
Circuits, Systems, and Signal Processing (2023) 42:4096–4128
https://doi.org/10.1007/s00034-023-02302-9

Noise Confiscation from sEMG Through Enhanced Adaptive
Filtering Based on Evolutionary Computing

Shubham Yadav1 · Suman Kumar Saha1 · Rajib Kar2 · Durbadal Mandal2

Received: 18 April 2022 / Revised: 18 January 2023 / Accepted: 18 January 2023 /
Published online: 10 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Electromyogram (EMG) signal is the electrical form of muscular activity that could
be used to diagnose myopathy and neuropathy disorders. Several artefacts are getting
imposed on the EMG during the recording process, affecting its performance. This
paper proposes a novel noise clampdown method for surface electromyogram signals
to employ powerful evolutionary algorithms such as cat swarm optimisation (CSO),
binary gravitational search algorithm (BGSA) and spotted hyena optimisation (SHO)
for the optimisation purpose of the adaptive filter. The proposed technique has been
appraised on records from the standard database, corrupted by baseline wander, elec-
trode motion, power-line noise and different additive white Gaussian noise (AWGN)
levels. The potency of the proposed method is studied in terms of standard metrics,
namely signal-to-noise ratio (SNR), normalised root mean square error, mean squared
error (MSE), peak reconstruction error, mean difference and maximum error. Results
exemplify that the proposed scheme outpaces the benchmark algorithm-based tech-
niques with an average SNR of 87.618 dB and MSE of 3.91E−10, across different
datasets, in contrast to the recently employed noise reduction algorithms at 10 dB
AWGN.
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1 Introduction

EMG signals are electrically generated brainwaves due to muscle activity. There are
two variants of EMG: surface electromyogram (sEMG) and intramuscular EMG [8].
sEMG (10 Hz to 500 Hz) usually provides information about specific muscle activity
at a time instant, a popular research topic in medicine and engineering. sEMG signal
helps to understand the human body’s response under healthy and various clinical con-
ditions. To effectively implement the human–computer interface (HCI) system [25],
proper sEMG signals must control the device based on muscular action or identified
pattern. During the recording process of sEMG, several artefacts, such as baseline
wander (BW), electrode motion (EM) and power-line noise (PLN), corrupt the clean
sEMG signal and the truthful information within it gets altered [28].Manymethodolo-
gies have been developed, such as a wavelet transform [29], independent component
analysis [33], empirical mode decomposition [19] and higher-order statistics [3], to
analyse the influence of various noises in sEMG signals.

The easiest way of removing the narrowband interference from sEMG signals is to
apply a linear recursive digital notch filter. However, the drawback with notch filtering
is the distortions in the filtered signal [21].

The significant advantage of thewavelet-basedmethods is that it can be decomposed
into time and frequency domains.Moreover, the signals can be analysed and translated
at different resolutions or scales [10]. Furthermore, attenuation andwidening problems
can be overcome by applying an advanced wavelet transform known as wave atom
transform (WAT) [4]. In [14], a novel noise suppression method has been employed
for sEMG signals using orthogonal WAT and generalised autoregressive conditional
heteroscedasticity (GARCH) model with maximum a posteriori (MAP) estimator for
denoising of sEMG signals.

Adaptive filtration techniques and evolutionary algorithms have proved effective
in biomedical signal processing [1, 2, 18, 27, 30–32]. In [31], a dual-stage swarm
intelligence-based adaptive filter was implemented, and good results were reported
for electrocardiogram (ECG) noise detection for both high- and low-frequency noise
components. The adaptive infinite impulse response (IIR) filter coefficients of the
present work are optimised using particle-based algorithms to minimise the objective
function.

The highlights of the manuscript are as follows:

i. A novel SHO algorithm has been applied to drive the filter weights for reducing
the MSE as an objective function. The SHO has not been used to optimise the
adaptive filter for noise removal from sEMG signals.

ii. The proposed SHO-optimised filter model is examined and tested for concerned
techniques and recently reported results in relevant fields. The proposed model
has been perceived to outdo all methods reported in the literature.
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iii. An IIR digital filter is considered for adaptive filter implementation. Furthermore,
a cascade form of adaptive filtration methodology has been applied to remove
various artefacts from noisy sEMG signals.

iv. To verify the accuracy of the algorithms, various levels of AWGN at SNR ranging
from − 5 to 15 dB have been incorporated across the datasets to obtain the noisy
sEMG signals.

v. The proposed methodology is implemented in the TMS320C6713 kit to verify
its practical feasibility.

vi. The robustness of the algorithms applied to optimise the adaptive model has been
evaluated by the Wilcoxon hypothesis test.

The remaining sections of the article have been arranged as follows: Sect. 2 demon-
strates the problem statement; the methodology used and technique employed for
optimisation are explained in Sect. 3; results obtained by simulation and the experi-
ments are tabulated in Sect. 4; Sect. 5 shows the discussion part; and the conclusion
and future scope are mentioned in Sect. 6.

2 Problem Statement

Adaptive filtering offers an association of two signals in a feedback manner [1, 2, 18,
27, 30–32]. The schematic representation of a standard adaptive filter (AF) is depicted
in Fig. 1, in which s(n) is the actual signal of interest, d(n) is the mixed-signal, x(n) is
the noise fed to the adaptive filter, which yields y(n), and the error e(n) is the difference
of d(n) and y(n) expressed in (1)–(3). The filtering action could be either finite/infinite
impulse response (FIR/IIR) filter type [23, 24]. The structure shown in Fig. 1 can be
altered to meet the application-specific requirement in the science and engineering
fields, such as noise cancellation [26], system identification [13], channel equalisation
[16] and QRS detection [12].

In this paper, a cascaded noise-cancelling IIR filter is implemented and presented in
Fig. 2. The input–output relation of the IIR system is given by the transfer function in
(4). In (4),m is the order of the system, where the numerators and denominators, ai and
bi, respectively, are the IIR filter coefficients. It is considered that all the coefficients
are real, so the IIR filter coefficient vector w(n) = [ai , bi ].

d(n) = s(n) + x(n) (1)

y(n) =
m∑

i=0

ai x(n − i) −
m∑

i=1

bi y(n − i) (2)

Fig. 1 Schematic representation
of the adaptive filter
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Fig. 2 Proposed adaptive filter
based on the SHO

e(n) = d(n) − y(n) (3)

W (z) =
∑m

i=0 ai z
−i

1 + ∑m
i=1 bi z

−i
= a0 + a1Z−1 + a2Z−2 + a3Z−3 + · · · + am Z−m

1 + b1Z−1 + b2Z−2 + b3Z−3 + · · · + bm Z−m
(4)

3 Methodology—ANC Implemented with CSA, BGSA and SHO

As depicted in Fig. 2, the tempered sEMG waveform d1(n) consists of the actual
sEMG waveform s(n) and interference in the form of BW, EM and PLN, considering
that noises are uncorrelated with s(n). Here, s(n) is taken from the standard database
publicly available on the Physionet website [9]. The BW and EM signals are taken
directly from the MIT-BIH noise stress dataset [17]. The PLN is generated through
MATLAB with a frequency of 50 Hz and a length equal to d1(n). Here, q1(n), q2(n)
and q3(n) are reference noises simulated using the MATLAB to represent BW, EM
and PLN in sEMG waveform d1(n), respectively. The reference noises q1(n), q2(n)
and q3(n) are fed to AF, which yield the outputs y1(n), y12(n) and y3(n), respectively.
The signal e1(n) is calculated by subtracting y1(n) from d1(n) and provided to the AF
to update the coefficient vector w1(n) in every cycle. The entire procedure continues
until e1(n) or BW noise is reduced to a certain level. The output from the first AF
contains e1(n) = d2(n) = s(n) + EM + PLN. The noisy sEMG is forwarded to
the second AF, where the signal e2(n) is calculated by subtracting y2(n) from d2(n)
and e2(n) is used to update the filter coefficient vector w2(n) in the entire cycle until
e2(n) is minimised to the lowest possible value. The output from the previous AF is
denoted as e2(n) = d3(n) = s(n) + EM and is forwarded further. The signal e3(n)
is the difference between d3(n) and y3(n). The error signal e3(n) is used to drive the
updating process of the coefficient vector w3(n) in each iteration until e3(n) is reduced
to an acceptable value. The last yield s′(n) closely matches with s(n). The yielded
signals from the first, second and third stages of the AF are expressed mathematically
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as y1(n), y2(n) and y3(n) in (6), (9) and (12), respectively.

d1(n) = s(n) + BW + EM + PLN (5)

y1(n) =
m∑

i=0

aiq1(n − i) −
m∑

i=1

bi y1(n − i) (6)

e1(n) = d1(n) − y1(n) (7)

d2(n) = s(n) + EM + PLN (8)

y2(n) =
m∑

i=0

aiq2(n − i) −
m∑

i=1

bi y2(n − i) (9)

e2(n) = d2(n) − y2(n) (10)

d3(n) = s(n) + PLN (11)

y3(n) =
m∑

i=0

aiq3(n − i) −
m∑

i=1

bi y3(n − i) (12)

e3(n) = d3(n) − y3(n) (13)

To reduce the design complexity of the proposed system, linear filter has been
implemented. The linear filter does not serve the required purpose if the signals are
nonlinear. Such cases demand the need for nonlinear Volterra filters [13] and bilin-
ear filters [7]. On the other hand, a neural network approach, fuzzy logic or genetic
algorithm has also been popular [11]. The authors have implemented an optimal adap-
tive IIR filter whose coefficients are generated by applying various nature-propelled
algorithms such as CSO, BGSA and SHO to suppress the noise.

Various evolutionary algorithms have solved many engineering optimisation
problems, namely particle swarm optimisation (PSO), quadrature particle swarm opti-
misation (QPSO), cuckoo search (CS), modified cuckoo search (MCS), bounder range
artificial bee colony (BR-ABC), least mean square enhanced squirrel search (LMS-
ESS), recursive least mean square enhanced squirrel search (RLS-ESS), cat swarm
optimisation (CSO), binary gravitational search algorithm (BGSA) and spotted hyena
optimisation (SHO) [1, 2, 6, 15, 18, 24, 27, 30]. All the metaheuristic algorithms are
similar in producing random sets of solutions. The most suitable solution is noted
and utilised to update the new solution sets according to optimisation problems. The
metaheuristic algorithms differ in their update equations [1, 2, 6, 13, 15, 18, 23, 24,
30–32]. The details of the variables used in the algorithms are mentioned in Table 1.
As the CSO and BGSA are well studied, the SHO description is only presented in the
subsequent section.
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Table 1 Control variables for
CSO, BGSA and SHO Parameters CSO BGSA SHO

Population (np) 25 25 25

Iteration 1000 1000 1000

Samples (N) 1000 1000 1000

SMP, CDC, SRD 5, 0.6, 2 – –

MR 0.1 – –

w, C 0.4, 1.5 – –

Vmin, Vmax − 0.1, 0.1 – –

Gravitational constant
(G0)

– 1000 –

Decreasing coefficient (ï) – 20 –

rNorm, rPower, ε – 2, 1,
0.0001

–

�s, B, E – – [0, 5], [0,
2]

The population has been considered 25 irrespective of algorithms throughout the
work, and 1000 iterations have been evaluated. Instead of the whole sEMG signal, a
block of 10-s sample size has been tested on the proposed ANC.

3.1 Objective Function Formulation

The random solution sets generated by the SHO incorporate all the coefficients of
the adaptive IIR filter. For all the solutions, MSE is calculated, and the solution for
which a minimum score is obtained is considered the optimal coefficients vector of
the proposed filter. So, the MSE is treated as the cost function for the optimisation
problem.

At the nth cycle, the MSE of the ith search agent is represented by (14).

MSE = 1

N

N−1∑

i=0

(EMGt(i) − EMGf(i))
2 (14)

where EMGt represents the template or pure sEMG; EMGf is the denoised sEMG
waveform; and N is the number of samples.

3.2 Employed Optimisation Algorithm—SHO

SHO is encouraged by spotted hyenas’ social hierarchy and hunting attitude [6]. Cohe-
sive clusters could be helpful for efficacious cooperation among spotted hyenas. The
hunting behaviour of spotted hyenas inspires the integral equations of SHO.
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Algorithm 1: Pseudo code of SHO
Input: the spotted hyena population  (i = 1, 2, . . ., n)

Output: the best search agent (SA)

1: process SHO

2: Initialise the variables s, B, E, and M
3: Compute the fitness value of each SA
4:  = the best SA
5: = the group of all far optimal fitness values

6:      while (  < ) do
7:           for each SA, do
8:           Update the location of the current SA by using (24)

9:           end for
10:         Update s, B, E, and M
11:         Verify the limit for SA and adjust within the search area

12:         Compute the �itness for each SA
13:         Update  if a better solution is found than the previous best

14:         Update the  with respect to  

15:         = + 1

16:    end while
17: return 

18: end process

3.2.1 SHO Encoding

This subsection provides the precise equations for searching, encircling, hunting and
attacking the prey. After that, the SHO algorithm is explained by pseudocode (Algo-
rithm 1), and the flow chart is given in Fig. 3.

3.2.2 Encircling Prey (Exploration)

Encircling is expressed as follows:

−→
Dhy =

∣∣∣ �B · −→
Lpy(Iter) − �L(Iter)

∣∣∣ (15)

�L(Iter + 1) = −→
Lpy(Iter) − �E · −→

Dhy (16)

where Dhy denotes the distance between the prey and spotted hyena, Iter refers to the

present iteration, �B and �E are vector coefficients,
−→
Lpy indicates the vector location of

prey and �L is the vector location of the spotted hyena. However, || and · represent the
absolute value and multiplication. The vectors �B and �E are represented as follows:

�B = 2 · −→r1 (17)

�E = 2�s · −→r2 − �s (18)

�s = 5 − (Iter ∗ (5/MaxIter)) (19)
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Fig. 3 Flow chart of SHO

where Iter = 1, 2, 3 . . . .MaxIter is to trade off between exploitation and exploration, �s
decreases linearly from 5 to 0, and −→r1 and −→r2 are randomly selected vectors in [0, 1].

3.2.3 Hunting Prey

The best search agent denotes the prey’s location to define the spotted hyena’s attitude
mathematically. Other search agents move towards it and deliver the best solutions
accumulated thus far to update their locations. It is expressed mathematically as:

−→
Dhy =

∣∣∣ �B · −→
Lhy − −→

Lky

∣∣∣ (20)

−→
Lky = −→

Lhy − �E · −→
Dhy (21)

−→
Ghy = −→

Lky + −−−→
Lky+1 + · · · −−−−→

Lky+M (22)

where
−→
Lhy denotes the location of the best-spotted hyena initially and

−→
Lky denotes the

location of other spotted hyenas. Here,M is the number of spotted hyenas and is given
by:

M = Countns
(−→
Lhy,

−−−−→
Lhy+1,

−−−→
Lhy+2, . . . .,

(−→
Lhy + −→

Mr

))
(23)
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where
−→
Mr is a randomly selected vector in [0.5, 1], ns denotes the number of solutions

and counts all candidate solutions after adding with
−→
Mr, which are very similar to the

best solution in a provided search space, and
−→
Ghy is a group of M number of best

solutions.

3.2.4 Attacking (Exploitation)

To mathematically model for attacking the prey, i.e. to determine the optimal solution,
�s value needs to be decreased continuously, where �s is the step size that the spotted
hyena takes to attack prey. It is evident that, when searching for prey, the spotted
hyenas increase their number of steps. The equation for attacking target is given by:

�L(Iter + 1) =
−→
Ghy

M
(24)

where �L(Iter + 1) is the location of the current solution. The SHO permits its agents
to update their spots in the prey’s direction.

�B and �E favour the SHOalgorithm for exploration and exploitation.As �B decreases,
half the iterations are devoted to exploration ( �E > 1) and the rest is devoted to
exploitation ( �E < 1) [23]. �B consists of randomly selected values within [0, 2].
This element delivers random weights for prey to randomly accentuate ( �B > 1) or
deemphasise ( �B < 1) the effect of prey in defining the distance in (17).

4 Simulation Results

After several experimental tests to estimate the proffered approach, the outcomes
acquired are contrasted qualitatively and quantitatively with other techniques in the
literature. Also, for testing, the worst contamination scenario of AWGN (− 5 to 15 dB)
in the sEMG signal has been removed by the proposed approach.

4.1 Used Datasets and Other Details

A) Examples of electromyograms (EEDB): The data were collected from theMedelec
Synergy N2 sEMG Monitoring System. A 25-mm concentric needle was placed in
the muscle (tibialis anterior) for all subjects. The subject was instructed to dorsiflex
the foot softly against resistance. The needle was repositioned until the motor unit
potentials had been identified. Lastly, the data were recorded, and the subject removed
the needle. Here the data were noted at 50 kHz and then lower-sampled to 4 kHz (refer
to Fig. 4) [9]. The description of associated subjects is given in Table 2.

B)UniversityCollegeDublinSleepApneaDatabase (UCDDB):These recordswere
collected at St. Vincent’s University Hospital Sleep Disorders Clinic. It contains 25
whole-night polysomnograms with simultaneous three-channel Holter ECG of adult
patients with sleep-disordered breathing issues. Polysomnogramswere recorded using
the Jaeger/Toennies system. Submental sEMG signal has been considered from record
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Fig. 4 Various clinical sEMG signals a healthy, b neuropathy and c myopathy records from EEDB

Table 2 Characteristic features of EEDB

Record name Male/female and age Disease

emg_healthy Male, 44 years Healthy/no known disease

emg_neuropathy Male, 67 years Neuropathy

emg_myopathy Male, 57 years Myopathy

Fig. 5 Submental sEMG signal of record ucddb002_rec from UCDDB

ucddb002.rec (refer to Fig. 5) stored at 128 samples per frame and had a gain of 4095
adu/nV with an ADC resolution of 12 bits [9].

C) Noise stress test database (NSTDB): Three noise signals were collected from
the dataset by marking intervals at which baseline wander (BW), muscle noise (MN)
and electrode motion artefact (EM) exist predominantly [17].

4.2 Comparative Analysis of Performance

The proposed approach-based ANC has been tested by comparing its noise removal
capability to existing state-of-the-art techniques such as discrete wavelet transform
(DWT) [10], WAT [4], DWT + GARCH [14], WAT + GARCH [14], LMS [30], RLS
[30], PSO [30], QPSO [30], CS [30], MCS [30], ABC [30], ABC-MR [30], BR-ABC



4106 Circuits, Systems, and Signal Processing (2023) 42:4096–4128

Fig. 6 Outcomes of ANC on tempered emg_healthy of EEDB: a corrupted sEMG waveform, b sEMG
template signal, c filtered sEMG waveform using optimal ANC by CSO algorithm, d denoised sEMG
waveform using optimal ANC by BGSA, e estimated sEMG waveform using optimal ANC by SHO

[30], LMS-ESS [18] and RLS-ESS [18]. All the simulation programs have been run
in MATLAB 9.2.

4.2.1 Qualitative Interpretation

Qualitative interpretation of the resulting signal, as mentioned in [1, 22, 31, 32], has
been presented in this section by comparing it with actual sEMG. A careful visual
inspection of each irregular amplitude variation at every sample has been performed.
The attainment of the proffered ANC has been investigated on the sEMG waveform
altered with − 5 to 15 dB AWGN. MATLAB synthetically introduces the reference
noise signal, ensuring that the length matches the sEMG signal.

The sEMG waveforms emg_healthy, emg_neuropathy and emg_myopathy from
EEDB and ucddb002.rec from UCDDB have been presented and compared with
their filtered version obtained using different algorithm-based ANCs. The proffered
approach-based ANC produces results that closely correlate with the original version
of sEMG.

ANCPerformanceAnalysedQualitative Results for EEDB The signal shown in Fig. 6a
is an sEMGwaveform from emg_healthy of EEDB contaminated with various noises,
including AWGN of 10 dB. The signal shown in Fig. 6b is a clean sEMG wave-
form from emg_healthy of EEDB. In response to the corrupted sEMG waveform, the
outcomes of the optimised ANC through CSO, BGSA and SHO are delineated in
Fig. 6c–e, respectively.

The plots of pure sEMG waveform of emg_healthy and estimated sEMG via opti-
mised ANCs based on CSO, BGSA and SHO algorithms are shown in Fig. 7a. The
enlarged section in Fig. 7b shows that the proffered SHO-optimised ANC delivers a
refined magnitude response of the sEMG waveform.

Figure 8a shows a noisy version of emg_neuropathy from EEDB. The pure sEMG
waveform is shown in Fig. 8b. The outcomes of optimised ANCs by CSO, BGSA and
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Fig. 7 a Responses of optimised ANCs by CSO, BGSA and SHO algorithms on emg_healthy of EEDB
b magnified section

Fig. 8 Outcomes of ANC on tempered emg_neuropathy of EEDB: a corrupted sEMG waveform, b sEMG
template signal, c filtered sEMG waveform using optimal ANC by CSO algorithm, d denoised sEMG
waveform using optimal ANC by BGSA, e estimated sEMG waveform using optimal ANC by SHO

Fig. 9 a Responses of optimised ANCs by CSO, BGSA and SHO algorithms on emg_neuropathy of EEDB,
b magnified section

SHO are demonstrated in Fig. 8c–e, respectively. The responses of optimised ANCs
byCSO, BGSA and SHO are comparedwith the clean sEMGand delineated in Fig. 9a.
For better interpretation, a magnified version of the same is depicted in Fig. 9b.

Figure 10a shows a tempered version of record emg_myopathy from EEDB. The
pure sEMG waveform is shown in Fig. 10b. The responses of optimised ANCs by
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Fig. 10 Responses of ANC on corrupted myopathy sEMGwaveform from EEDB: a corrupted sEMGwave-
form, b sEMG template signal, c filtered sEMG waveform using ANC optimised by CSO algorithm,
d filtered sEMG waveform using ANC optimised with BGSA, e estimated sEMG waveform using ANC
optimised incorporating SHO

Fig. 11 a Responses of optimised ANCs by CSO, BGSA and SHO algorithms on emg_myopathy of EEDB,
b magnified section

CSO, BGSA and SHO are demonstrated in Fig. 10c–e, respectively. The plots of the
pure sEMG waveform from emg_myopathy versus signals estimated by CSO, BGSA
and SHO-optimised ANCs are shown in Fig. 11a. The magnified portion of Fig. 11a
is presented in Fig. 11b for better discernment.

ANC Performance Analysed Qualitative Results for the UCDDB The waveform
depicted in Fig. 12a originated from record ucddb002_rec of UCDDB. It is con-
taminated with various noises at 10 dB AWGN. The signal depicted in Fig. 12b is
an sEMG waveform without noise. The performance of CSO, BGSA and SHO-based
ANCs on the UCDDB is shown in Fig. 12c–e, respectively.
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Fig. 12 Responses of ANC on corrupted sEMG waveform from UCDDB: a corrupted sEMG waveform,
b sEMG template signal, c filtered sEMG waveform using ANC optimised by CSO algorithm, d filtered
sEMG waveform using ANC optimised with BGSA, e denoised sEMG waveform using ANC optimised
through SHO

Fig. 13 aResponses of optimised ANCs by CSO, BGSA and SHO algorithms on ucddb002_rec of UCDDB,
b magnified section

The plots of the clean sEMG of record ucddb002_rec, along with the estimated
sEMG signals from the ANC optimised by CSO, BGSA and SHO, are delineated in
Fig. 13a. The magnified section shown in Fig. 13b ensures that the SHO-optimised
ANC delivers a better response than the CSO and BGSA-optimised ANCs for denois-
ing the sEMG waveforms.

Qualitative interpretation ensures that the wave pattern of the estimated sEMG
waveform resulting from the proffered method-based ANC resembles the original
sEMG waveform more closely and seems smoother than the signal obtained from the
CSO and BGSA-based ANCs.

4.2.2 Quantitative Interpretation

The quantitative interpretation based on specific metrics has been reported in this
section. The signal-to-noise ratio (SNR) and correlation coefficient (CC) is desired
to have high values. In contrast, MSE, normalised root mean square error (NRMSE),
mean difference (MD), maximum error (ME) and peak reconstruction error (PRE)
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need to be reduced. The above metrics are computed by using (25)–(31) [1, 2, 14, 18,
30–32].

SNR = 10 log10

∑N−1
i=0 (EMGt(i))2∑N−1

i=0 (EMGf(i) − EMGt(i))2
(25)

MSE = 1

N

N−1∑

i=0

(EMGt(i) − EMGf(i))
2 (26)

NRMSE =
√√√√

∑N−1
i=0 (EMGt(i) − EMGf(i))2∑N−1

i=0 (EMGt(i))2
(27)

MD = 1

N

N−1∑

i=0

(EMGt(i) − EMGf(i)) (28)

ME = max[abs(EMGt(i) − EMGf(i))] (29)

PRE = EMGt(i) − EMGf(i)

EMGt(i)
(30)

CC =
N

[∑N−1
i=0 EMGt(i)EMGf(i) −

(∑N−1
i=0 EMGt(i)

)(∑N−1
i=0 EMGf(i)

)]

√[
N

∑N−1
i=0 EMGt(i)2 −

(∑N−1
i=0 EMGt(i)

)2] ×
[
N

∑N−1
i=0 EMGf(i)

2 −
(∑N−1

i=0 EMGf(i)
)2]

(31)

where EMGt denotes the true/template sEMG, EMGf is filtered or estimated sEMG
and N is the length of samples.

Quantitative Interpretation of the Optimised ANC Analysed Results for EEDB In
Tables 3, 4 and 5, the comparison is made on performance metrics for the CSO,
BGSA and the proposed SHO-based ANCs. From the comparison, it has been per-
ceived that the SHO-optimised ANC delivers enhanced performance for almost every
performance metric than those of the CSO and BGSA-optimised ANCs on various
clinical datasets of EEDB at different AWGN (− 5 to 15 dB). The values of MD and
PRE are substantially minimised using the proposed approach. The reported value
of CC is almost unity, ensuring that the estimated signal resembles the clean sEMG
waveform. According to Fig. 14a, substantial enhancement in SNR is achieved using
the SHO-assisted ANC in contrast to CSO and BGSA-assisted ANCs at various SNRs.
Figure 14b ensures a significant decrease in NRMSE. The deduction inMSE is noticed
in Fig. 14c. Also, a noteworthy reduction has been reported in the values of MD, ME
and PRE metrics, as depicted in Fig. 14d–f.

Similarly, from Fig. 15a, g enhanced SNR and CC, respectively, can be seen. The
error metrics such as NRMSE, MSE, MD, ME and PRE have been significantly min-
imised and are depicted in Fig. 15b–f, respectively. The detailed quantitative analysis
of emg_neuropathy and emg_myopathy signal is reported in Tables 4 and 5, and corre-
sponding improvement metrics are illustrated in Figs. 16a–g and 17a–g, respectively.
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Fig. 14 a SNR, b NRMSE, c MSE, d MD, e ME, f PRE and g CC of CSO, BGSA and SHO-based ANCs
for cancellation of AWGN (− 5 to 15 dB) to healthy sEMG waveforms on EEDB

Quantitative Interpretations of the ANC Analysed Results for UCDDB In Table 6,
the performance comparison among the CSO, BGSA and SHO-based ANCs tested
on record ucddb002.rec taken from the UCDDB is tabulated, and the parameters are
illustrated in Fig. 17a–g. The SNR shown in Fig. 17a could increase with respect to
various noises. Concerned error metrics depicted in Fig. 17b–f have minimised with
the increment of SNR values. The value of CC has been improved to almost unity and
is presented in Fig. 17g.

4.2.3 Hardware Implementation

This subsection expounds on the design and implementation of the proposed method-
ology on the Texas Instruments (TI) power-optimised apparatus, i.e. TMS320C6713
digital signal processor kit (DSK) with clock capacity of 225 MHz, 16 MB of syn-
chronous dynamic random-access memory (DRAM) and 512 KB of flash memory.
The power-optimised DSK is economical and requires fewer computations; therefore,
crucial power cell-based portable instruments should emphasise battery backup. The
TMS320C6713 kit is predominantly employed for industrialisation. This research uses
the same kit to realise the signal obtained through simulation.

The realisation has been made in the C language employing the Texas Instruments
code composer studio (CCS) version 3.1 integrated development environment (IDE).



Circuits, Systems, and Signal Processing (2023) 42:4096–4128 4115

Fig. 15 a SNR, b NRMSE, c MSE, d MD, e ME, f PRE and g CC of CSO, BGSA and SHO-based ANCs
for cancellation of AWGN (− 5 to 15 dB) to neuropathy sEMG waveforms on EEDB

The CCS intercommunicates with the kit via an ingrained JTAG emulator through
a USB host interface. The image of the experimental arrangement is illustrated in
Fig. 18a. Finally, optimised coefficients achieved using SHO (refer to Table 7) have
been used to evaluate the proposed methodology for hardware implementation. In real
time, an sEMG signal (emg_neuropathy of the EEDB), as depicted in Fig. 18b, is
provided to ANC. The filtered output from the line output jack via the onboard AIC23
codec is portrayed on a digital storage oscilloscope (DSO) (TDS 2002B, Tektronix).
As depicted in Fig. 18b, the experimental results warrant proficiency in the proposed
ANC signal generation.

Operating in real time, the 5-s intercept of the sEMG signal sampled at 8 kHz is
provided to the input of the optimised ANC. Once the 5-s sEMG signal is calculated,
it is displayed on the DSO. This process is replicated for the subsequent 5 s of the
sEMG section until interrupted. Figure 18c, d presents the optimised output of DSO
for emg_myopathy and emg_healthy signal from EEDB. The FIR structure requires
more coefficients and memory, so the design complexity will be higher, affecting its
suitability in fast throughput real-time closed-loop applications. It creates problematic
situations where the FIR structure may have too much group delay to achieve loop
stability. These limitationsmay be overcome by using the IIR structure, which requires
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Fig. 16 a SNR, b NRMSE, c MSE, d MD, e ME, f PRE and g CC of CSO, BGSA and SHO-based ANCs
for cancellation of AWGN (− 5 to 15 dB) to myopathy sEMG waveforms on EEDB

fewer coefficients and offers low latency, making it the aptest for high-speed real-
time sEMG denoising applications. The adaptive structure does not restrict cut-off
frequency as it adjusts its coefficients according to the input and adaptive algorithm.
Many researchers proposed the adaptive filtration of sEMG using FIR structure [18,
30] and failed to get better results. Hence, the authors are motivated to apply the
adaptive IIR structure for the sEMG noise mitigation. Figure 19 demonstrates the
pole-zero plot of the IIR structure using optimal coefficients. The existence of poles
within the unit circle ensures the stability of the designed IIR-AF.

4.2.4 Performance Comparison of the SHOwith CSO and BGSA-Based ANCs on SNR,
CC andMSE Obtained for Various Records Using theWilcoxon Signed-Rank Test

For testing the rank among algorithms, Wilcoxon signed-rank test [5] is conducted
concerning the metrics reported for − 5 dB and 15 dB to verify the suitability of the
algorithms for different datasets. It assigns the ranks for algorithms based on their
sensitivity. The signed-rank test calculations are given in Table 8.

In Table 8, the desired MSE value is minimum (close to zero), whereas the SNR
and CC desired values are maximum. The final ranking has been made by taking the
mean of SNR, CC and MSE tabulated in declining order as SHO, BGSA and CSO.
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Fig. 17 a SNR, b NRMSE, c MSE, d MD, e ME, f PRE and g CC of CSO, BGSA and SHO-based ANCs
for cancellation of AWGN at different SNR to ucddb002.rec sEMG waveforms on UCDDB

5 Discussions

The proffered method is outlined for updating the coefficient vector of IIR ANC in the
optimisation objective tominimiseMSE. The qualitative and quantitative investigation
of the presented approach shows that SHO-based ANC provides better SNR and sub-
stantially reduces the MSE and NRMSE values than those of CSO and BGSA-based
ANCs. A proximate discussion on convergence shape, computational complexity and
reported state-of-the-art methods with a comparative perspective has been presented
in the subsections below.

5.1 Proximate Analysis of Convergence Shape

The convergence shapes for CSO, BGSA and SHO for all datasets are indicated in
Fig. 20. In Fig. 20a for the emg_healthy signal of EEDB, the proposed technique
requires fewer than 39 iterations to deliver the optimal value. In contrast, it needs 260
and more than 900 cycles for the BGSA and CSO, respectively. Figure 20b shows that
the SHO leads to the best fitness within 50 iterations. In contrast, the BGSA takes
about 278 iterations, and CSO demands 679 iterations for the optimal fitness for the
UCDDB. The convergence shape analysis implies that the SHO is noticeably foremost
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Fig. 18 a Experimental set-up, b optimised neuropathy sEMG, c optimised myopathy sEMG, d optimised
healthy sEMG using the proposed method

Table 7 Optimal weight vectors obtained by SHO for ANC implementation

Weight vectors Numerator coefficients (ai) Denominator coefficients (bi)

w1(n) [0.3719023145, 0.7409254826,
0.3719231450]

[1.0000100000, 0.3106012546,
0.1759325468]

w2(n) [0.3514321445, 0.6618324581,
0.3511189542]

[0.9998000101, 0.3111100013,
0.1587745321]

w3(n) [0.3110447856, 0.5714336542,
0.3115445215]

[0.9999999125, 0.3117123658,
0.1241022415]

Fig. 19 Pole-zero plot for IIR adaptive filter: a stage 1, b stage 2 and c stage 3



4120 Circuits, Systems, and Signal Processing (2023) 42:4096–4128

Table 8 Wilcoxon signed-rank test based on SNR, CC and MSE

SNR15dB SNR−5 dB SNR15dB–SNR −5 dB Signed rank Algorithms

96.093 5.6819 90.4111 3 CSO

99.7665 6.3255 93.4410 2 BGSA

105.0643 8.5698 96.4945 1 SHO

CC15dB CC−5 dB CC15dB–CC−5 dB Signed rank Algorithms

0.989852 0.905571 0.084281 3 CSO

0.998849 0.906723 0.092126 2 BGSA

0.999999 0.907487 0.092510 1 SHO

MSE15dB MSE−5 dB MSE15dB–MSE−5 dB Signed rank Algorithms

9.39E−08 6.05E−06 5.95E−06 3 CSO

1.85E−09 3.40E−07 3.39E−07 2 BGSA

1.80E−10 3.51E−09 3.40E−09 1 SHO

Fig. 20 a Convergence for CSO, BGSA and SHO on: a EEDB, b UCDDB

to CSO and BGSA. Hence, it ensures that the proffered SHO-based ANC is the best
suited for noise confiscation from sEMG.

5.2 Computational Complexness

The computational complexity is represented in ‘O-notation’ [20]. Table 9 consists of
the computational complexities of the various optimisation algorithms. The computa-
tional load of the overall task as computational time and searching load point of view
depends on the optimal coefficient search, trial runs and fitness function evaluations
at each iteration. To get the optimal coefficients set, the total searching load is given
as ∅1 × ∅2 × ∅3, where ∅1 is the number of coefficients to be calculated and ∅2 is the
number of trials. The term ∅1 × ∅2 denotes the total runs from the control variable
setting while ∅3 is the number of function evaluations tested in a single run which
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Table 9 Running time estimation, mean, STD and computation complexity in terms of ‘O-notation’ analysis
for CSO, BGSA and SHO-assisted ANCs

Database Algorithms T0 (s) T1 (s) T2 (s) Mean ± STD Computational
complexity

O
(∅3)

EEDB CSO 8.04E−05 2.01E−03 3.21E−01 1.4178 ± 1.8410 O
(∅3)

BGSA 1.88E−05 4.71E−04 1.92E−01 1.0321 ± 1.7501 O
(∅3)

SHO 8.04E−06 2.01E−04 8.23E−02 1.0009 ± 1.5201 O
(∅3)

UCDDB CSO 2.20E−04 5.52E−03 7.58E−01 1.1501 ± 1.9805 O
(∅3)

BGSA 3.84E−05 9.62E−04 5.19E−01 1.0541 ± 1.8703 O
(∅3)

SHO 2.08E−05 5.21E−04 9.10E−02 1.0310 ± 1.8150 O
(∅3)

is proportional to the signal length/samples. Hence, the asymptotic time complexity
concerning the associated task can be defined as O

(∅3). In the present study, com-
putational complexity is also estimated with respect to the run time of the algorithm
as presented by (32)–(34) [1, 2, 31, 32], where execution time, running time of n (=
1000) iterations and mean of T trials are described as T0, T1 and T2, respectively.

T0 = Total time

Number of Iteration × population size
(32)

T1 = Total time

Number of Iteration
(33)

T2 = mean of T trials (34)

As illustrated in Table 9, the SHO outperforms the other comparing algorithms in
terms of computational complexity, as the number of fitness function evaluations has
been reduced, so a big riff in running time is detected. SHO takes considerably shorter
intervals (average T2 for two datasets = 0.1733s) over BGSA (T2 = 0.3555 s) and
CSO (T2 = 0.5395 s). Table 9 shows that the SHO-based ANC’s time is considerably
lesser. Also, the precision of this process is more reasonable than ANCs founded on
CSO and BGSA. For the investigation of adaption time, the square error of ANC is
scrutinised on mean and standard deviation (STD). Table 9 lists the mean and STD
of all the algorithms. It is followed that SHO-based ANC has acquired the lowest
mean and STD values, which confirm that SHO has the lowest adaption interval. The
simulation outcomes are achieved on the personal computer with configuration as
Intel(R) Core(™) i7-3770 processor running at 3.40 GHz frequency on 6 GB of RAM.

5.3 Analysis of Performance Comparison with the Existing Literature
and the Proposed SHO-Optimised ANC

A comparative study with the results obtained by other researchers in the literature and
results achieved for the SHO-optimised ANCs on record emg_healthy from EEDB is
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given in Table 10. The best values reported have been mentioned in bold. Compared to
other competing algorithms, an impressiveSNRenhancement is accomplished through
SHO-optimised ANC. TheMSE obtained from SHO-based ANC is 1.46E−09, which
is better than the value of 5.60E−07 obtained by its closest entrant BR-ABC [30]
method. NRMSE value of 2.40E−04 has been accomplished using the proposed SHO-
optimised ANC.

The results presented in Table 10 show that the proposed design shows better
performance in contrast to DWT [10], WAT [4], DWT + GARCH [14], WAT +
GARCH [14], LMS [30], RLS [30], PSO [30], QPSO [30], CS [30], MCS [30], ABC
[30], ABC-MR [30], BR-ABC [30], LMS-ESS [18] and RLS-ESS [18] methods for
denoising the sEMG waveform.

Figure 21 shows the percentage of effectiveness of the proposed SHO-based ANC
over other methods based on various quantitative metrics at 10 dB. The proposed
method is 9%, 11% and 14% more effective than recently reported RLS-ESS [18],
LMS-ESS [18] and BR-ABC [30], respectively, in enhancing the SNR value. The
proposed method is 99% better in MSE, 94% more effective in NRMSE and 99% in
ME metric than other reported techniques in the literature.

Figure 22a compares the mean SNR obtained in the sEMG waveform using the
proposed and other state-of-the-art methods, considering added WGN at 10 dB SNR.
The proposed ANC surpasses other algorithms applied to enhance the sEMG wave-
forms. Figure 22b compares the MSE resulting from the proposed ANC with other
reported algorithms at AWGN at 10 dB. The proposed ANC yields a lesser value of
MSE than other methods. The comparison with respect toME is presented in Fig. 22c.
The NRMSE value obtained using the proposed ANC model is compared with other
techniques shown in Fig. 22d. It is observed that the proposed ANC yields minimum
NRMSE.

Table 11 presents the comparison of the proposed ANC with the results reported
by other researchers at − 5 dB AWGN. Table 11 shows that the proposed method
provides better results with an SNR value of 7.6541, which is approximately 4 dB
higher than the recently reported value through BR-ABC [30]. Also, theMSE andME
values have been reduced to 1.18E−08 and 8.28E−04, respectively.

The percentage improvement in SNR and reduction in various error metrics are
presented in Fig. 23. The proposed SHO-ANC is 72%, 54% and 41%more enhancing
the SNR metric than recently reported ABC [30], ABC-MR [30] and BR-ABC [30],
respectively. The MSE value is improved by 99% more than other reported literature.
The ME value is enhanced by 80%, 36% and 15% than ABC [30], ABC-MR [30] and
BR-ABC [30], respectively.

The SNR obtained is compared with the various methods as shown in Fig. 24a.
Figure 24a shows that a significant improvement in SNR is achieved using the proposed
method. Figure 24b shows that the lowest MSE has been accomplished compared to
other techniques. Figure 24c compares ME obtained through simulation with various
algorithms to cancel noise at − 5 dB to emg_healthy from EEDB. Figure 24c shows
that the lowest ME value of 9.52E−05 is obtained compared to the existing algorithm-
based ANCs.
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Fig. 21 Percentage improvement of the proposed SHO-based ANC over other methods reported in the
literature based on SNR, MSE, NRMSE and ME at 10 dB SNR to healthy sEMG waveforms on EEDB

Fig. 22 Performance comparison of the proposed ANC with techniques reported in the literature based on
a SNR, b MSE, c ME and d NRMSE of AWGN at 10 dB SNR to healthy sEMG waveforms on EEDB

6 Conclusion and Future Scope

This article presents a population-dependent metaheuristic SHO, which is applied to
ANCs to investigate the superiority of SHO to provide better quality results than CSO
and BGSA. Also, it performs better with lesser control variables than CSO and BGSA.
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Fig. 23 Percentage improvement of the proposed SHO-based ANC versus other methods reported in the
literature based on SNR, MSE and ME at − 5 dB SNR to healthy sEMG waveforms on EEDB

Fig. 24 Performance comparison of the proposed ANC with the reported literature based on a SNR, bMSE
and c ME of AWGN at − 5 dB SNR to healthy sEMG waveforms on EEDB

A remarkable enhancement has been observed in SNR and CC values. Also, various
other error metrics have been minimised through the proposed SHO-based ANC filter.

The proposed technique is a robust one for denoising the sEMG waveform. Hence,
with the help of analysed results and discussions, the SHO-assisted ANC can be
effectively used for denoising sEMG waveforms.

This work can be extended in the future by employing different cost functions
for the ANC optimisation problem. Moreover, the optimal nonlinear filters can be
implemented for enhancement application on other biomedical signals such as ECG
(electrocardiogram), EOG (electrooculogram), MEG (magneto-encephalogram) and
EEG (electroencephalogram).

Funding The authors declare that there is no institute/agency funding for this work.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.



Circuits, Systems, and Signal Processing (2023) 42:4096–4128 4127

References

1. M.K.Ahirwal, A. Kumar, G.K. Singh, EEG/ERP adaptive noise canceller designwith controlled search
space (CSS) approach in cuckoo and other optimisation algorithms. IEEE/ACM Trans. Comput. Biol.
Bioinform. 10(6), 1491–1504 (2013). https://doi.org/10.1109/tcbb.2013.119

2. M.K. Ahirwal, A. Kumar, G.K. Singh, Adaptive filtering of EEG/ERP through bounded range artificial
bee colony (BR-ABC) algorithm. Digit. Signal Process. 25(1), 164–172 (2014). https://doi.org/10.
1016/j.dsp.2013.10.019

3. R.H. Chowdhury, M.B.I. Reaz, M.A.B.M. Ali, A.A.A. Bakar, K. Chellappan, T.G. Chang, Surface
electromyography signal processing and classification techniques. Sensors 13, 12431–12466 (2013).
https://doi.org/10.3390/s130912431

4. L. Demanet, L. Ying, Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmon. Anal.
23(3), 368–387 (2007). https://doi.org/10.1016/j.acha.2007.03.003

5. B. Derrick, P. White, Comparing two samples from an individual likert question. Int. J. Math. Stat.
18(3), 1–13 (2017)

6. G. Dhiman, V. Kumar, Spotted hyena optimiser: a novel bio-inspired based metaheuristic technique for
engineering applications. Adv. Eng. Softw. 114, 48–70 (2017). https://doi.org/10.1016/j.advengsoft.
2017.05.014

7. C. Elisei-Iliescu, C. Stanciu, C. Paleologu, J. Benesty, C. Anghel, S. Ciochină, Efficient recursive
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