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Abstract
Kernel adaptive filter armed with information theoretic learning has gained popularity
in the domain of time series online prediction. In particular, the generalized corren-
tropy criterion (GCC), as a nonlinear similarity measure, is robust to non-Gaussian
noise or outliers in time series. However, due to the nonconvex nature of GCC, optimal
parameter estimation may be difficult. Therefore, this paper deliberately combines it
with half-quadratic (HQ) optimization to generate the generalized HQ correntropy
(GHC) criterion, which provides reliable calculations for convex optimization. After
that, a novel adaptive algorithm called kernel generalized half-quadratic correntropy
conjugate gradient (KGHCG) algorithm is designed by integrating GHC and the con-
jugate gradient method. The proposed approach effectively enhances the robustness of
non-Gaussian noise and greatly improves the convergence speed andfiltering accuracy,
and its sparse version KGHCG-VP limits the dimension of the kernel matrix through
vector projection, which successfully handles the bottleneck of high computational
complexity. In addition, we also discuss the convergence properties, computational
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complexity and memory requirements in terms of theoretical analysis. Finally, online
prediction simulation results with the benchmark Mackey–Glass chaotic time series
and real-world datasets show that KGHCG and KGHCG-VP have better convergence
and prediction performance.

Keywords Kernel adaptive filter · Generalized correntropy criterion · Half-quadratic
optimization · Conjugate gradient method

1 Introduction

The time series is regarded as a collection of data arranged in chronological order, and
it is ubiquitous in nature, industrial production, financial technology, and other fields
[11, 16, 17]. Generally, the time series extracted from the practical system has chaotic
characteristics, which plays an important role in exploring the evolution rules of the
system. However, the real-time property of streaming data and the complexity of the
environment bring challenges for the accurate learning of chaotic dynamical systems
[25]. Therefore, while mining the hidden information of time series, online prediction
models also require to show strong performance for nonlinear, nonstationary, and
non-Gaussian aspects of time series. In recent years, kernel adaptive filter (KAF)
[21, 26] with universal approximation ability and excellent online learning ability has
shown great vitality in various applications, such as time series prediction, channel
equalization, nonlinear acoustic echo cancellation, etc. [1, 28, 33].

In the research of KAF, choosing a flexible and robust criterion [13, 14, 29] is cru-
cial. Most classic KAF algorithms including kernel least mean square (KLMS) [20]
and kernel recursive least squares (KRLS) [10] are presented under mean square error
(MSE) which excel in terms of smoothness, convexity, and computational complexity.
However, sinceMSE contains only second-order statistics and relies onGaussian noise
assumptions, it is difficult to handle the sharp spike and tail heaviness of signal noise
in the environment, especially non-Gaussian noise. In order to improve the reliabil-
ity and robustness of KAF in non-Gaussian environments, the maximum correntropy
criterion (MCC) [15, 19, 34] based on information theoretic learning has received
extensive attention. Replacing MSE in KRLS with MCC, kernel recursive maximum
correntropy (KRMC) [35] is developed to enhance robustness to non-Gaussian noise.
To further suppress the interference of nonzero mean noise, KRMC with variable
center (KRMC-VC) [22] is proposed. Moreover, as a family criterion of correntropy,
the generalized correntropy criterion (GCC) [6, 18] with more nonquadratic loss fea-
tures is studied, and kernel recursive generalized maximum correntropy (KRGMC)
[39] under GCC is developed to improve the flexibility and accuracy of correntropy.
However, since GCC is not a strictly convex function [6], the existence of an optimal
solution may not be guaranteed. Fortunately, the half-quadratic (HQ) [12, 36] the-
ory can successfully convert a nonconvex problem into a global convex optimization
problem, which ensures the best parameter estimates.

In addition, the optimization strategy [8, 9, 27] for obtaining optimal parameter
estimates of criteria is also particularly attractive. Stochastic gradient descent (SGD)
[23] is the most frequently adapted convex optimization method. However, it is diffi-
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cult to guarantee both convergence speed and steady-state performance through SGD
optimization. Afterward, optimization strategies based on recursive calculation or
second-order optimization [7, 39] are proposed.Although they provide amore accurate
solution, they take up excessive calculation and storage space. For the flawsmentioned
above, the conjugate gradient (CG) [5] method comes up with a better solution. The
nonlinear acoustic echo algorithm [3] achieves a good trade-off between complexity
and performance by using theCGmethod. Kernel conjugate gradient (KCG) [37] algo-
rithm not only solves the problem of slow convergence but also successfully avoids
huge computing resources. Last but not least, suitable sparsification methods [2, 31],
such as approximate linear dependency (ALD) [10, 26], coherence criterion (CC) [4,
38], and vector projection (VP) [40], are applied in KAF to deal with the high compu-
tational cost caused by the rapid growth of the kernel matrix, thereby improving the
convergence speed. KCG-AC [37] directly controls data size growth through angle
criteria (AC). Quantized KRGMC (QKRGMC) [30] is proposed to quantify the size
of the kernel network in the input space by vector quantization.

Based on the above discussion, the main contributions are as follows:

(1) The generalized HQ correntropy (GHC) criterion is proposed by combining HQ
and GCC for the first time. It converts the maximum GCC into a global convex
optimization problem via HQ, which makes the parameter estimation more accu-
rate and further enhances the robustness with respect to non-Gaussian noise or
outliers.

(2) Furthermore, the KGHCG algorithm is proposed, which uses the CG method to
solve the aboveGHCcriterion of kernel space. The proposed algorithmcan provide
excellent convergence performance and high filtering accuracy. In addition, the
VP method further constrains the infinite expansion mode of the kernel matrix
in KGHCG, which greatly reduces the computational complexity, and we finally
develop the KGHCG-VP algorithm.

(3) Finally, we analyze the convergence performance, computational complexity and
memory usage of the proposed method. Meanwhile, the efficiency of the proposed
algorithms is verified by the Mackey–Glass (MG) dataset as well as real-world
datasets including ENSO and Beijing air quality time series. Theoretical analysis
and experimental results demonstrate that KGHCG and KGHCG-VP have better
prediction ability and practicability for online tasks.

The rest of this article is structured as follows. In Sect. 2, related work is described
briefly, including online kernel learning, GCC function, and its nonconvexity. In
Sect. 3, we derive the proposedGHCcriterion andKGHCGalgorithm in detail, and the
theoretical analysis of the proposed method is also investigated. In Sect. 4, simulation
experiments are given. Finally, we summarize the conclusion in Sect. 5.

2 RelatedWorks

2.1 Online Kernel Learning

Due to the complexity and dynamic nature of sequential arrival data flow, an online
prediction model must demonstrate significant learning capacity for nonlinear and



Circuits, Systems, and Signal Processing (2023) 42:2698–2722 2701

Fig. 1 Kernel adaptive filter for online multi-step prediction

nonstationary. In recent years, KAF has become an efficient nonlinear modeling tool
because of its excellent approximation ability and online learning ability. Its core
concept is to exploit the online kernel learning framework, and the working principle
of KAF is shown in Fig. 1.

For online learning of chaotic time series {x(n), d(n)}, the classical KLMS [20]
algorithm transforms the input of the original spaceX into a suitable high-dimensional
feature spaceF through a nonlinear mapping ϕ(·) induced by kernel evaluation. After-
ward, a suitable linear method is applied to the transformed sample and the expected
output at each iteration n is estimated as

y(n) = �Tϕ(x(n)) (1)

where � is the weight of the filter. According to the adaptive mechanism of KLMS,
the learning rule for the weight is

�(n) = �(n − 1) + ηe(n)ϕ(x(n)) (2)

where e(n) = d(n) − y(n) denotes the prediction error. η denotes the step parameter.

2.2 Generalized Correntropy Criterion

GCC [6] as the measure of the generalized similarity between two random variables
A and B, is described by
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L(A, B) = E [κ(A, B)] =
∫∫

κ(A, B) f A,B(a, b)dadb (3)

where κ(·, ·) denotes the Mercer kernel, E(·) denotes the mathematical expectation,
and f A,B(a, b) denotes the joint density function of A and B. Nevertheless, since
f A,B(a, b) denotes an unknown function in practical applications, the mathematical
expectation of the above formula can be approximated empirically through observed
samples, which is

L̂(A, B) = 1

N

N∑
n=1

κ(a(n), b(n)) (4)

where κ(·, ·) adopts the generalized Gaussian density function, and it is defined as:

κ(a, b) = α

2β�(1/α)
exp(−β−α|a − b|α) = γα,β exp(−λ|a − b|α) (5)

where γα,β = α
2β�(1/α)

, λ = β−α , α > 0 denotes the shape factor, β > 0 denotes
the scale factor, �(·) denotes the gamma function, and γα,β denotes the normalization
constant.

Similar to MCC applied to KAF, the optimal weight vector of the filter can usually
be solved by minimizing the generalized correntropy loss (GCL) function [30], and it
is


GCL = κα,β(0) − E
[
κα,β(e)

] = γα,β − 1

N

N∑
n=1

κα,β(e(n))

= γα,β

[
1 − 1

N

N∑
n=1

exp(−λ|e(n)|α)

] (6)

where e(n) = a(n) − b(n). Next, the Hessian matrix with respect to the error e of

GCL is calculated to investigate the properties of the GCL function, which is

HGCL(e) = −αλγα,β

N
diag(�1(αλ|e(1)|α − (α − 1)), . . . ,

�N (αλ|e(N )|α − (α − 1))) (7)

where �n = |e(n)|α−2 exp(−λ|e(n)|α). From obtained Hessian matrix (7), we can
obtain two properties as follows:

(1) if 0 < α ≤ 1, HGCL(e) ≤ 0 for any e with e(n) �= 0(n = 1, . . . , N );
(2) if α > 1, HGCL(e) ≥ 0 for any e with |e(n)| ≤ [(α − 1)/αλ]1/α(n = 1, . . . , N ).

From the above properties we can get that if and only if α > 1 and |e(n)| ≤
[(α − 1)/αλ]1/α(n = 1, . . . , N ), HGCL(e) ≥ 0. That is, the GCL is convex. When
these conditions are not satisfied, GCL as the cost function is not strictly globally
convex. As a result, the optimal value cannot be found when solving the cost function.
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3 Proposed Algorithm

In this section, we derive the KGHCG algorithm in detail. Firstly, we create a GHC
function based onGCC function andHQmodeling. Then, the parameters are optimally
solved by the CG method for the GHC function of the kernel space. In addition, an
online VP approach is adopted to propose KGHCG-VP to reduce the computational
complexity. Finally, convergence properties and complexity of proposed method are
investigated.

3.1 Generalized Half-Quadratic Correntropy

As mentioned in Sect. 2.2, the Hessian matrix of the GCL function is positive-definite
if and only if certain conditions are met. In other words, the global convexity of GCL is
difficult to guarantee since its Hessian matrix is not strictly positive definite, and thus
GCL cannot directly handle convex optimization tasks. Luckily, the HQ framework
ensures that the objective function is strictly convex. Specifically, a GHC criterion is
proposed by introducing the intermediate variable V to transform nonconvex issues
into fully convex issues.

The GCC criteria contain an exponential function as f (x) = exp(−x), and its
conjugate function is f̃ (v) = v − v ln(−v) with v < 0. For the convex function of
the GCC criteria, the following proposition is made.

Proposition 1 The exponential function of GCC is conjugate functions of the convex
functions f̃ (v) = −v ln(−v) + v with v < 0. That is

exp(−λ|e(n)|α) = sup
v<0

{
vλ|e(n)|α − f̃ (v)

}
(8)

where the upper bound value is obtained at v = − exp(−λ|e(n)|α).

Proof By the conjugate function theory, we have the conjugate function of f̃ (v), which
is

f̃ ∗(u) = sup
v<0

{
uv − f̃ (v)

}
= sup

v<0
{uv − v + v ln(−v)} (9)

Then, we set h(v) = uv − v + v ln(−v). h(v) reaches its maximum value when
v = − exp(−u), expressed as hmax(v) = exp(−u). Therefore, rewritten formula (9)
is given by

f̃ ∗(u) = sup
v<0

{uv − v + v ln(−v)} = exp(−u) (10)

where v = − exp(−u). In addition, we make u = λ|e(n)|α and obtain

f̃ ∗(λ|e(n)|α) = sup
v<0

{
vλ|e(n)|α − v + v ln(−v)

} = exp(−λ|e(n)|α) (11)
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where the upper bound value is obtained when v = − exp(−u), the maximum value
is exp(−λ|e(n)|α), and the proposition is proved. ��

Based on the above discussion, the solution of GCL objective function (6) can be
equivalent to solving the following optimization function; we have

max
v<0

N∑
n=1

{
v(n)λ|e(n)|α − f̃ (v(n))

}
(12)

For a given v(n), optimization objective (12) is equivalent to minimizing the
weighted least squares problem by GHC objective function, which is

min
v<0

N∑
n=1

(
−v(n)λ|e(n)|α−2e(n)2

)
(13)

where v(n) = − exp(−λ|e(n)|α).
Next, the Hessian matrix of GHC function (13) is calculated, and we get

HGHC(e) = diag
(
−2λv(1)|e(1)|α−2, −2λv(2)|e(2)|α−2, . . . , −2λv(N )|e(N )|α−2

)

(14)

Since v(n) < 0, we can obtain Hessianmatrix (14) of the GHC loss function strictly
positive definite, ensuring that GHC is a strictly convex function. Compared to GCC,
objective function (13) solves nonconvex to global convex optimization. Then, we
utilize the conjugate gradient method to calculate.

First, we defineminimizingGHC function (13) as a quadratic function optimization
objective, which is given by

min
1

2

∥∥∥√
V

(
dT − UTw

)∥∥∥2 ⇒ min
w

1

2
wTUVUTw − dVUTw (15)

where d = [d(1), d(2), . . . , d(N )], U = [u(1), u(2), . . . , u(N )], w is the weight
vector, and V is the intermediate variable, which is denoted as

V = diag(−2v(1)λ|e(1)|α−2, . . . ,−2v(N )λ|e(N )|α−2) (16)

Then, we utilize the CG approach to minimize the GHC objective function to
propose the GHC-CG algorithm, which is similar to CGLS [24]. For a given data
stream {u(n), d(n)}, initializations are set to w(0) = 0, r(0) = V(dT − UTw(0)),
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s(0) = Ur(0) and p(1) = s(0), and the optimization mechanisms are described as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(n) = VUT p(n)

ς1(n) = 〈s(n − 1), s(n − 1)〉/〈UT p(n), v(n)
〉

w(n) = w(n − 1) + ς1(n) p(n)

r(n) = r(n − 1) − ς1(n)v(n)

s(n) = Ur(n)

ς2(n + 1) = 〈s(n), s(n)〉/〈s(n − 1), s(n − 1)〉
p(n + 1) = s(n) + ς2(n + 1) p(n)

(17)

where v denotes the intermediate vector, ς1 and ς2 denote learning parameters, r is
the residual vector, s denotes the residual vector of normal equations, and p denotes
the search direction.

3.2 Kernel Generalized Half-Quadratic Correntropy Conjugate Gradient Algorithm

According to the GHC objective function, the weighted least squares problem is
applied to the kernel space, which is

min
v<0

N∑
n=1

(
−v(n)λ|e(n)|α−2e(n)2

)
=min

θ

1

2

∥∥∥√
V

(
dT − Kθ

)∥∥∥2 (18)

where θ is the expansion coefficient, which needs to be estimated. K is the kernel
matrix, which is expressed as

K =

⎡
⎢⎢⎢⎣

κ(u(1), u(1)) κ(u(1), u(2)) · · · κ(u(1), u(N ))

κ(u(2), u(1)) κ(u(2), u(2)) · · · κ(u(2), u(N ))
...

...
. . .

...

κ(u(N ), u(1)) κ(u(N ), u(2)) · · · κ(u(N ), u(N ))

⎤
⎥⎥⎥⎦

N×N

(19)

Then, we minimize the GHC function using the CG method. For the KGHCG
algorithm, the expansion coefficient θ and kernel matrix K update mechanism are
very important. We define the kernel matrix K as

K(N ) =
[
K(N − 1) g(N )T

ḡ(N ) q(N )

]
N×N

(20)

where g(N ) = [κ(u(1), u(1)), . . . , κ(u(N − 1), u(N ))] andq(N ) = κ(u(N ), u(N )).
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The weight vector w(N ) is obtained by kernel trick and mathematical induction.

w(N ) = w(0) +
∑N

n=1
ς1(n) p(n)

=
∑N

n=1
ς1(n)

∑N

i=1
π i
i+1s(i − 1)

=
∑N

n=1

(∑N

i=n
ς1(i)π

i
n+1

)
s(n − 1)

= U
[∑N

n=1

(∑N

i=n
ς1(i)π

i
n+1

)
r(n − 1)

]

= U (E(N )ξ(N )) = Uθ(N )

(21)

whereπ i
n+1 = ς2n+1ς2n+2 · · · ς2i withπn

n+1 = 1.E(N ) = [r(0), r(1), . . . , r(N − 1)],
θ(N ) = E(N )ξ(N ), where the nth element of ξ(N ) is defined by

ξn(N ) =
∑N

i=n
ς1(i)π

i
n+1 = ξn(N − 1) + ς1(N )πN

n+1 (22)

Since [θ(N−1); 0] is a good approximation of θ(N ), it does not need to iterate over
the number of data streams, and only needs one or two iterations to obtain superior
parameter performance. Hence, [θ(N − 1); 0] is used as the initial value to replace
θ(N ). And the update of θ(N ) about the KGHCG algorithm with two iterations is
expressed as

θ(N ) = [θ(N − 1); 0] + (ς1(1) + ς2(2)ς1(2))r(0) + ς1(2)r(1) (23)

At this point, the initial residual calculation formula is given by

r(0) = V(N )(dT − K(N )[θ(N − 1); 0])
= V(N )

([
d(N − 1)T

d(N )

]
−

[
K(N − 1) g(N )T

ḡ(N ) q(N )

] [
θ(N − 1)

0

])

=
[

I 0
0T v(N )

][ (
d(N − 1) − θ(N − 1)TK(N − 1)

)T
d(N ) − ḡ(N )θ(N − 1)

]

= [
e(N − 1), v(N ) (d(N ) − ḡ(N )θ(N − 1))

]T

(24)

where v(N ) = 2λ|e(N )|α−2 exp(−λ|e(N )|α), e(N ) = (r(1) − ς1(2)v(2))T and
e(N ) = (d(N ) − ḡ(N )θ(N − 1)).

In addition, since the size of the kernel matrix is determined by data scale, more
and more computing resources need to be undertaken with the passage of time. To
deal with the drawback of infinite expansion of the kernel matrix, the VP method [41]
as the sparsification strategy is used. This criterion generates a more compact network
by selecting samples with valid information, which further reduces the computational
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complexity. And it is defined as

cos(u, u′) =
〈
ϕ(u), ϕ(u′)

〉
F

‖ϕ(u)‖F‖ϕ(u′)‖F
(25)

Then we compare the distance cos(u, u′)with the predefined threshold τ that deter-
mines the level of sample sparseness. If cos(u, u′) > τ , (ϕ(u), d(n))will be discarded.
Otherwise, (ϕ(u), d(n)) will be added to the existing dictionaryD, and the expansion
coefficient and residual will be updated in real time according to the adaptive mecha-
nism, achieving a good compromise between prediction accuracy and computational
efficiency.

The procedure of the KGHCG-VP algorithm is detailed in Algorithm 1.

Algorithm 1: online KGHCG-VP algorithm
Input: samples {u(n), d(n)}
Output: d̃(n + 1)
Parameters setting: Gaussian kernel width σ , shape parameter α, scale parameter β, dictionary size
D
Initialization: U(1) = u(1), q(1) = κ(u(1), u(1)), q(1) = √

q(1),K(1) = q(1), θ(1) =
d̄(1)/q(1), e(1) = 0, D = 1
while n = 2, 3, . . . , N do

{u(n), d(n)} is available
q(n) = κ(u(n), u(n))

g(n) = [κ(uD (:, 1) , u(n)), . . . , κ(uD (:, D) , u(n))]
cos(u(n), uD) = gn(D)/[√q(n)qn−1(D)]
if max {|cos(u(n), uD)|} < τ then

D = D + 1
U(D) = [U(D − 1), u(n)], q(D) = [

q(D − 1),
√
q(n)

]
K(D) =

[
K(D − 1) g(n)T

ḡ(n) q(n)

]

e(n) = d(n) − ḡ(n)θ(D − 1)
v(n) = 2β−α |e(n)|α−2 exp(−β−α |e(n)|α)

r(0) = [e(D − 1), v(n)e(n)]T , v(1) = K(D)r(0)
μ(0) = 〈v(1), r(0)〉, ς1(1) = μ(0)/〈v(1), v(1)〉
r(1) = r(0) − ς1v(1), s(1) = K(D)r(1)
μ(1) = 〈s(1), r(1)〉, ς2(2) = μ(1)/μ(0)
v(2) = ς2(2)v(1) + s(1), ς1(2) = μ(1)/〈v(2), v(2)〉
θ(D) = [θ(D − 1); 0] + (ς1(1) + ς2(2)ς1(2))r(0) + ς1(2)r(1)
e(D) = (r(1) − ς1(2)v(2))T

end
end

3.3 Convergence Analysis of KGHCG

For the proposed KGHCG algorithm, the update rules of weight and direction vectors
of (17) are as follows
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{
w(n + 1) = w(n) + ς1(n) p(n)

p(n + 1) = s(n) + ς2(n) p(n)
(26)

where s(n) is the residual vector of normal equations (negative gradient vector), and
the core concept of the direction vector is to search for the minimum value of the loss
function, where lim

n→∞ inf ‖s(n)‖ = 0.

In [42], descent conditions s(n) p(n + 1) < 0 [37] of conjugate gradient and (26)
together constitute the Zoutendijk criteria, which are defined as

{
w(n + 1) = w(n) + ς1(n) p(n)

s(n) p(n + 1) < 0
(27)

where direction vector p(n) and negative gradient vector s(n) satisfy the following
inequality

∞∑
n=1

(s(n − 1) p(n))2

‖ p(n)‖2 < +∞ (28)

Then, we prove convergence by contradiction.

Proposition 2 Based on (26), the proposed algorithm converges to the minimum value
of the loss function, where

lim
n→∞ inf ‖s(n)‖ = 0 (29)

Proof First, we assume that the above Proposition 2 is false, i.e., lim
n→∞ inf ‖s(n)‖ ≥ δ,

where δ is an arbitrarily small constant.Multiplying both sides of the negative direction
vector s(n) in (26), we have

s(n − 1)T p(n + 1) = s(n − 1)T s(n) + s(n − 1)T ς2(n + 1) p(n)

⇒ ς2(n + 1) = s(n−1)T p(n+1)
s(n−1)T p(n)

≈ s(n)T p(n+1)
s(n−1)T p(n)

(30)

��
Then, calculating the 2-norm on both sides of the direction vector p(n + 1) of (26)

at the same time, and it is

‖ p(n + 1)‖2 = ‖s(n) + ς2(n + 1) p(n)‖2
= ‖s(n)‖2 + 2s(n)T ς2(n + 1) p(n) + ς2(n + 1)2‖ p(n)‖2
= ‖s(n)‖2 + 2s(n)T

[
p(n + 1) − s(n)

] + ς2(n + 1)2‖ p(n)‖2
= ς2(n + 1)2‖ p(n)‖2 + 2s(n)T p(n + 1) − ‖s(n)‖2

(31)
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Substituting the learning factor into formula (31), we obtain

‖ p(n + 1)‖2 =
(
s(n)T p(n + 1)

s(n − 1)T p(n)

)2

‖ p(n)‖2 + 2s(n)T p(n + 1) − ‖s(n)‖2

(32)

Next, dividing both sides of Eq. (32) by
(
s(n)T p(n + 1)

)2
, we have

‖ p(n + 1)‖2(
s(n)T p(n + 1)

)2 = ‖ p(n)‖2(
s(n)T p(n + 1)

)2 + 2

s(n)T p(n + 1)
− ‖s(n)‖2(

s(n)T p(n + 1)
)2

= ‖ p(n)‖2(
s(n)T p(n + 1)

)2 −
( ‖s(n)‖
s(n)T p(n + 1)

− 1

‖s(n)‖
)

+ 1

‖s(n)‖2

≤ ‖ p(n)‖2(
s(n)T p(n + 1)

)2 + 1

‖s(n)‖2 (33)

Further, we can obtain the scaling inequality by

(
s(n)T p(n + 1)

)2
‖ p(n)‖2 ≥

[
1

‖s(0)‖2 + 1

‖s(1)‖2 + · · · + 1

‖s(n − 1)‖2
]−1

=
(
n−1∑
i=0

1

‖s(i)‖2
)−1

≥ δ2

n

(34)

As
∑∞

n=1 δ2/n = +∞, we get the inequality of direction vector p(n) and negative
gradient vector s(n)

∑∞
n=1

(
s(n)T p(n + 1)

)2
‖ p(n)‖2 ≥ +∞ (35)

which is different from(28) in theZoutendijk criteria. So the assumption lim
n→∞ inf ‖s(n)‖

≥ δ is wrong.
Since lim

n→∞ inf ‖s(n)‖ = 0 is guaranteed, the convergence of the proposed

algorithm can be obtained, and its convergence is further verified by simulation exper-
iments.

3.4 Computational Complexity andMemory Usage of KGHCG

According to the complete idea of the proposed algorithm KGHCG, Table 1 shows
its computational complexity comparison with KLMS [20], KRMC [35], KRMC-VC
[22], and KRGMC [39] at the N th iteration. Due to its simple structure, although
KLMS [20] has the smallest computational complexity, the prediction accuracy and
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Table 1 Computational complexity of different models

Models Additions Multiplications Divisions

KLMS [20] N N 0

KRMC [35] 4N2 + 4N 4N2 + 4N + 2 1

KRMC-VC [22] 4N2 + 4N + L + 2 4N2 + 4N + L + 2 2

KRGMC [39] 5N2 + 5N 5N2 + 5N + 4 4

KGHCG 2N2 + 8N 2N2 + 10N + 2 3

convergence speed are the worst. Because of the introduction of variable centers c, the
number of additions,multiplications, and divisions ofKRMC-VC [22] is L+2 (L is the
number of sliding data), L , and 1more than that of KRMC [35], respectively. Although
the division operation increases at each iteration compared with KRMC [35] and
KRMC-VC [22], the coefficient of O(N 2) of KGHCG is smaller, and computational
complexity of KGHCG is still lower than their cost. In comparison with KRGMC
[39] and KGHCG based on GCC and its variation GHC, the recursive calculation of
the former consumes the largest computational burden, and the latter KGHCG based
on the CG method has excellent performance at a low computational burden. It has
2N 2 + 8N additions, 2N 2 + 10N + 2 multiplications, and 3 divisions.

Overall, the computational complexity of the proposed KGHCG is in the middle of
other algorithms, and its convergence speed and prediction capability are comparable
to those of algorithms based on recursive calculation. When all algorithms are sparse,
their computational complexity uses the number of dictionaries D instead of N , with
no extra cost for additions, multiplications, and divisions.

Furthermore, memory usage depends on the size of the kernel matrix of the online
algorithms. Specifically, KLMS [20] requires O(N ) memory. The order of memory
required for KRMC [35], KRMC-VC [22], andKRGMC [39], andKGHCG is O(N 2).
When the dictionary size D << N , KGHCG-VP and other sparse algorithms need
less memory budget, and their order is O(D2).

4 Experimental Results

In this section, the robustness of KGHCG algorithm and its sparse version KGHCG-
VPwill be verified in three time series. One of them is the benchmarkMG chaotic time
serieswith alpha-stable, and the others are real-world datasetswith ENSO time series
andBeijing air quality time series. In addition, a variety of online algorithms, including
KLMS [20], KRMC [35], KRGMC [39], KRMC-VC [22], KRMC-ALD, KCG-AC
[37], and QKRGMC [30], are used to compare with proposed online algorithms to
evaluate the superior performance.

For the online prediction algorithm, its goal is to effectively improve the conver-
gence speed while ensuring the accuracy of time series prediction. As a result, the
complexity of the algorithm is characterized by dictionary size, training, and testing
time. MSE, root MSE (RMSE), symmetric mean absolute percentage error (SMAPE),
and R2 are used to describe the prediction accuracy, which are given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MSE = 1
N

N∑
n=1

(y(n) − d(n))2

RMSE =
√

1
N

N∑
n=1

(y(n) − d(n))2

SMAPE = 100%
N

N∑
n=1

2|y(n)−d(n)|
|y(n)|+|d(n)|

R2 = 1 −
N∑

n=1
(y(n)−d(n))2

N∑
n=1

(d(n)−d̄)
2

(36)

where d(n) and y(n) stand for the actual value and the estimated value, d̄ stands for
the average of the actual value, and N stands for the size of the samples.

4.1 Mackey–Glass Time Series

In this part, the benchmark MG chaotic time series is considered to investigate the
influence of non-Gaussian noise for the proposed methods, and it is calculated by the
nonlinear differential equation:

dx(t)

dt
= 0.9x(t) + 0.2x(t − ζ )

1 + x(t − ζ )10
(37)

where ζ = 17 and the initial value is 0.5. The anti-noise ability of KGHCG algorithm
is demonstrated by adding alpha-stable noise (the characteristic exponent is 1.8, the
skewness is 0.5, the scale and location are 0.0001 and 0.2). In the online task, we make
the past 10 steps x(k), x(k − 1), . . . , x(k − 9) to predict the next 5 step x(k + 5).
And the shapes of training samples and clean testing samples are 1500*10 and 500*1,
respectively.

In the first trial, we explore the influence of the shape parameter α on GCC and
the proposed GHC criteria with non-Gaussian noise, and we set both the Gaussian
kernel width σ and the scale parameter β to 1. Then, we plot the variation of the
steady-state MSE with α ∈ [1, 3]. As shown in Fig. 2, the filtering accuracy of the
proposed GHC-based KGHCG algorithm dramatically outperforms the competitor in
most conditions of α. In particular, the steady-state MSE of the proposed KGHCG is
the smallest at α = 2.25.

Furthermore,we explore the effects of the shapeparameterα and the scale parameter
β of KGHCG. Considering α, β ∈ [1, 4], the grid search method is utilized to find the
optimal parameter combination. We take the last 300 sets of data from the training set
as the validation set and visualize the RMSE index to evaluate the prediction results
of KGHCG in Fig. 3. It clearly shows that there is a positive correlation between
parameter β and the RMSE index, and the value of RMSE increases after slightly
decreases for parameter α alone. Finally, when the optimal α and β values are 2.25
and 1, the RMSE value of KGHCG reaches a minimum of 0.0439.
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Fig. 2 The influence of the
shape parameter α under GCC
and proposed GHC for MG
chaotic time series with
alpha-stable noise

Fig. 3 Error situations under different α and β by KGHCG for MG chaotic time series with alpha-stable
noise

Table 2 Parameters setting of different methods for MG chaotic time series (η is the step parameter. γ is
the regularization factor. σ ′ is the bandwidth of the correntropy. α is the shape factor. β is the scale factor. c
is the center location of the kernel. L is the number of sliding data. ν, ξ and τ are the predefined threshold.
ε is the quantization size)

Methods η γ σ ′ α β c L ν ξ ε τ Kernel type Kernel width

KLMS [20] 0.2 – – – – – – – – – – Gauss 1

KRMC [35] – 0.5 1 – – – – – – – – Gauss 1

KRGMC [39] – 0.5 – 2.25 1 – – – – – – Gauss 1

KRMC-VC [22] – 0.5 1 – – 0 1 – – – – Gauss 1

KGHCG – – – 2.25 1 – – – – – – Gauss 1

KRMC-ALD – 0.5 1 – – – – 0.017 – – – Gauss 1

KCG-AC [37] – – – – – – – – 0.99 – – Gauss 1

QKRGMC [30] – 0.5 – 2.25 1 – – – – 0.115 – Gauss 1

KGHCG-VP – – – 2.25 1 – – – – – 0.99 Gauss 1
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Fig. 4 a Average learning curves of basic algorithms. b Average learning curves of sparse algorithms for
MG chaotic time series with alpha-stable noise

In the second trial, the robustness of KGHCG and KGHCG-VP is investigated by
comparing the two groups, namely basic algorithms and sparse algorithms. Table 2
provides parameters setting of all online algorithms. As shown in Fig. 4, the con-
vergence performance of different algorithms is visualized, and simulation results of
different methods are obtained in Table 3. Based on the above experimental results,
one can get the following conclusions:

(1) Due to the poor adaptability of MSE to alpha-stable noise, KLMS [20] has
the weakest convergence performance. In addition, compared with KRMC [35],
KRGMC [39], andKRMC-VC [22], the proposedKGHCG,which combinesGHC
criterion and CG method, has the strongest adaptability to non-Gaussian noise in
Fig. 4a.

(2) Combining Fig. 4b and Table 3, KGHCG-VP, which introduced the sparse tech-
nique VP, can stably converge to the minimum value compared with the other
three sparse algorithms under the condition that the dictionary is approximately the
same. RMSE, SMAPE, and R2 of KGHCG-VP are 0.0502, 0.0427, and 0.9507,
respectively, following KGHCG and still superior to KLMS [20], KRMC [35],
KRGMC [39], and KRMC-VC [22]. Although the accuracy of KGHCG-VP is
slightly lower than that of the original KGHCG, computation time is significantly
shortened and the predicting speed is accelerated.

(3) By observing prediction curves and error distributions for the MG chaotic time
series in Fig. 5, KGHCG-VP can effectively track the change of the MG chaotic
time series with excellent fitting results, and its final error distributions present the
characteristics of a normal distribution. From the perspective of sparsity, KGHCG-
VP can generate a compact dictionary structure and still maintain good prediction
performance.

4.2 El Nino-Southern Oscillation Time Series

The ENSO dataset is one of the most significant and widely influential chronological
climate signals in the Earth’s system and has been proven to contain potentially chaotic
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Table 3 Simulation results of different methods for MG chaotic time series

Methods Training time Testing time RMSE SMAPE R2 Dictionary

Baseline KLMS [20] 4.4018 0.0198 0.1029 0.0934 0.7940 1500

KRMC [35] 11.7934 0.0189 0.0616 0.0548 0.9262 1500

KRGMC [39] 17.2894 0.0193 0.0522 0.0457 0.9469 1500

KRMC-VC [22] 11.6462 0.0185 0.0503 0.0435 0.9510 1500

KGHCG 9.5413 0.0176 0.0431 0.0372 0.9638 1500

Sparsity KRMC-ALD 0.9400 0.0073 0.0677 0.0594 0.9134 288

KCG-AC [37] 0.9000 0.0093 0.0638 0.0579 0.9208 276

QKRGMC [30] 0.7824 0.0096 0.0608 0.0538 0.9287 273

KGHCG-VP 0.6792 0.0073 0.0502 0.0427 0.9507 282

Fig. 5 Prediction curves and error distributions of KGHCG-VP for MG chaotic time series with alpha-
stable noise

properties [32]. Therefore, the accurate study of it not only contributes to the early
warning of meteorological disasters, but also provides important assistance for the
prediction of future climate trends. Hence, climate and sea surface temperature indi-
cators are utilized to make a five-step prediction of the Nino 3.4 indicator. According
to the phase space reconstruction theory (PSRT), we use the C-C method to recon-
struct 1452 groups of ENSO datasets including monthly Pacific Decadal Oscillation
and Southern Oscillation Index, Nino 1.2, Nino 3, Nino 3.4, and Nino 4 from January
1900 to December 2020 from the National Oceanic and Atmospheric Administration
(http://www.psl.noaa.gov/gcos_wgsp/Timeseries/), and calculate that the embedding
dimension and the delay time are [2, 2, 2, 2, 3, 3] and [4, 4, 3, 3, 4, 3], respectively.
After that, we split the reconstructed data into training samples and testing samples
with a ratio of 4:1.

For ENSO time series prediction, the parameters setting of different methods is
shown in Table 4. Real-world datasets are often polluted by various adverse factors,
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Table 4 Parameters setting of different methods for ENSO time series ( η is the step parameter. γ is the
regularization factor. σ ′ is the bandwidth of the correntropy. α is the shape factor. β is the scale factor. c is
the center location of the kernel. L is the number of sliding data. ν, ξ and τ are the predefined threshold. ε
is the quantization size)

Methods η γ σ ′ α β c L ν ξ ε τ Kernel type Kernel width

KLMS [20] 0.1 – – – – – – – – – – Gauss 47

KRMC [35] – 0.1 2 – – – – – – – – Gauss 47

KRGMC [39] – 0.1 – 2.5 1 – – – – – – Gauss 47

KRMC-VC [22] – 0.1 2 – – 0.5 1 – – – – Gauss 47

KGHCG – – – 2.5 1 – – – – – – Gauss 47

KRMC-ALD – 0.1 2 – – – – 0.009 – – – Gauss 47

KCG-AC [37] – – – – – – – – 0.995 – – Gauss 47

QKRGMC [30] – 0.1 – 2.5 1 – – – – 2.9 – Gauss 47

KGHCG-VP – – – 2.5 1 – – – – – 0.998 Gauss 47

Fig. 6 a Average learning curves of basic algorithms. b Average learning curves of sparse algorithms for
ENSO time series

which can degrade the performance of prediction models. Therefore, we demonstrate
the adaptability and scalability of the proposed algorithms in natural environments by
visualizing the testing MSE of different online algorithms for the prediction of Nino
3.4.

(1) As shown in Fig. 6, whether the online algorithms are sparse or not, the testing
MSEofKGHCGhas the best convergence performance, followed byKGHCG-VP,
and its stability gradually shows over time.

(2) Table 5 summarizes the simulation results by different algorithms for the ENSO
time series. Compared with the KGHCG algorithm, the testing time of KGHCG-
VP significantly slumped by 66.3%. Although the prediction accuracy is slightly
decreased, it is worth sacrificing tiny precision for a significant speedup in online
tasks. In other words, KGHCG-VP has both low computational cost and high
prediction accuracy. The prediction curves in Fig. 7 further confirm the high adapt-
ability of the proposed algorithms on the ENSO dataset.
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Table 5 Simulation results by different methods for ENSO time series

Methods Training time Testing time RMSE SMAPE R2 Dictionary

Baseline KLMS [20] 1.6823 0.0129 1.0510 0.0324 0.3350 1150

KRMC [35] 5.2324 0.0133 0.4536 0.0135 0.8761 1150

KRGMC [39] 7.7886 0.0121 0.3019 0.0093 0.9451 1150

KRMC-VC [22] 5.2016 0.0116 0.5576 0.0157 0.8128 1150

KGHCG 5.3470 0.0089 0.2725 0.0082 0.9553 1150

Sparsity KRMC-ALD 0.3770 0.0049 0.5018 0.0150 0.8484 180

KCG-AC [37] 0.2971 0.0032 0.3044 0.0093 0.9442 146

QKRGMC [30] 0.2295 0.0033 0.3421 0.0109 0.9295 146

KGHCG-VP 0.2763 0.0030 0.2905 0.0087 0.9492 133

(3) Error boxplots and scatter plots are drawn after each iteration, respectively, and
the prediction accuracy is visually judged from Figs. 8 and 9. What is clearly
presented in Fig. 8 is that the error range and the normal distribution curve of
the proposed KGHCG and KGHCG-VP are small and concentrated. In addition,
although the regression lines and baselines of KRGMC [39], KGHCG, KCG-
AC [37], and KGHCG-VP have a small gap, KGHCG has the highest prediction
accuracy, followed by KGHCG-VP when the R2 index and scatter distribution are
considered at the same time.

4.3 Beijing Air Quality Time Series

To further validate the efficacy of the proposed KGHCG-VP algorithm on large sam-
ples, we design multi-step prediction experiments using different sparse algorithms.

Fig. 7 Prediction curves and error distribution by KGHCG-VP for ENSO time series
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Fig. 8 Boxplots and distributions of prediction errors by different methods for ENSO time series. The left
side is the error boxplot, and the right side is the normal curve of error distributions. The black rectangle
represents the median error. The shorter the height of the boxplot on the left, the closer the median is to
zero, the smaller the vertical range of the error distribution curve on the right, and the fatter the horizontal
range near the zero value, indicating the higher the prediction accuracy of the model

Fig. 9 Scatter plots of predicted and observed Nino3.4 by different methods for ENSO time series. The
solid blue line is the regression line, and the dashed black line is the 1:1 baseline. The smaller the angle
between the regression line and the baseline, the higher the prediction accuracy of the model
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In practical meteorology, the changes of atmospheric pollution concentrations are
highly nonlinear and chaotic, and accurate prediction of them has an important effect
on the improvement of human health and environmental quality. Therefore, we use
the Beijing air quality time series to forecast PM2.5 concentration. Among them, the
input variables are hourly PM2.5, PM10, SO2, NO2, O3, and CO in 2021. The output
target is PM2.5 index and the horizons are one-step, five-step, and ten-step prediction.
Through PSRT, the embedded dimension and delay time are calculated as [3,3,3,3,4,4]
and [10,10,10,10,8,10], respectively. After that, we select 80% of the reconstructed
8000 datasets as the training set and the rest as the testing set.

For the Beijing air quality time series, the parameters setting of different sparse
algorithms is shown in Table 6. Table 7 summarizes simulation results for multi-step-
ahead PM2.5 prediction. Obviously, compared with the KGHCG algorithm that loads
complete dictionaries into the model, KGHCG-VP effectively filters the input data
according to the sparsification strategy. Finally, a compact dictionary of size 250 is
generated, which greatly improves computational efficiency and facilitates fast real-
timeprediction. For comparisonof prediction precision,RMSEand R2 ofKGHCG-VP
are consistently excellent. On the contrary, the SMAPE indicator performs poorly.
Therefore, we further calculate the change rate between different horizons of SMAPE
and obtain the conclusion that the change rate of KGHCG-VP from five step to ten step
is the smallest (12.17%). Combining the testing time, RMSE, and R2, KGHCG-VP
can still maintain high prediction accuracy while shortening the operation time.

In addition, we plot the variation trend of R2 under different steps in Fig. 10. It is
intuitively observed that KGHCG-VP has the highest prediction accuracy for one-step
prediction, and the change between different steps is the smallest. By calculating the
change rates of R2 regarding all sparse algorithms, the change rates of KGHCG-VP
are the smallest, which are 23.84% and 55.82%, respectively. The numerical results
are consistent with the observed results, which proves the superiority of the proposed
algorithm.

Finally, we also visualize the learning curves of different sparse algorithms for
multi-step prediction of the PM2.5 indicator in Beijing, and we conclude from Fig. 11
that the prediction accuracy gradually decreases as the prediction range increases, but
the fitted curve of KGHCG-VP is still superior to the competitors. Especially in the
prediction of ten-step, KGHCG can effectively track the changes of time series, which
further demonstrates the efficiency of the algorithm.

Table 6 Parameters setting of different methods for Beijing air quality time series ( η is the step parameter.
γ is the regularization factor. σ ′ is the bandwidth of the correntropy. α is the shape factor. β is the scale
factor. c is the center location of the kernel. L is the number of sliding data. ν, ξ and τ are the predefined
threshold. ε is the quantization size)

Methods η γ σ ′ α β c L ν ξ ε τ Kernel type Kernel width

KRMC-ALD – 1e−5 300 – – – – 0.45 – – – Gauss 135

KCG-AC [37] – – – – – – – – 0.82 – – Gauss 135

QKRGMC [30] – 3.4 – 1.25 0.5 – – – – 100 – Gauss 135

KGHCG-VP – – – 1.25 0.5 – – – – – 0.80 Gauss 135
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Table 7 Simulation results of different sparsity methods for Beijing air quality time series

Step Methods Training time Testing time RMSE SMAPE R2 Dictionary

One-step KRMC-ALD 15.9589 0.0219 9.6948 0.4012 0.9142 212

KCG-AC [37] 16.6106 0.0234 9.4599 0.5149 0.9183 271

QKRGMC [30] 15.3835 0.0228 9.7071 0.3819 0.9140 207

KGHCG-VP 14.7651 0.0202 8.2007 0.4641 0.9386 250

Five-step KRMC-ALD 15.7458 0.0217 19.1356 0.5344 0.6657 212

KCG-AC [37] 16.4261 0.0260 18.2173 0.7764 0.6970 271

QKRGMC [30] 15.3570 0.0213 19.2038 0.5310 0.6633 207

KGHCG-VP 15.0203 0.0200 17.6752 0.6942 0.7148 250

Ten-step KRMC-ALD 15.6174 0.0220 27.6992 0.6411 0.2996 212

KCG-AC [37] 16.3829 0.0250 29.5268 0.8852 0.2041 271

QKRGMC [30] 15.3380 0.0220 27.9799 0.6531 0.2853 207

KGHCG-VP 14.4896 0.0204 27.3769 0.7787 0.3158 250

Fig. 10 The R2 index of
different sparse methods for
multi-step prediction of PM2.5
concentration in Beijing

5 Conclusion

This paper proposes a robust KGHCG algorithm. To be specific, our work is the first to
develop a GHC criterion applied to KAF, which utilizes HQ optimization to cope with
thenonconvexproperty of theGCCfunction.After that, the usageof theCGmethodhas
a positive effect on the convergence performance and prediction accuracy of KGHCG.
In addition, the KGHCG-VP algorithm using the sparse strategy can resist the non-
Gaussian noise while reducing the computational burden significantly. Experimental
results show that KGHCG and its sparse variants have superior performance for online
prediction tasks.

In our future work, we will consider the combination of KAF and evolving fuzzy
systems to design an approach with strong structural adaptation and excellent adapt-
ability in non-Gaussian noise environments. In addition, proper sparsificationmethods
will also enhance the online prediction performance of the model, which is worthy of
further study.
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Fig. 11 Prediction curves of different sparsity methods for multi-step prediction of PM2.5 concentration in
Beijing
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