig. 1 The illustration of switching sequences for system and controller under asynchronous switching

kNσ(k0,k) < k < kNσ(k0,k)+1, and k0 is not a switching instant. In addition, the switching
instants of the controller are set as {k1+�1, k2+�2, · · · , kNσ(k0,k) +�Nσ(k0,k)}, where
�i , i = 1, 2, · · · , Nσ(k0,k) are the time delays between the system and the controller.
We simply denote N = Nσ(k0,k).

In this paper, let Ms and Mu be the set of all time intervals in which the system
and the state feedback controller switch synchronously and asynchronously, respec-

tively. Then, we have Ms = (kNσ(k0,k) + �Nσ(k0,k) , k)
⋃

(

Nσ(k0,k)−1⋃

i=0
[ki + �i , ki+1))

and Mu =
Nσ(k0,k)⋃

i=1
[ki , ki + �i ). Let T↓(k0, k) and T↑(k0, k) denote unions of the

time intervals during which Lyapunov functional candidate V (x(k)) is decreasing and
increasing within the time interval [k0, k), respectively. In other words, T↓(k0, k) and
T↑(k0, k) denote unions of the time intervals in which the system itself and the state
feedback controller switch synchronously and asynchronously, respectively. T s(k0, k)
and T u(k0, k) represent the length of T↓(k0, k) and T↑(k0, k), respectively. Then,
in the interval [k0, k), the total time for synchronous switching of the system and

the controller is T s(k0, k) =
Nσ(k0,k)∑

i=0
[ki + �i , ki+1) + (k − (kNσ(k0,k) + �Nσ(k0,k) )),

where �0 = 0, and the total time for their asynchronous switching is T u(k0, k) =
Nσ(k0,k)∑

i=1
[ki , ki + �i ) =

Nσ(k0,k)∑

i=1
�i , and T s(k0, k) + T u(k0, k) = k − k0.

2.3 Switching Signal

Definition 2.1 [10] For a switching signal σ(k), let Nσ
i (k0, k) and Ti (k0, k) denote the

switching numbers that the i th subsystem is active and the total running time of the
i th subsystem over the interval [k0, k), respectively. If there exist positive numbers τi
and N 0

i , such that

Nσ
i (k0, k) ≤ N 0

i + Ti (k0, k)

τ ai
,∀k ≥ k0 ≥ 0, i ∈ M̄, (6)
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Fig. 2 A directed switching
graph S with M̄ = 3

we say that the switching signal σ(k) has a mode-dependent average dwell time
(MDADT) τ ai and a corresponding mode-dependent chatter bound N 0

i .

Definition 2.2 [6] Given a directed graph S and ∀i, j ∈ M̄ (i 	= j), we define
I(i, j) as an admissible transition edge (ATE) of S if the directed edge from i to j
is admissible. The set of all admissible transition edges (ATEs) is represented by �.
An ATE I(i, j) has an admissible transition edge-dependent weight (ATEDW) μi j ,
which describes the switching property from the subsystem i to subsystem j . And the
set of all admissible transition edge-dependent weights (ATEDWs) is signified by �.

Remark 2.1 The subsystem will switch from i to j when switching occurs, where i ,
j ∈ M̄ and i 	= j . Assuming that there are three subsystems in a discrete-time switched
system, then in this directed switching graph S, the sets of ATEs and ATEDWs
between these three subsystems can be represented as � = {I(1, 2), I(1, 3), I(2, 1),
I(2, 3), I(3, 1), I(3, 2)} and � = {μ1,2, μ1,3, μ2,1, μ2,3, μ3,1, μ3,2}, respectively,
as shown in Fig. 2[6, 26].

Definition 2.3 [26]For a switching signal σ(k) : Z+
0 → M̄ , and ∀(i, j) ∈ M̄× M̄, i 	=

j , let Nσ
i j (k0, k) and Ti j (k0, k) denote the switching numbers from subsystem i to j

and the total running time of subsystem j over the interval [k0, k), respectively. If
there exist positive numbers τ ai j and N 0

i j such that

Nσ
i j (k0, k) ≤ N 0

i j + Ti j (k0, k)

τ ai j
,∀k ≥ k0 ≥ 0, (7)

we say that the switching signal σ(k) has an admissible edge-dependent average dwell
time (AED-ADT) τ ai j and a corresponding admissible edge-dependent chatter bound

N 0
i j .

Remark 2.2 Comparing (6) of Definition 2.1 and (7) of Definition 2.3, it is obvious
that the above concept of AED-ADT is more general than that of the mode-dependent
case. Let ε(M̄) be the set of all admissible ordered pairs (i, j), J̄ (i) = { j ∈
M̄ | (i, j) ∈ ε(M̄)}. Note that Nσ

i (k0, k) = ∑

j∈ J̄ (i)

Nσ
i j (k0, k) and Ti (k0, k) =

∑

j∈ J̄ (i)

T σ
i j (k0, k). Obviously, we have Ti j (k0, k) = T s

i j (k0, k) + T u
i j (k0, k) and

T s(k0, k) = ∑

i∈Ms

∑

j∈ J̄ (i)

Ti j (k0 , k), T u(k0, k) = ∑

i∈Mu

∑

j∈ J̄ (i)

Ti j (k0, k).

As considered inAED-ADT, it is assumed that the activation time of each subsystem
is also edge-dependent.
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Assumption 2.1 [36] Suppose there exist scalars νsi j ∈ (0, 1], νui j ∈ [0, 1) and

constants T̄ s
i j ≥ 0, T̄ u

i j ≥ 0 such that ∀k > k0 ≥ 0,

Ti j (k0, k) ≥ −T̄ s
i j + νsi j (k − k0), i ∈ Ms, (8a)

Ti j (k0, k) ≤ T̄ u
i j + νui j (k − k0), i ∈ Mu, (8b)

∑

i∈Ms

∑

j∈ J̄ (i)

T̄ s
i j =

∑

i∈Mu

∑

j∈ J̄ (i)

T̄ u
i j , (8c)

∑

i∈Ms

∑

j∈ J̄ (i)

νsi j +
∑

i∈Mu

∑

j∈ J̄ (i)

νui j = 1. (8d)

Assumption 2.2 [36] Whenever (i, j) ∈ ε(M̄), there exist constants μi j ≥ 1, such
that Lyapunov functions Vi satisfy inequalities as follows:

Vj (x(k)) ≤ μi j Vi (x(k)), (i, j) ∈ ε(M̄). (9)

2.4 System Stability

Assumption 2.3 [26] It is assumed that the external disturbance w(k) is time-varying
and satisfies the following constraint:

N∑

k=0

wT(k)w(k) ≤ d, d > 0, (10)

where N is a positive integer and d is a positive constant.

Definition 2.4 [26] Given a matrix R > 0, two scalars c2 > c1 > 0, an integer N > 0,
and a switching signal σ , the discrete-time switched linear system (1) with u(k) ≡ 0
and w(k) ≡ 0 is said to be finite-time stable with respect to (c1, c2, R, N , σ ), if
xT(0)Rx(0) ≤ c1 ⇒ xT(k)Rx(k) < c2,∀k ∈ {1, 2, · · · , N }.
Definition 2.5 [26] Given a matrix R > 0, two scalars c2 > c1 > 0, an integer N > 0,
and a switching signal σ , the discrete-time switched linear system (1) subject to an
exogenous disturbance w(k) satisfying (10) is said to be finite-time bounded w.r.t.
(c1, c2, R, d, N , σ ), if xT(0)Rx(0) ≤ c1 ⇒ xT(k)Rx(k) < c2,∀k ∈ {1, 2, · · · , N }.
Definition 2.6 [18] Given a matrix R > 0, two scalars c2 > c1 > 0, an integer N > 0,
and a switching signal σ , the discrete-time switched linear system (1) is said to be
finite-time bounded with a H∞ performance index γ w.r.t. (c1, c2, R, d, γ, N , σ ),
if the system (1) is finite-time bounded w.r.t. (c1, c2, R, d, N , σ ) and under initial
condition x(0) = 0, it holds that

N∑

k=0

yT(k)y(k) < γ 2
N∑

k=0

wT(k)w(k). (11)
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Lemma 2.1 [13] For the system (1) and Lyapunov function of the i th subsystem of
the form Vi (x(k)) = xT(k)Pi x(k), i ∈ M̄, let λmax(Pi ) and λmin(Pi ) be the maxi-
mal and minimal eigenvalue of the positive definite matrix Pi , respectively. Then, for
any i ∈ M̄, λmax(Pi ) > 0, λmin(Pi ) > 0 and λmin(Pi )xT(k)x(k) ≤ Vi (x(k)) ≤
λmax(Pi )xT(k)x(k).

Under the asynchronous switching controller (3), the corresponding closed-loop
system is given by

x(k + 1) = (Aσ(k) + Bσ(k)Kσ ′(k))x(k) + Dσ(k)w(k), x(0) = x0,

y(k) = (Cσ(k) + Eσ(k)Kσ ′(k))x(k) + Fσ(k)w(k).
(12)

In the resulting closed-loop system (12), the asynchronous switching between the
system and the controller may damage the performance of the system to a certain
extent. Therefore, in this paper, we aim to design a set of state feedback controllers
formed in (3) and a switching signal with AED-ADT such that (12) is finite-time
bounded.

3 Main Results

In this section, we will design a state feedback controller of the form (3) for the
system (1), such that the resulting closed-loop system (12) is finite-time bounded, and
in the presence of a controller, the corresponding state gain matrix is derived. Then,
based on the obtained result, the H∞ performance will be analyzed. In addition, to
reduce the conservatism of the results, we only require the subsystems to be stable
during the matched period, and allow the subsystems to be unstable within a bounded
mismatched time interval, while allowing the Lyapunov function to increase during
the mismatched period.

3.1 Finite-Time Boundedness

At the beginning, the problem of finite-time boundedness for the closed-loop system
(12) will be considered under AED-ADT switching.

Theorem 3.1 Given a matrix R > 0, an integer N > 0, for specified constants c2 >

c1 > 0, d > 0, γ > 0, 0 < α j < 1, βi j > 0, μi j ≥ 1, and suppose that there exist
matrices Xi > 0, X j > 0, Xi j > 0 and Qi > 0, Q j > 0, Qi j > 0, Yi such that
∀i, j ∈ M̄, i 	= j ,

Xi j ≤ μi j X j , Q j ≤ μi j Qi j , i 	= j ∈ M̄, (13a)

Xi ≤ μi j Xi j , Qi j ≤ μi j Qi , i 	= j ∈ M̄, (13b)
⎡

⎣
−(1 − α j )X j 0 X j AT

j + Y T
j B

T
j

∗ −γ Q j DT
j

∗ ∗ −X j

⎤

⎦ ≤ 0, (13c)
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⎡

⎣
−(1 + βi j )Xi j 0 Xi j AT

j + Y T
i BT

j
∗ −γ Qi j DT

j
∗ ∗ −Xi j

⎤

⎦ ≤ 0, (13d)

c1(λ1 − λ2φ0)

λ1λ2
<

φ0ηλ3γ d

1 − λ
, (13e)

where

η1 = (1 − ασ(kn))
(kn+�n)−kn+1 ≥ 1, n = 0, 1, 2, · · · , N ,

η2 = (1 + βσ(kn−1)σ (kn))
�n−1 ≥ 1, n = 1, 2, · · · , N ,

η = max{η1, η2} ≥ 1, ϕ0 = exp(
∑

(i, j)∈ε(L)

2N 0
i j lnμi j ),

φ0 = ϕ0

∏

i∈Ms

∏

j∈J(i)
((1 − α j )μ

2
τai j
i j )

−T̄ s
i j ×

∏

i∈Mu

∏

j∈J(i)
((1 + βi j )μ

2
τai j
i j )

T̄ u
i j ,

λ1 = min
j∈L

(λmin(X̄ j )), λ2 = max
j∈L

(λmax(X̄ j )),

λ3 = max
j∈L

(λmax(Q j )), X̄σ(k) = R1/2Xσ(k)R
1/2.

Then, there exists a set of controllers (3) such that the closed-loop system (12) is
finite-time bounded for any AED-ADT switching signal σ(k) and coefficients νsi j ∈
(0, 1], νui j ∈ [0, 1) in Assumption 2.1 satisfying

τ ai j > τ a∗
i j = − 2 lnμi j

ln(1 − α j )
,∀i, j ∈ M̄, (14a)

λ =
∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

((1 − α j )μ

2
τai j
i j )

νsi j ×
∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

(1 + βi j )μ

2
τai j
i j )

νui j < 1.

(14b)

Moreover, if the controllers exist, the controller gains are given by

Ki =
{
Yi X

−1
i , i ∈ Ms,

Yi X
−1
i j , i ∈ Mu .

(15)

Proof The whole proof process is divided into four steps, which is shown as follows.
Step 1 First, for any k ∈ [ki+1, ki+2) = [ki+1, ki+1+�i+1)

⋃[ki+1+�i+1, ki+2),
the switching situation of a subsystem is analyzed.

(i) When k ∈ [ki+1 + �i+1, ki+2), one has that σ(k) = σ ′(k) = j , and the
closed-loop system (12) can be written as

x(k + 1) = (A j + Bj K j )x(k) + Djw(k), x(0) = x0. (16)
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Consider the following Lyapunov functional candidate:

Vσ(k)(x(k)) = xT(k)Pσ(k)x(k), (17)

where Pσ(k) = (Xσ(k))
−1 is a symmetric positive definite matrix, and Xσ(k) satisfies

conditions (13a)–(13d). So the difference of the Vj (x(k)) along the trajectory of the
switched system (16) is

�Vj (x(k))

= Vj (x(k + 1)) − Vj (x(k))

= xT(k + 1)Pj x(k + 1) − xT(k)Pj x(k)

= xT(k)[(A j + Bj K j )
TPj (A j + Bj K j ) − Pj ]x(k) + xT(k)(A j

+ Bj K j )
TPj D jw(k) + wT(k)DT

j Pj (A j + Bj K j )x(k) + wT(k)DT
j Pj D jw(k)

= ξT(k)

[
(A j + Bj K j )

TPj (A j + Bj K j ) − Pj (A j + Bj K j )
TPj D j

DT
j Pj (A j + Bj K j ) DT

j Pj D j

]

ξ(k),

(18)
where ξT(k) = [xT(k), wT(k)].

Meanwhile, by multiplying (13c) from both sides by diag{Pj , I , Pj }, and using
(15), we have

⎡

⎣
−(1 − α j )Pj 0 (A j + Bj K j )

TPj

∗ −γ Q j DT
j Pj

∗ ∗ −Pj

⎤

⎦ ≤ 0, (19)

by using Schur complement, inequality (19) is equivalent to

[
(A j + Bj K j )

TPj (A j + Bj K j ) − (1 − α j )Pj (A j + Bj K j )
TPj D j

DT
j Pj (A j + Bj K j ) DT

j Pj D j − γ Qi

]

=
[

(A j + Bj K j )
TPj (A j + Bj K j ) − Pj (A j + Bj K j )

TPj D j

DT
j Pj (A j + Bj K j ) DT

j Pj D j

]

+
[

α j Pj 0
0 −γ Q j

]

≤ 0.

(20)

Thus, by combining (18) and (20), we obtain

�Vj (x(k)) = Vj (x(k+1))−Vj (x(k)) ≤ −α j x
T(k)Pj x(k)+γwT(k)Q jw(k), (21)

obviously we get

Vj (x(k + 1)) ≤ (1 − α j )Vj (x(k)) + γwT(k)Q jw(k). (22)

Then for any k ∈ [ki+1+�i+1, ki+2), σ(k) = σ(k−1) = · · · = σ(ki+1+�i+1) =
j , and σ ′(k) = σ(k) = j , by iterating (22), it gives
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Vj (x(k)) ≤ (1 − α j )
k−(ki+1+�i+1)Vj (x(ki+1 + �i+1))

+
k−1∑

s=ki+1+�i+1

(1 − α j )
k−1−sγwT(s)Q jw(s). (23)

(ii) When k ∈ [ki+1, ki+1 + �i+1), we have σ(k) = j , and σ ′(k) = i , so the
closed-loop system (12) can be written as

x(k + 1) = (A j + Bj Ki )x(k) + Djw(k), x(0) = x0. (24)

Consider the following Lyapunov functional candidate

Vσ ′(k)σ (k)(x(k)) = xT(k)Pσ ′(k)σ (k)x(k), (25)

where Pσ ′(k)σ (k) = (Xσ ′(k)σ (k))
−1 is a symmetric positive definite matrix, and it sat-

isfies conditions (13a)–(13d). So the difference of the Vi j (x(k)) along the trajectory
of the switched system (24) is

�Vi j (x(k))

= Vi j (x(k + 1)) − Vi j (x(k))

= xT(k + 1)Pi j x(k + 1) − xT(k)Pi j x(k)

= xT(k)[(A j +Bj Ki )
TPi j (A j +Bj Ki )−Pi j ]x(k)+xT(k)(A j +Bj Ki )

TPi j D jw(k)

+ Bj Ki )
TPi j D jw(k) + wT(k)DT

j Pi j (A j + Bj Ki )x(k) + wT(k)DT
j Pi j D jw(k)

= ξT(k)

[
(A j + Bj Ki )

TPi j (A j + Bj Ki ) − Pi j (A j + Bj Ki )
TPi j D j

DT
j Pi j (A j + Bj Ki ) DT

j Pi j D j

]

ξ(k),

(26)
where ξT(k) = [xT(k), wT(k)].

Meanwhile, by multiplying (13d) from both sides by diag{Pi j , I , Pi j }, and using
(15), we have

⎡

⎣
−(1 + βi j )Pi j 0 (A j + Bj Ki )

TPi j
∗ −γ Qi j DT

j Pi j
∗ ∗ −Pi j

⎤

⎦ ≤ 0, (27)

by using Schur complement, inequality (27) is equivalent to

[
(A j + Bj Ki )

TPi j (A j + Bj Ki ) − (1 + βi j )Pi j (A j + Bj Ki )
TPi j D j

DT
j Pi j (A j + Bj Ki ) DT

j Pi j D j − γ Qi j

]

=
[

(A j + Bj Ki )
TPi j (A j + Bj Ki ) − Pi j (A j + Bj Ki )

TPi j D j

DT
j Pi j (A j + Bj Ki ) DT

j Pi j D j

]

+
[−βi j Pi j 0

0 −γ Qi j

]

≤ 0.

(28)
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Thus, by combining (26) and (28), we obtain

�Vi j (x(k)) = Vi j (x(k + 1)) − Vi j (x(k)) ≤ βi j x
T(k)Pi j x(k) + γwT(k)Qi jw(k),

(29)
obviously we get

Vi j (x(k + 1)) ≤ (1 + βi j )Vi j (x(k)) + γwT(k)Qi jw(k). (30)

Then for any k ∈ [ki+1, ki+1 + �i+1), σ(k) = σ(k − 1) = · · · = σ(ki+1) = j ,
and σ ′(k) = i , by iterating (30), it gives

Vi j (x(ki+1 + �i+1)) ≤ (1 + βi j )
�i+1Vi j (x(ki+1)) +

ki+1+�i+1−1∑

s=ki+1

(1 + βi j )
ki+1+�i+1−1−sγwT(s)Qi jw(s). (31)

(iii) Now, by considering the iterative case of the Lyapunov functional candidate on
the interval k ∈ [ki+1, ki+2) = [ki+1, ki+1 + �i+1)

⋃[ki+1 + �i+1, k), using (13a)
and (13b), and combining (23) and (31), we have

Vj (x(k)) ≤ (1 − α j )
k−(ki+1+�i+1)Vj (x(ki+1 + �i+1))

+
k−1∑

s=ki+1+�i+1

(1 − α j )
k−1−sγwT(s)Q jw(s)

≤ μi j (1 − α j )
k−(ki+1+�i+1)[(1 + βi j )

�i+1Vi j (x(ki+1))

+
ki+1+�i+1−1∑

s=ki+1

(1 + βi j )
ki+1+�i+1−1−sγwT(s)Qi jw(s)]

+ μi j

k−1∑

s=ki+1+�i+1

(1 − α j )
k−1−sγwT(s)Qi jw(s)

≤ μi j (1 − α j )
k−(ki+1+�i+1)(1 + βi j )

�i+1(μi j Vi (x(ki+1))) + μi j

(1 − α j )
k−(ki+1+�i+1)

ki+1+�i+1−1∑

s=ki+1

(1 + βi j )
ki+1+�i+1−1−sγwT(s)

(μi j Qi )w(s) + μi j

k−1∑

s=ki+1+�i+1

(1 − α j )
k−1−sγwT(s)(μi j Qi )w(s)

= μ2
i j (1 − α j )

k−(ki+1+�i+1)(1 + βi j )
�i+1Vi (x(ki+1))

+ μ2
i j (1 − α j )

k−(ki+1+�i+1)

ki+1+�i+1−1∑

s=ki+1

(1 + βi j )
ki+1+�i+1−1−s

γwT(s)Qiw(s) + μ2
i j

k−1∑

s=ki+1+�i+1

(1 − α j )
k−1−sγwT(s)Qiw(s). (32)
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Step 2 Next, the iterative condition of the Lyapunov functional candidate over the
interval k ∈ [ki , ki+1) = [ki , ki + �i )

⋃[ki + �i , ki+1) is considered, according to
(32), we can get

Vi (x(k)) ≤ μ2
li (1 − αi )

k−(ki+�i )(1 + βli )
�i Vl(x(ki ))

+ μ2
li (1 − αi )

k−(ki+�i )

ki+�i−1∑

s=ki

(1 + βli )
ki+�i−1−sγwT(s)Qlw(s)

+ μ2
li

k−1∑

s=ki+�i

(1 − αi )
k−1−sγwT(s)Qlw(s).

(33)

Step 3 Then, according to (22), (23), (30), and (31), the iteration of the Lyapunov
functional candidate in a small switching interval [ki , ki+1) = [ki , ki + �i )

⋃[ki +
�i , ki+1) is summarized and organized. Furthermore, using (32) and (33), we can
derive the iterative result on the entire time interval [k0, k).

(i) For any k ∈ [ki + �i , ki+1) (Synchronous switching period), we derive

Vσ(k)(x(k + 1)) ≤ (1 − ασ(k))Vσ(k)(x(k)) + γwT(k)Qσ(k)w(k), (34a)

Vσ(k)(x(k)) ≤ (1 − ασ(ki ))
k−(ki+�i )Vσ(k)(x(ki + �i ))

+
k−1∑

s=ki+�i

(1 − ασ(ki ))
k−1−sγwT(s)Qσ(k)w(s). (34b)

(ii) For any k ∈ [ki , ki + �i ) (Asynchronous switching period), we receive

Vσ ′(k)σ (k)(x(k + 1)) ≤ (1 + βσ(ki−1)σ (ki ))Vσ ′(k)σ (k)(x(k))

+ γwT(k)Qσ ′(k)σ (k)w(k), (35a)

Vσ ′(k)σ (k)(x(k)) ≤ (1 + βσ(ki−1)σ (ki ))
k−ki Vσ ′(k)σ (k)(x(ki ))

+
k−1∑

s=ki

(1 + βσ(ki−1)σ (ki ))
k−1−sγwT(s)Qσ ′(k)σ (k)w(s). (35b)

(iii) Since the switch between the system and the controller is synchronous at first,
for any k ∈ [k0, k1), on the basis of (34b), we obtain

Vσ(k0)(x(k1)) ≤ (1 − ασ(k0))
k1−k0Vσ(k0)(x(k0))

+
k1−1∑

s=k0

(1 − ασ(k0))
k1−1−sγwT(s)Qσ(k0)w(s). (36)

(iv) For any k ∈ [k0, k) = [k0, k1)⋃[k1, k), where k ≥ ki +�i , σ (k) = σ(ki ) = i ,
by using (33), (34b), (35b), and (36), we can get
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Vσ(k)(x(k)) ≤ μ2
σ(ki−1)σ (ki )(1 − ασ(ki ))

k−(ki+�i )(1 + βσ(ki−1)σ (ki ))
�i

Vσ(ki−1)(x(ki )) + μ2
σ(ki−1)σ (ki )(1 − ασ(ki ))

k−(ki+�i )

ki+�i−1∑

s=ki

(1 + βσ(ki−1)σ (ki ))
ki+�i−1−sγwT(s)Qσ(ki−1)w(s) + μ2

σ(ki−1)σ (ki )

k−1∑

s=ki+�i

(1 − ασ(ki ))
k−1−sγwT(s)Qσ(ki−1)w(s)

≤ μ2
σ(ki−1)σ (ki )μ

2
σ(ki−2)σ (ki−1)

(1 − ασ(ki ))
k−(ki+�i )

(1 − ασ(ki−1))
ki−(ki−1+�i−1)(1 + βσ(ki−1)σ (ki ))

�i

(1 + βσ(ki−2)σ (ki−1))
�i−1Vσ(ki−2)(x(ki−1)) +

[
μ2

σ(ki−1)σ (ki )

μ2
σ(ki−2)σ (ki−1)

(1 − ασ(ki ))
k−(ki+�i )(1 − ασ(ki−1))

ki−(ki−1+�i−1)

(1 + βσ(ki−1)σ (ki ))
�i

ki−1+�i−1−1∑

s=ki−1

(1 + βσ(ki−2)σ (ki−1))
ki−1+�i−1−1−s

γwT(s)Qσ(ki−2)w(s) + μ2
σ(ki−1)σ (ki )(1 − ασ(ki ))

k−(ki+�i )

ki+�i−1∑

s=ki

(1 + βσ(ki−1)σ (ki ))
ki+�i−1−sγwT(s)Qσ(ki−1)w(s)

]
+

[
μ2

σ(ki−1)σ (ki )

μ2
σ(ki−2)σ (ki−1)

(1 − ασ(ki ))
k−(ki+�i )(1 + βσ(ki−1)σ (ki ))

�i

ki−1∑

s=ki−1+�i−1

(1 − ασ(ki−1))
ki−1−sγwT(s)Qσ(ki−2)w(s) + μ2

σ(ki−1)σ (ki )

k−1∑

s=ki+�i

(1 − ασ(ki ))
k−1−sγwT(s)Qσ(ki−1)w(s)

]

≤ · · ·
≤ μ2

σ(ki−1)σ (ki )μ
2
σ(ki−2)σ (ki−1)

· · ·μ2
σ(k0)σ (k1) × (1 − ασ(ki ))

k−(ki+�i )

(1 − ασ(ki−1))
ki−(ki−1+�i−1) · · · (1 − ασ(k1))

k2−(k1+�1)

× (1 + βσ(ki−1)σ (ki ))
�i (1 + βσ(ki−2)σ (ki−1))

�i−1 · · · (1 + βσ(k0)σ (k1))
�1

Vσ(k0)(x(k1)) +
[
μ2

σ(ki−1)σ (ki )μ
2
σ(ki−2)σ (ki−1)

· · · μ2
σ(k0)σ (k1)

× (1 − ασ(ki ))
k−(ki+�i )(1 − ασ(ki−1))

ki−(ki−1+�i−1) · · ·
(1 − ασ(k1))

k2−(k1+�1) × (1 + βσ(ki−1)σ (ki ))
�i (1 + βσ(ki−2)σ (ki−1))

�i−1

· · · (1 + βσ(k1)σ (k2))
�2

k1+�1−1∑

s=k1

(1 + βσ(k0)σ (k1))
k1+�1−1−sγwT(s)
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Qσ(k0)w(s) + · · · + μ2
σ(ki−1)σ (ki )μ

2
σ(ki−2)σ (ki−1)

(1 − ασ(ki ))
k−(ki+�i )

(1 − ασ(ki−1))
ki−(ki−1+�i−1)(1 + βσ(ki−1)σ (ki ))

�i

ki−1+�i−1−1∑

s=ki−1

(1 + βσ(ki−2)σ (ki−1))
ki−1+�i−1−1−sγwT(s)Qσ(ki−2)w(s) + μ2

σ(ki−1)σ (ki )

(1 − ασ(ki ))
k−(ki+�i )

ki+�i−1∑

s=ki

(1 + βσ(ki−1)σ (ki ))
ki+�i−1−sγwT(s)

Qσ(ki−1)w(s)
]

+
[
μ2

σ(ki−1)σ (ki )μ
2
σ(ki−2)σ (ki−1)

· · ·μ2
σ(k0)σ (k1)

× (1 − ασ(ki ))
k−(ki+�i )(1 − ασ(ki−1))

ki−(ki−1+�i−1) · · ·
(1 − ασ(k2))

k3−(k2+�2) × (1 + βσ(ki−1)σ (ki ))
�i (1 + βσ(ki−2)σ (ki−1))

�i−1

· · · (1 + βσ(k1)σ (k2))
�2

k2−1∑

s=k1+�1

(1 − ασ(k1))
k2−1−sγwT(s)Qσ(k0)w(s)

+ · · · + μ2
σ(ki−1)σ (ki )μ

2
σ(ki−2)σ (ki−1)

(1 − ασ(ki ))
k−(ki+�i )

(1 + βσ(ki−1)σ (ki ))
�i

ki−1∑

s=ki−1+�i−1

(1 − ασ(ki−1))
ki−1−sγwT(s)

Qσ(ki−2)w(s) + μ2
σ(ki−1)σ (ki )

k−1∑

s=ki+�i

(1 − ασ(ki ))
k−1−s

γwT(s)Qσ(ki−1)w(s)
]
. (37)

Let

�1 = μ2
σ(ki−1)σ (ki )μ

2
σ(ki−2)σ (ki−1)

· · · μ2
σ(k0)σ (k1) × (1 − ασ(ki ))

k−(ki+�i )

(1 − ασ(ki−1))
ki−(ki−1+�i−1) · · · (1 − ασ(k1))

k2−(k1+�1) × (1 + βσ(ki−1)σ (ki ))
�i

(1 + βσ(ki−2)σ (ki−1))
�i−1 · · · (1 + βσ(k0)σ (k1))

�1Vσ(k0)(x(k1))

= (1 − ασ(kN ))
k−(kN+�N )

N∏

s=1

μ2
σ(ks−1)σ (ks ) ×

[ N−1∏

s=1

(1 − ασ(ks ))
ks+1−(ks+�s )

N−1∏

s=0

(1 + βσ(ks )σ (ks+1))
�s+1

]
Vσ(k0)(x(k1))

≤ (1 − ασ(kN ))
k−(kN+�N )

N∏

s=1

μ2
σ(ks−1)σ (ks ) ×

[ N−1∏

s=1

(1 − ασ(ks ))
ks+1−(ks+�s )

N−1∏

s=0

(1 + βσ(ks )σ (ks+1))
�s+1

]
×

[
(1 − ασ(k0))

k1−k0Vσ(k0)(x(k0))
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+
k1−1∑

s=k0

(1 − ασ(k0))
k1−1−sγwT(s)Qσ(k0)w(s)

]

= (1 − ασ(kN ))
k−(kN+�N )

N∏

s=1

μ2
σ(ks−1)σ (ks ) ×

[ N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s )

(1 + βσ(ks )σ (ks+1))
�s+1

]
Vσ(k0)(x(k0)) + (1 − ασ(kN ))

k−(kN+�N )

N∏

s=1

μ2
σ(ks−1)σ (ks ) ×

[ N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s )(1 + βσ(ks )σ (ks+1))

�s+1
]

× (1 − ασ(k0))
k0−k1

k1−1∑

s=k0

(1 − ασ(k0))
k1−1−sγwT(s)Qσ(k0)w(s),

and by using 0 < ασ(kN ) < 1, βσ(kN )σ (kN+1) > 0, we derive

Vσ(k)(x(k)) ≤
{

(1 − ασ(kN ))
k−(kN+�N )

N∏

s=1

μ2
σ(ks−1)σ (ks )

×
[ N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s )(1 + βσ(ks )σ (ks+1))

�s+1
]

Vσ(k0)(x(k0)) + (1 − ασ(kN ))
k−(kN+�N )

N∏

s=1

μ2
σ(ks−1)σ (ks )

×
[ N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s )(1 + βσ(ks )σ (ks+1))

�s+1
]

× (1 − ασ(k0))
k0−k1

k1−1∑

s=k0

(1 − ασ(k0))
k1−1−sγwT(s)Qσ(k0)w(s)

}

+
{

μ2
σ(kN−1)σ (kN )(1 − ασ(kN ))

k−(kN+�N ) ×
N−1∑

n=1

[ N−1∏

p=n

μ2
σ(kp−1)σ (kp)

× (

N−1∏

p=n

(1 − ασ(kp))
kp+1−(kp+�p)(1 + βσ(kp)σ (kp+1))

�p+1)

×
kn+�n−1∑

s=kn

(1 + βσ(kn−1)σ (kn))
kn+�n−1−sγwT(s)Qσ(kn−1)w(s)

]

+ μ2
σ(kN−1)σ (kN )(1 − ασ(kN ))

k−(kN+�N )

kN+�N−1∑

s=kN
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(1 + βσ(kN−1)σ (kN ))
kN+�N−1−sγwT(s)Qσ(kN−1)w(s)

}

+
{

μ2
σ(kN−1)σ (kN )(1 − ασ(kN ))

k−(kN+�N ) ×
N−1∑

n=1

[ N−1∏

p=n

μ2
σ(kp−1)σ (kp)

× (

N−1∏

p=n

(1 − ασ(kp))
kp+1−(kp+�p)(1 + βσ(kp)σ (kp+1))

�p+1)

× (1 − ασ(kn))
(kn+�n)−kn+1 ×

kn+1−1∑

s=kn+�n

(1 − ασ(kn))
kn+1−1−sγwT(s)

Qσ(kn−1)w(s)
]

+ μ2
σ(kN−1)σ (kN )

k−1∑

s=kN+�N

(1 − ασ(kN ))
k−1−sγwT(s)

Qσ(kN−1)w(s)

}

≤
N∏

s=1

μ2
σ(ks−1)σ (ks ) ×

[ N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s )

(1 + βσ(ks )σ (ks+1))
�s+1

]
Vσ(k0)(x(k0)) +

N∏

s=1

μ2
σ(ks−1)σ (ks )

×
[ N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s )(1 + βσ(ks )σ (ks+1))

�s+1
]

× (1 − ασ(k0))
k0−k1

k1−1∑

s=k0

(1 − ασ(k0))
k1−1−sγwT(s)Qσ(k0)w(s)

+
N∑

n=1

{ N∏

p=n

μ2
σ(kp−1)σ (kp) ×

[ N∏

p=n

(1 − ασ(kp))
kp+1−(kp+�p)

(1 + βσ(kp)σ (kp+1))
�p+1

]
×

[ kn+�n−1∑

s=kn

(1 + βσ(kn−1)σ (kn))
kn+�n−1−s

γwT(s)Qσ(kn−1)w(s) + (1 − ασ(kn))
(kn+�n)−kn+1

×
kn+1−1∑

s=kn+�n

(1 − ασ(kn))
kn+1−1−sγwT(s)Qσ(kn−1)w(s)

]}

. (38)

Step 4 Finally, according to iteration result (38), we analyze the finite-time

boundedness of system (12). Denote �(s, k) = ∏

(i, j)∈ε(M̄)

μ
2Nσ

i j (s,k)

i j , �(s, k) =
∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

(1 −α j )
Ti j (s,k) × ∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

(1 + βi j )
Ti j (s,k), and let η1 = (1 −
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ασ(kn))
(kn+�n)−kn+1 , n = 0, 1, 2, · · · , N , η2 = (1 + βσ(kn−1)σ (kn))

�n−1 , n =
1, 2, · · · , N , and η = max{η1, η2} ≥ 1, where η1 ≥ 1, η2 ≥ 1, and λ3 =
max
j∈M̄

(λmax(Q j )). Then, by using (10), we obtain

Vσ(k)(x(k)) ≤ �(0, k)�(0, k − 1)Vσ(k0)(x(k0)) + η1�(0, k)�(0, k − 1)
k1−1∑

s=k0

γwT(s)

Qσ(k0)w(s) +
N∑

n=1

{

�(n, k)�(n, k)
[ kn+�n−1∑

s=kn

η2γwT(s)Qσ(kn−1)w(s)

+ η1

kn+1−1∑

s=kn+�n

γwT(s)Qσ(kn−1)w(s)
]}

≤ �(0, k)�(0, k − 1)Vσ(k0)(x(k0)) + η1λ3γ�(0, k)�(0, k − 1)
k1−1∑

s=k0

wT(s)w(s) +
N∑

n=1

{

�(n, k)�(n, k)
[
η2λ3γ

kn+�n−1∑

s=kn

wT(s)w(s)

+ η1λ3γ

kn+1−1∑

s=kn+�n

wT(s)w(s)
]}

= �(0, k)�(0, k − 1)Vσ(k0)(x(k0)) + η1λ3γ

N∑

n=0

[
�(n, k)�(n, k)

kn+1−1∑

s=kn+�n

wT(s)w(s)
]

+ η2λ3γ

N∑

n=1

[
�(n, k)�(n, k)

kn+�n−1∑

s=kn

wT(s)w(s)
]

≤ �(0, k)�(0, k − 1)Vσ(k0)(x(k0)) + ηλ3γ

N∑

n=0

{

�(n, k)�(n, k)

[ kn+1−1∑

s=kn+�n

wT(s)w(s) +
kn+�n−1∑

s=kn

wT(s)w(s)
]}

≤ �(0, k)�(0, k)Vσ(k0)(x(k0)) + ηλ3γ d
N∑

n=0

[
�(n, k)�(n, k)

]

≤ ϒ(0, k)Vσ(0)(x(0)) + ηλ3γ d
k∑

n=0

ϒ(n, k), (39)

where ϒ(s, k) = �(s, k)�(s, k), k0 = 0.
Based on (7) in Definition 2.3, we can obtain that

N∏

s=1

μ2
σ(ks−1)σ (ks ) =

∏

(i, j)∈ε(M̄)

μ
2Nσ

i j (k0,k)

i j = exp(
∑

(i, j)∈ε(M̄)

2Nσ
i j (k0, k) lnμi j )
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≤ exp(
∑

(i, j)∈ε(M̄)

2(N 0
i j + Ti j (k0, k)

τ ai j
) lnμi j )

= ϕ0 exp(
∑

i∈Ms ,i 	= j

∑

j∈ ¯J (i)

2 lnμi j

τ ai j
Ti j (k0, k))

× exp(
∑

i∈Mu ,i 	= j

∑

j∈ ¯J (i)

2 lnμi j

τ ai j
Ti j (k0, k)), (40)

where ϕ0 = exp(
∑

(i, j)∈ε(M̄)

2N 0
i j lnμi j ).

Note that

N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s ) =

∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

(1 − α j )
Ti j (k0,k), (41)

N−1∏

s=0

(1 + βσ(ks )σ (ks+1))
�s+1 =

∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

(1 + βi j )
Ti j (k0,k), (42)

then, according to (8a), (8b), (40), (41), and (42), and (14a) that implies (1−α j )μ

2
τai j
i j <

1, we can get

ϒ(s, k) = �(s, k)�(s, k)

≤ ϕ0

∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

((1 − α j )μ

2
τai j
i j )Ti j (s,k)

×
∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

((1 + βi j )μ

2
τai j
i j )Ti j (s,k)

≤ ϕ0

∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

((1 − α j )μ

2
τai j
i j )

−T̄ s
i j+νsi j (k−s)

×
∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

((1 + βi j )μ

2
τai j
i j )

T̄ u
i j+νui j (k−s)

=
[
ϕ0

∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

((1 − α j )μ

2
τai j
i j )

−T̄ s
i j

∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

((1 + βi j )μ

2
τai j
i j )

T̄ u
i j

]

×
∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

((1 − α j )μ

2
τai j
i j )

νsi j (k−s)
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×
∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

((1 + βi j )μ

2
τai j
i j )

νui j (k−s)

= φ0λ
k−s, (43)

where

φ0 = ϕ0

∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

((1 − α j )μ

2
τai j
i j )

−T̄ s
i j ×

∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

((1 + βi j )μ

2
τai j
i j )

T̄ u
i j ,

λ =
∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

((1 − α j )μ

2
τai j
i j )

νsi j ×
∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

((1 + βi j )μ

2
τai j
i j )

νui j .

Therefore, (39) can be rewritten as

Vσ(k)(x(k)) ≤ ϒ(0, k)Vσ(0)(x(0)) + ηλ3γ d
k∑

n=0

ϒ(n, k)

≤ φ0λ
kVσ(0)(x(0)) + ηλ3γ d

k∑

n=0

φ0λ
k−n

= φ0λ
kVσ(0)(x(0)) + φ0ηλ3γ d × 1 − λk+1

1 − λ

< φ0Vσ(0)(x(0)) + φ0ηλ3γ d × 1

1 − λ
. (44)

On the other hand, considering X̄σ(k) = R1/2Xσ(k)R1/2, from Lemma 2.1, we can
follow from (17) that

Vσ(0)(x(0)) = xT(0)Pσ(0)x(0) = xT(0)R1/2(X̄σ(0))
−1R1/2x(0)

≤ max(λmax((X̄σ(0))
−1))xT(0)Rx(0) ≤ c1

λ1
,

Vσ(k)(x(k)) = xT(k)Pσ(k)x(k) = xT(k)R1/2(X̄σ(k))
−1R1/2x(k)

≥ min(λmin((X̄σ(k))
−1))xT(k)Rx(k) = 1

λ2
xT(k)Rx(k). (45)

Hence, combining inequalities (44) and (45) yields

xT(k)Rx(k) ≤ λ2Vσ(k)(x(k)) < λ2(φ0Vσ(0)(x(0)) + φ0ηλ3γ d × 1

1 − λ
)

< λ2(φ0
c1
λ1

+ φ0ηλ3γ d × 1

1 − λ
) � c2. (46)
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From Definition 2.5, the closed-loop system (12) is finite-time bounded w.r.t.
(c1, c2, R, d, N , σ ). Hence, the theorem is proved. ��

3.2 H∞ Performance Analysis

In this section, we will further give a sufficient condition which guarantees that the
closed-loop system (12) is finite-time boundedwith a specified H∞ performance index
via AED-ADT switching based on Theorem 3.1.

Theorem 3.2 Given a matrix R > 0, an integer N > 0, for specified constants c2 >

c1 > 0, d > 0, γ > 0, 0 < α j < 1, βi j > 0, μi j ≥ 1, and suppose that there exist
matrices Xi > 0, X j > 0, Xi j > 0 and Yi such that ∀i, j ∈ M̄, i 	= j ,

Xi j ≤ μi j X j , i 	= j ∈ M̄, (47a)

Xi ≤ μi j Xi j , i 	= j ∈ M̄, (47b)
⎡

⎢
⎢
⎣

−(1 − α j )X j 0 X j AT
j + Y T

j B
T
j X jCT

j + Y T
j E

T
j

∗ −γ 2 I DT
j FT

j
∗ ∗ −X j 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ ≤ 0, (47c)

⎡

⎢
⎢
⎣

−(1 + βi j )Xi j 0 Xi j AT
j + Y T

i BT
j Xi jCT

j + Y T
i ET

j
∗ −γ 2 I DT

j FT
j

∗ ∗ −Xi j 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ ≤ 0, (47d)

c1(λ1 − λ2φ0)

λ1λ2
<

φ0ηγ 2d

1 − λ
, (47e)

where

η1 = (1 − ασ(kn))
(kn+�n)−kn+1 ≥ 1, n = 0, 1, 2, · · · , N ,

η2 = (1 + βσ(kn−1)σ (kn))
�n−1 ≥ 1, n = 1, 2, · · · , N ,

η = max{η1, η2} ≥ 1, ϕ0 = exp(
∑

(i, j)∈ε(L)

2N 0
i j lnμi j ),

φ0 = ϕ0

∏

i∈Ms

∏

j∈J(i)
((1 − α j )μ

2
τai j
i j )

−T̄ s
i j ×

∏

i∈Mu

∏

j∈J(i)
((1 + βi j )μ

2
τai j
i j )

T̄ u
i j ,

λ1 = min
j∈L

(λmin(X̄ j )), λ2 = max
j∈L

(λmax(X̄ j )),

λ3 = max
j∈L

(λmax(Q j )), X̄σ(k) = R1/2Xσ(k)R
1/2.

Then, there exists a set of controllers (3) such that the closed-loop system (12) is
finite-time bounded with a H∞ performance index γ̃ w.r.t. (c1, c2, R, d, γ̃ , N , σ ) for
any AED-ADT switching signal σ(k) and coefficients νsi j ∈ (0, 1], νui j ∈ [0, 1) in
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Assumption 2.1 satisfying

τ ai j > τ a∗
i j = − 2 lnμi j

ln(1 − α j )
,∀i, j ∈ M̄, (48a)

1 − ηφ0 < λ < 1, (48b)

where λ = ∏

i∈Ms ,i 	= j

∏

j∈ ¯J (i)

((1 − α j )μ

2
τai j
i j )

νsi j × ∏

i∈Mu ,i 	= j

∏

j∈ ¯J (i)

(1 + βi j )μ

2
τai j
i j )

νui j and

γ̃ =
√

γ 2ηφ0
1−λ

> 0. Moreover, if the controllers exist, the controller gains are given by
(15).

Proof First, according to Theorem 3.1, we analyze the finite-time boundedness of the
closed-loop system (12) combined with the conditions (47a)–(47e). Obviously, by
using Schur complement, we can get from (47c) and (47d) that

⎡

⎣
−(1 − α j )X j 0 X j AT

j + Y T
j B

T
j

∗ −γ 2 I DT
j

∗ ∗ −X j

⎤

⎦ ≤ 0, (49a)

⎡

⎣
−(1 + βi j )Xi j 0 Xi j AT

j + Y T
i BT

j
∗ −γ 2 I DT

j
∗ ∗ −Xi j

⎤

⎦ ≤ 0, (49b)

which imply (13c) and (13d) by setting Qi = Qi j = γ I . So, by analogywith Theorem
3.1, it can be concluded that the closed-loop system (12) is finite-time bounded w.r.t.
(c1, c2, R, d, N , σ ) for any AED-ADT switching signal σ(k) and coefficients νsi j ∈
(0, 1], νui j ∈ [0, 1) in Assumption 2.1 satisfying (48a) and (48b).

Next, letting �(k) = γ 2wT(k)w(k) − yT(k)y(k), to analyze the finite-time H∞
performance of the closed-loop systems (12).

Step 1 For any k ∈ [ki+1, ki+2) = [ki+1, ki+1 + �i+1)
⋃[ki+1 + �i+1, ki+2),

we expand the analysis. For i ∈ Ms , synchronous switching is performed between
the system and the state feedback controller. At this time, we choose the Lyapunov
functional as (17). Based on the proof process of Theorem 3.1, when k ∈ [ki+1 +
�i+1, ki+2), σ(k) = σ ′(k) = j , we can obtain the following closed-loop system:

x(k + 1) = (A j + Bj K j )x(k) + Djw(k), x(0) = x0,

y(k) = (C j + E j K j )x(k) + Fjw(k).
(50)

Since �(k) = γ 2wT(k)w(k) − yT(k)y(k), substituting (50) into it gives

�(k) = γ 2wT(k)w(k) − yT(k)y(k)

= γ 2wT(k)w(k)−((C j +E j K j )x(k)+Fjw(k))T((C j +E j K j )x(k)+Fjw(k))

= −xT(k)(C j + E j K j )
T(C j + E j K j )x(k) − xT(k)(C j + E j K j )

TFjw(k)
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− wT(k)FT
j (C j + E j K j )x(k) + wT(k)(γ 2 I − FT

j Fj )w(k)

= ξT(k)

[−(C j + E j K j )
T(C j + E j K j ) −(C j + E j K j )

TFj

−FT
j (C j + E j K j ) γ 2 I − FT

j Fj

]

ξ(k), (51)

where ξT(k) = [xT(k), wT(k)].
Meanwhile, by multiplying (47c) from both sides by diag{Pj , I , Pj , I }, and using

(15), we have

⎡

⎢
⎢
⎣

−(1 − α j )Pj 0 (A j + Bj K j )
TPj (C j + E j K j )

T

∗ −γ 2 I DT
j Pj FT

j
∗ ∗ −Pj 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ ≤ 0, (52)

by using Schur complement, inequality (52) can be rewritten as

[−(1 − α j )Pj + (A j + Bj K j )
TPj (A j + Bj K j ) (A j + Bj K j )

TPj D j

DT
j Pj (A j + Bj K j ) DT

j Pj D j

]

+
[

(C j + E j K j )
T(C j + E j K j ) (C j + E j K j )

TFj

FT
j (C j + E j K j ) −γ 2 I + FT

j Fj

]

≤ 0. (53)

Thus, by combining (51) and (53), we obtain

�Vj (x(k)) = Vj (x(k + 1)) − Vj (x(k)) ≤ −α j x
T(k)Pj x(k) + �(k), (54)

so we get
Vj (x(k + 1)) ≤ (1 − α j )Vj (x(k)) + �(k). (55)

Hence, by iterating inequality (55) for any k ∈ [ki+1 + �i+1, ki+2), it holds that

Vj (x(k)) ≤ (1−α j )
k−(ki+1+�i+1)Vj (x(ki+1+�i+1))+

k−1∑

s=ki+1+�i+1

(1−α j )
k−1−s�(s).

(56)
Similarly, for any k ∈ [ki+1, ki+1 + �i+1), it holds that

Vi j (x(ki+1 + �i+1)) ≤ (1 + βi j )
�i+1Vi j (x(ki+1))

+
ki+1+�i+1−1∑

s=ki+1

(1 + βi j )
ki+1+�i+1−1−s�(s). (57)

Step 2 Because of the great similarity with Theorem 3.1, the iterative result of
Vσ(k)(x(k)) over the entire interval [k0, k) can be obtained corresponding to its proof
process, and according to (56) and (57), we have the following results.
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(i) For any k ∈ [ki+�i , ki+1),σ(k) = σ ′(k) = σ(ki ) = i , (Synchronous switching
period), we have

Vσ(k)(x(k)) ≤ (1−ασ(ki ))
k−(ki+�i )Vσ(k)(x(ki+�i ))+

k−1∑

s=ki+�i

(1−ασ(ki ))
k−1−s�(s).

(58)
(ii) For any k ∈ [ki , ki + �i ), σ(k) = σ(ki ), σ ′(k) = σ(ki−1), (Asynchronous

switching period), we have

Vσ ′(k)σ (k)(x(k)) ≤ (1 + βσ(ki−1)σ (ki ))
k−ki Vσ ′(k)σ (k)(x(ki ))

+
k−1∑

s=ki

(1 + βσ(ki−1)σ (ki ))
k−1−s�(s). (59)

(iii) Since the switch between the system and the controller is synchronous at first,
for any k ∈ [k0, k1), we obtain

Vσ(k0)(x(k1)) ≤ (1−ασ(k0))
k1−k0Vσ(k0)(x(k0))+

k1−1∑

s=k0

(1−ασ(k0))
k1−1−s�(s). (60)

(iv) For any k ∈ [k0, k) = [k0, k1)⋃[k1, k), where k ≥ ki + �i , by using(58),
(59), and (60) and analogizing (37), (38), and (39), we can get

Vσ(k)(x(k)) ≤
N∏

s=1

μ2
σ(ks−1)σ (ks ) ×

[ N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s )

(1 + βσ(ks )σ (ks+1))
�s+1

]
Vσ(k0)(x(k0)) +

N∏

s=1

μ2
σ(ks−1)σ (ks )

×
[ N−1∏

s=0

(1 − ασ(ks ))
ks+1−(ks+�s )(1 + βσ(ks )σ (ks+1))

�s+1
]

× (1 − ασ(k0))
k0−k1

k1−1∑

s=k0

(1 − ασ(k0))
k1−1−s�(s) +

N∑

n=1

{ N∏

p=n

μ2
σ(kp−1)σ (kp) ×

[ N∏

p=n

(1 − ασ(kp))
kp+1−(kp+�p)(1 + βσ(kp)σ (kp+1))

�p+1
]

×
[ kn+�n−1∑

s=kn

(1 + βσ(kn−1)σ (kn))
kn+�n−1−s�(s)

+ (1 − ασ(kn))
(kn+�n)−kn+1 ×

kn+1−1∑

s=kn+�n

(1 − ασ(kn))
kn+1−1−s�(s)

]}
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≤ ϒ(0, k)Vσ(0)(x(0)) + η

k∑

n=0

ϒ(n, k) ×
N∑

s=0

�(s)

≤ φ0λ
kVσ(0)(x(0)) + η

k∑

n=0

φ0λ
k−n ×

N∑

s=0

�(s)

= φ0λ
kVσ(0)(x(0)) + ηφ0 × 1 − λk+1

1 − λ
×

N∑

s=0

�(s)

< φ0Vσ(0)(x(0)) + ηφ0 × 1

1 − λ
×

N∑

s=0

�(s). (61)

Step 3 Finally, according to iteration result (61), the finite-time H∞ performance of
system (12) can be analyzed. When w(k) 	= 0, under zero initial conditions x(0) = 0,
we can get Vσ(0)(x(0)) = xT(0)Pσ(k)x(0) = 0, Vσ(k)(x(k)) ≥ 0. From �(k) =
γ 2wT(k) w(k) − yT(k)y(k), (61) can be expressed as

Vσ(k)(x(k)) <
ηφ0

1 − λ

N∑

s=0

�(s) = ηφ0

1 − λ

N∑

s=0

(
γ 2wT(s)w(s) − yT(s)y(s)

)
, (62)

then (62) yields that

ηφ0

1 − λ

N∑

s=0

yT(s)y(s) ≤ γ 2 ηφ0

1 − λ

N∑

s=0

wT(s)w(s). (63)

Let λ > 1 − ηφ0, then there has

N∑

s=0

yT(s)y(s) ≤ γ 2ηφ0

1 − λ

N∑

s=0

wT(s)w(s) ≤ γ̃ 2
N∑

s=0

wT(s)w(s), (64)

where γ̃ =
√

γ 2ηφ0
1−λ

> 0.
According to Definition 2.5 and Definition 2.6, the system (12) is finite-time

bounded with a H∞ performance index γ̃ for any AED-ADT switching signal
satisfying (48a). Hence, the proof is completed. ��

When �i ≡ 0, i = 1, 2, · · · , N , that is, the switching of the system and the
controller is completely synchronous, then we can get the following corollary from
Theorem 3.2.

Corollary 1 Given a matrix R > 0, an integer N > 0, for specified constants c2 >

c1 > 0, d > 0, γ > 0, 0 < α j < 1, μi j ≥ 1, and suppose that there exist matrices
Xi > 0, X j > 0 and Yi such that ∀i, j ∈ M̄, i 	= j ,

Xi ≤ μi j X j , i 	= j ∈ M̄, (65a)
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⎡

⎢
⎢
⎣

−(1 − α j )X j 0 X j AT
j + Y T

j B
T
j X jCT

j + Y T
j E

T
j

∗ −γ 2 I DT
j FT

j
∗ ∗ −X j 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ ≤ 0, (65b)

(
c1
λ1

+ ηγ 2d) exp
[
N 0
i j ln(μi j ) + N ln(1 − αmin)

]
<

c2
λ2

. (65c)

Then, there exists a set of controllers (3) such that the closed-loop system (12) is
finite-time bounded with a H∞ performance index γ̃ w.r.t. (c1, c2, R, d, γ̃ , N , σ ) for
any AED-ADT switching signal σ(k) satisfying

τ ai j > τ a∗
i j =max

{
N lnμi j

ln( c2
λ2

) − ln( c1
λ1

+ ηγ 2d) −
[
N 0
i j ln(μi j ) + N ln(1 − αmin)

] ,

− lnμi j

ln(1 − α j )

}

, (66)

where

ηn = (1 − ασ(kn−1))
kn−1−kn > 1, n = 1, 2, · · · , N , η = max

n≥1
{ηn} > 1,

λ1 = min
j∈L

(λmin(X̄ j )), λ2 = max
j∈L

(λmax(X̄ j )), X̄σ(k) = R1/2Xσ(k)R
1/2,

γ̃ = γ

√
√
√
√η exp

{ ∑

i∈L

∑

j∈J(i)

[
N 0
i j ln(μi j )

]}

> 0.

Moreover, if the controllers exist, the controller gains are given by K j = Y j (X j )
−1.

4 Numerical Simulation

The numerical example is given to show the validity of the proposed asynchronous
finite-time H∞ control approach under AED-ADT switching.

Example Consider the given parameters of discrete-time switched linear system (1)
including two subsystems as follows:

A1 =
[
0.35 0
−0.2 −0.32

]

, A2 =
[−0.42 0.1

0.3 0.7

]

,

B1 =
[
0.25
0.4

]

, B2 =
[
0.45
0.15

]

,

C1 =
[−0.2

0.4

]T
, C2 =

[
0

0.25

]T
, D1 =

[
0.1
0.3

]

, D2 =
[
0.15
−0.2

]

,

E1 = 0.2, E2 = −0.32, F1 = 0.1, F2 = 0.25.
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Suppose that N = 20, c1 = 0, c2 = 10, d = 1, R = I . Consider the initial
condition x(0) = [0 0]T and the disturbance input w(k) = cos(k) exp(−0.8k). Let
α1 = 0.62, α2 = 0.4, β12 = 1.01, β21 = 1.2, μ12 = 1, μ21 = 1.3. Then by utilizing
MATLAB LMI Toolbox and applying Theorem 3.2, we can get

X1 =
[

2.0446 −0.2724
−0.2724 0.9115

]

, X2 =
[

2.7523 −0.5863
−0.5863 1.2483

]

,

X12 =
[

2.4287 −0.4512
−0.4512 1.0992

]

, X21 =
[

2.4094 −0.3846
−0.3846 1.0843

]

,

Y1 = [
0.3910 0.2177

]
,Y2 = [

0.1081 −0.5065
]
.

Hence, according to (15), we can obtain the controller gains

K1 =
⎧
⎨

⎩

Y1X
−1
1 =

[
0.2323 0.3082

]
, i ∈ [k1 + �1, k2),

Y1X
−1
12 =

[
0.2141 0.2859

]
, i ∈ [k2, k2 + �2),

K2 =
⎧
⎨

⎩

Y2X
−1
2 =

[
−0.0524 −0.4304

]
, i ∈ [k2 + �2, k3),

Y2X
−1
21 =

[
−0.0315 −0.4783

]
, i ∈ [k1, k1 + �1).

In terms of (48a), the corresponding AED-ADT are τ a12 > τ a∗
12 = 0, τ a21 > τ a∗

21 =
0.5423. On account of X̄σ(k) = R1/2Xσ(k)R1/2, we can get λ1 = 0.8494, λ2 =
2.9539. Let η = 1.1, γ = 0.5, νs12 = 0.997, νu12 = 0.001, νs21 = 0.001, νu21 = 0.001,
N 0
i j = 0, T̄ s

i j = 0, T̄ u
i j = 0, ∀(i, j) ∈ M̄ (i 	= j), we have −0.1 < λ = 0.6024 < 1

from (48b). From this, we can verify that (47e) holds, and get γ̃ = 0.8317 > 0.
On the other hand, assume that α1 = 0.62, α2 = 0.4, μ12 = 2.5, μ21 = 2.8,

η = 1.5, N 0
i j = 1. Then, by utilizing MATLAB LMI Toolbox and applying Corollary

1, we can get

X1 =
[
4.0019 0.2633
0.2633 1.0909

]

, X2 =
[

4.3918 −1.0590
−1.0590 1.2564

]

,

Y1 = [
2.1879 0.4307

]
,Y2 = [−0.1144 −0.5256

]
.

Hence, we can obtain the controller gains

K1 = Y1X
−1
1 = [

0.5291 0.2672
]
, K2 = Y2X

−1
2 = [−0.1593 −0.5526

]
,

and the corresponding AED-ADT are τ a12 > τ a∗
12 = 1.7937, τ a21 > τ a∗

21 = 1.8859, the
H∞ performance index γ̃ = 1.6202 > 0.

From Table 1, we can clearly see that the AED-ADT τ a∗
i j in Theorem 3.2 is smaller

than that in Corollary 1, and the H∞ performance index γ̃ in Theorem 3.2 is also
smaller than that in Corollary 1, which means that the finite-time H∞ controller in
Theorem 3.2 can make a better performance than the one in Corollary 1.
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Table 1 Comparison results between Corollary 1 (�i ≡ 0) and Theorem 3.2

Criteria Corollary 1 (�i ≡ 0) Theorem 3.2

Parameters α1 = 0.62, α2 = 0.4,
μ12 = 2.5, μ21 = 2.8

α1 = 0.62, α2 = 0.4, β12 =
1.01,
β21 = 1.2, μ12 = 1, μ21 =
1.3

AED-ADT bounds τa∗
12 = 1.7937, τa∗

21 = 1.8859 τa∗
12 = 0, τa∗

21 = 0.5423

H∞ Performance index γ̃ = 1.6202 γ̃ = 0.8317

Fig. 3 Switching signals σ(k) and σ ′(k)

Fig. 4 State trajectory x(k) under AED-ADT switching

Additionally, according to Theorem 3.2, it can be obtained the AED-ADT condi-
tions such that the closed-loop system (12) is finite-time bounded as τ a12 = 3 ≥ τ a∗

12 =
0, τ a21 = 5 ≥ τ a∗

21 = 0.5423. Asynchronous switching of σ(k) and σ ′(k) occurs when
�1 = 2, �2 = 1 in this example. Figure3 is drawn to show the evolutions of σ(k)
and σ ′(k). And Fig. 4 is used to show the trajectories of state responses x1(k) and
x2(k) of system. The output responses and w(k) are displayed in Fig. 5 . Then, it is
obvious that xT(k)Rx(k) � c2, ∀k ∈ [1, 20], as shown in Fig. 6. That signifies the
closed-loop system (12) is finite-time bounded. Consequently, the proposed method
of this work is valid.
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Fig. 5 System output y(k) and w(k) under AED-ADT switching

Fig. 6 History of xT(k)Rx(k) of the closed-loop system (12)

5 Conclusions

This paper has dealt with asynchronous finite-time H∞ control problem for a class
of discrete-time switched linear systems with switching time delay. By using the
AED-ADT method, multiple Lyapunov functions, and linear matrix inequalities, a
asynchronous state feedback controller is designed, and a sufficient condition to guar-
antee that the closed-loop system is finite-time bounded is derived. Then, in view of
the obtained result, a sufficient condition for finite-time H∞ control is deduced, which
can ensure not only the finite-time boundedness of the closed-loop system, but also
the H∞ performance. Finally, the rationality of the proposed method is verified by a
numerical example.
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