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Abstract
The research work presented in this paper discusses the traditional methods of design
of fractional-order filters and their shortcomings and proposes a method of deriving
the physically realizable Chebyshev low-pass fractional-order filters of order (1 + α)
which produce an optimum magnitude response. The filters of (1 + α) order are
derived in terms of a rational transfer function of order N = 3. The proposed method
utilizes different nature-inspired evolutionarymetaheuristic algorithmswhich traverse
the non-uniform,multidimensional,multimodal, nonlinear space andproduce the coef-
ficients of the polynomial for desiredfilters effectively.Comparisons aremade between
the reported literature and presented work on various key factors like robustness and
magnitude errors in stopband and passband. It has been observed that the proposed
work outperforms the work reported in the literature with minimum and maximum
errors being −58.9dB and −31.46dB. SPICE implementations of the proposed fil-
ters by operational amplifiers (Op-Amps) and operational transconductance amplifiers
(OTAs) have been shown. It is observed that the implemented filters closely follow
the magnitude curve of ideal filters with a mean square errors of −74.97dB and
−70.94dB for 1.5-order and −69.81dB and −86.13dB for 1.7-order filters for Op-
Amp and OTA-based filters, respectively. This justifies the feasibility and accuracy of
the proposed filters in practical environment.
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1 Introduction

Fractional calculus is a branch of mathematics related to the differentiation and inte-
gration of orders that are non-integer in nature. The branch has gained popularity in
various fields and is being used in multiple interdisciplinary and applied fields [20]
including bio-instrumentation [46, 58], control systems [11, 21], signal processing [6,
7, 56], circuits [51, 54, 61], and agriculture and modelling [33, 39, 63]. The fractional-
order circuits offer the advantage of having greater degrees of freedom based on their
parameters as compared to the integer order [60]. They also offer the advantage of
exploiting the intermediate range of attenuation which helps to process the dynamic
nature of real-world applications. A lot of research works have been followed to real-
ize the fractional elements physically [5, 10, 13, 19, 40]. Though there are FOEs
present as supercapacitors, electrolytic capacitor, etc. [47], the open literature related
to circuit-based realizations suggests that compact integrated circuits for FOE are
still unavailable. Therefore, various approximation techniques like continued fraction
expansion (CFE) and rational approximation (RA) [49] are used for the realization
of fractional circuits from integer-order circuits using passive RC tree networks [69].
The general fractance device or the constant phase element (CPE) has been used to
realize different electrical and electronic circuits, especially the fractional-order fil-
ters (FOFs) and their analogue counterpart [4, 27, 53]. These analogue circuits can
be designed using basic building blocks such as operational amplifiers (Op-Amps),
current conveyers (CCs), and operational transconductance amplifiers (OTAs).

The fractional-order calculus is based on two general approaches of defining the
derivatives of fractional orders: (1) Riemann–Liouville (RL) and (2) Caputo [49].
These techniques define the αth-order differentiation and integration of a function.
Realization of these techniques is based on fractional-order elements. In the circuit
theory, a fractional-order element is defined as an element with impedance Z(s) pro-
portional to sα , where α is the fractional order and κ is a constant [30, 36] and is
defined as

Z(s) = κsα (1)

One of the most common applications of fractional-order arithmetic in electri-
cal and electronic circuits to design FOFs which explore the intermediate range of
attenuation and are used in signal processing. The filters are designed utilizing either
fractional-order elements [30] or their equivalent ladder network defined by mathe-
matical approximations like CFE and RA [12, 66].

Chebyshev filters are one such filters that find applications in signal processing
and biomedical instrumentation. They are popular for separating different groups of
frequencies and are widely used in the filtering of biomedical signals like ECG [14,
32, 57] and speech signal processing. Chebyshev filters offer higher speed and faster
roll-off [61] compared to other filters. The faster roll-off is attained by allowing rip-
ples in either passband or stopband. These filters derive their name from Chebyshev
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Fig. 1 Magnitude response of Chebyshev low-pass filter

polynomials given by P.L. Chebyshev. The polynomial defines the filter characteristics
and is used as a design parameter. The filters are distinguished as type 1 and type 2
filters depending on if the ripples exist in the passband or stopband, respectively. The
proposed work deals with the design of a fractional-order type 1 Chebyshev filter. The
magnitude response for a normalized type 1 Chebyshev filter [61] is defined as

|Hn( jω)|2 = 1

1 + ε2C2
n (ω)

(2)

where Cn is Chebyshev polynomial of order n dependent on the frequency ω (rad/s)
and ε is defined in terms of prescribed passband attenuation as ε = √

10αmax/10 − 1.
αmax is the maximum attenuation of passband and is considered as 3 dB in this work,
producing the value of ε = 0.996. The magnitude response of type 1 Chebyshev filter
given by (2) is presented in Fig. 1.

The design of Chebyshev filters can be extended in the fractional domain as well.
Most of the fractional-order Chebyshev filters design methods reported in the litera-
ture depend upon approximating the desired fractional-order filters with next higher
integer-order filter. This design methodology fails to produce an optimum magnitude
response as compared to the ideal Chebyshev filter response. The motivation behind
this work is to design a simple, reliable, and efficient fractional-order low-pass Cheby-
shev filter (FOLCF) such that the magnitude response obtained closely approximates
the behaviour of an ideal FOLCF. The proposed method uses nonlinear optimization
to compare a continuous-time rational polynomial with the magnitude response of the
desired filter over a multidimensional, multimodal, non-uniform search space. In this
method, the ideal magnitude response of a type 1 Chebyshev filter of fractional-order
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has been approximated as a transfer function of integer order. The optimization is
performed by using metaheuristic evolutionary algorithms [45]. Section2 discusses
the fractional-order filters and the literature related to the design and applications.
The proposed design and methodology are introduced in Sect. 3 along with the design
equations. Different metaheuristic algorithms utilized to design the filter are discussed
as well. In the Results section, the optimized filters are presented as a graphical com-
parison between the magnitude of the integer-order filters and derived fractional-order
filters. Further, in this section, the results obtained from different metaheuristic opti-
mization algorithms such as particle swarm optimization, firefly algorithm, and real
genetic algorithm are compared based on the errors of stopband and passband and
the computation time involved. The obtained filters are also compared with different
designs available in the literature to display the superiority of the proposed design. The
higher-order FOLCF designs are proposed and compared with the existing literature.
The SPICE implementation of the optimized filter is carried out using operational
amplifiers and operational transconductance amplifier (OTA), and a comparison of
the transfer characteristics of the realized filter with the ideal filters has been made in
the Simulation section followed by the conclusion of the work.

2 Fractional-Order Filters

Fractional-order filters offer a great advantage over integer-order filters and are widely
used for signal processing, control systems, biomedical instrumentation, etc. [8, 9,
22, 29, 34, 42, 62, 65]. These filters offer the possibility of continuous variation in
the rate of attenuation in the transition band. Therefore, extensive research is being
done in the field of fractional-order filter design. However, due to the unavailability
of fractance elements commercially as IC components, most fractional-order filters
are designed by using RC/RLC ladder networks and second-order continued fraction
expansion (CFE) of sα proposed by Freeborn et al. in [26]. The authors in [52, 55] used
fractional-order capacitors to design fractional-order filters. These circuits were only
stable for (n+α) < 2 and also had issue of inherent peaking [44]. Approximation of sα

in terms of integer-order filter has been explored to design fractional-order bandpass
filters [23, 44, 50].

Conventionally, the least square approximation has been used extensively to obtain
equivalent counterparts of Butterworth, Chebyshev, inverse Chebyshev, and elliptical
filters [2, 24, 25, 27, 37, 38, 41] in fractional domain. It helps in designing an equivalent
transfer function that closely follows the response of ideal fractional-order filter by
the method of curve fitting. Different techniques have been explored for the approxi-
mations of fractional-order low-pass Chebyshev filters in [23, 26, 42, 44, 52, 53, 55].
In [2], a fractional-order complex Chebyshev filter has been designed by exploring
the fractional-order differentiation of the Chebyshev polynomial. The polynomial is
solved using fractional Taylor series. The obtained solutions are realized using CFOA,
and the Valsa CPE technique is used to approximate the fractional-order elements. In
[27] and [17], the least squaremethod and particle swarm optimization have been used,
respectively, to obtain the fractional-order filters of orders 1 + α, 2 + α and 3 + α,
where the transfer functions of the respective filters are produced by expanding the sα
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as second-order continuous fraction. The filters of orders 1.2, 1.5, and 1.8 are realized
using Tow-Thomas biquad topology with LT1037 Op-Amp in [27], and the CPE is
realized as a Foster- 1 ladder network using fourth-order CFE. The realization is feasi-
ble till 20kHz range due to constraints of the approximation. In [17], the filters of orders
1.2, 1.5, and 1.8 are realized by using OTA-based Tow-Thomas biquad topology. The
CPE is expanded as the fifth-order CFE as Foster-1 ladder network leading to tunable
FOLCF. In [64], approximation of the 1+α order FOLCF has been done by using dif-
ferent optimization algorithms like simulated annealing (SA), nonlinear search (NLS),
and interior search algorithms (ISA). The filters use two CPEs of different orders for
the design of desired filters. The filters are further realized using Tow-Thomas biquad
topology, and both the CPEs are approximated as ladder network using fourth-order
CFE. In [67], digitally programmed Chebyshev fractional-order filters of orders 1.2,
1.5, and 1.8 are designed using the nonlinear least square curve fit method. The filters
are realized by using follow-the-leader topology where current mirrors are utilized as
current division network. The value of sα is expanded as second-order CFE for the
design. A general method of designing FOCLF using s-plane poles has been presented
in [3] where the Chebyshev polynomial is solved to design a particular filter based
on the order of the filter. The realization of the CPE is done as semi-infinite ladder
networks in case the α < 1 and as general impedance converter (GIC) in case α > 1,
while in [1] filters behaving like Chebyshev low-pass filters have been designed using
the integer-order poles and the effect of change of order on poles has been studied as
well. The realization is done using passive filters and Sallen–Key filters. The papers
[2, 17, 27, 64, 67] are designed for 3 dB ripple in the passband and use second-order
CFE. A comparison of these design techniques is made in Table 1 with the proposed
work. To the best of the authors’ knowledge, the work done till date for designing
FOLCF majorly depends on comparing second-order CFE-approximated fractional-
order transfer functions with integer-order transfer functions. The second-order CFE
[66] is given as

sα ∼= (α2 + 3α + 2)s2 + (8 − 2α2)s + (α2 − 3α + 2)

(α2 − 3α + 2)s2 + (8 − 2α2)s + (α2 + 3α + 2)
(3)

This approximation methodology, however, fails to produce optimal results and
leads to large mean square errors. To prove this fact, in Fig. 2 the comparisons are
made between ideal responses of phase and magnitude of s0.5 and the second-order
CFE-approximated responses. The magnitude and phase responses of both are com-
pared using MATLAB 2019b software. It is observed that approximated curve closely
follows the ideal response at frequencies close to 1 rad/s. However, as the frequency
range increases the responses become incongruous. This proves that the approximation
method used earlier to derive the circuits lacks the precision of magnitude.

3 ProposedWork

Earlier works have majorly consisted of comparing the approximated fractional-order
functions for filters with the higher integer-order transfer functions. As shown in Fig. 2,
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Fig. 2 Comparison of ideal and second-order continuous fractional expansion approximation of s0.5

the error between the approximated and the ideal response of s0.5 does not lead to opti-
mum results. Work reported in [17, 27] used the (1 + α)-order transfer function and
compared it with the second order transfer function of the filter to obtain the values
of coefficients of the desired filters. However, it has been observed that these do not
produce the optimal results for magnitude response. The comparisons and approxi-
mations leave a significant error in the results. This work presents a technique that
reduces this error by deriving the design equations of the rational form of (1 + α)-
order filter, by comparing its magnitude with the magnitude of the ideal (1+α)-order
filter itself. Further, it uses evolutionary algorithms to optimize the transfer function
of realized FOLCF of (1+ α) order. In this work, three different nature-inspired evo-
lutionary metaheuristic optimization algorithms: particle swarm optimization (PSO),
firefly algorithm (FA), and real genetic algorithm (RGA) have been used for designing
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the FOLCF. The designs produced by each algorithm are compared based on various
key parameters like the deviation from the response of ideal (1 + α) fractional-order
LPF, stopband and passband errors in the magnitude response. The robustness, speed,
and accuracy of the algorithms have been compared further. These results predict that
the transfer functions of FOLCF derived using the PSO algorithm are themost reliable,
efficient, and optimal. A comparison is also drawn between the proposed work and
earlier designs of FOLCF through calculations of magnitude errors. Implementation
of the designed filter circuits of orders 1.5 and 1.7 based on Op-Amp 741 and OTA has
been carried out using LTspiceXVII. Moreover, the magnitude responses observed are
compared with the ideal filter responses.

3.1 Cost Function

The transfer function of any integer-order continuous time filter of order N can be
given as a rational polynomial function of s as

HI (s) =
∑M

i=0 fi sM−i

∑N
j=0 g j sN− j

(4)

where HI (s) is the rational polynomial transfer function and fi and g j are the
coefficients of the numerator and denominator polynomials, respectively, and (i =
0, 1, 2 . . . M, j = 0, 1, 2 . . . N ). The transfer function of a normalized Chebyshev
modelled low-pass filter of order n is defined by (2). The values of Cn for different
integer-order filters are defined as [61]:

C0(ω) = 1

C1(ω) = ω

C2(ω) = 2ω2 − 1

C3(ω) = 4ω3 − 3ω

Cn(ω) = 2ωCn−1(ω) − Cn−2(ω) (5)

Here, Cn is Chebyshev polynomial of order n which is also defined as a sinusoidal
function given as

Cn(ω) = cos(n cos−1 ω) ;ω < 1

Cn(ω) = cosh(n cosh−1 ω) ;ω ≥ 1 (6)

For ω ≥ 1, cosh is used in place of cos, else the value of Cn in (6) will be undefined
for ω > 1. The series expansion of (6) produces the defined values of Cn for integer-
order filters as shown in (5). To obtain the transfer characteristic of a (n + α)-order
FOLCF, (6) can be transformed and Chebyshev polynomialCn+α can be given as [31]:

Cn+α(ω) = cos((n + α) cos−1 ω) ;ω < 1
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Cn+α(ω) = cosh((n + α) cosh−1 ω) ;ω ≥ 1 (7)

Using (2) and (7), magnitude response for a normalized FOLCF Hn+α
C (s) can be

defined as

|Hn+α
C (s)| = 1

√
1 + ε2C2

n+α(ω)

(8)

To derive the optimal values of fi and g j given by (4) such that the rational poly-
nomial function mimics the response of the fractional-order filter, the cost function
for the algorithms is defined in terms of a least square error (LSE) by comparing (8)
with (4) and is given as

LSE =
M∑

i=1

||Hn+α
C (ωi )| − |HI (ωi )||2 (9)

where ω(rad/s) varies from 0.01 to 10 and is sampled over M = 10,000 in this work.
The response over this frequency range is examined to study the behaviour of both
passband and stopband effectively. In this work, to design (1 + α)-order FOLCF, a
polynomial function of order N = 3 is chosen tomatch the response of fractional-order
of 1+α. The higher the order N , the more accurate the generated results are. However,
it increases the complexity of the hardware circuit. Therefore, to avoid the hardware
overhead and retain the accuracy of the designed filters, the orders of numerator and
denominators are chosen to be N , M = 3. PSO along with FA and RGA is used to
find the minimum value of the cost function (9). These evolutionary algorithms search
through the nonlinear, multimodal, multidimensional, non-uniform search space to
produce 8 coefficients

[
f3 f2 f1 f0 g4 g3 g2 g1 g0

]
of integer-order

transfer function given by (4), which produce the minimum value of (9) and best
matches the response of the Chebyshev modelled fractional-order filter.

3.2 Evolutionary Algorithms

The proposed design uses three optimization algorithms; PSO, FA, and RGA. Particle
swarm optimization is one of the relatively novel metaheuristic computation tech-
niques which is evolutionary in nature and is based on the swarm behaviour of birds
and fishes [18, 35]. The equations for the algorithm are given as follows:

xi, j+1 = xi, j + νi, j+1 (10)

νi, j+1 = w jνi, j + a1r1(Ppb,i, j − xi, j ) + a2r2(Pgb,i, j − xi, j ) (11)

where xi, j+1 and vi, j+1 are the position and velocity of the particle i at j +1 iteration
step, respectively. The PSO can be further improved by using formulations like the
constriction factor method (CFM) or particle neighbourhoods [15, 35, 70, 71] which
have been used in this work as

νi, j+1 = K [νi, j + a1r1(Ppb,i, j − xi, j ) + a2r2(Pgb,i, j − xi, j )]
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K = 2

|2 − φ − √
φ2 − 4φ|

φ = a1 + a2;φ > 4 (12)

where K is constriction coefficient depending on φ and φ depends on acceleration
coefficients a1 and a2 as given in (12)).

The firefly algorithm is based on the flashing behaviour of the fireflies [72]. The
brightness or flash of a firefly acts as an attraction agent to other fireflies. The behaviour
of firefly algorithm is governedby (13) inwhich the attractiveness factorβ(r)decreases
monotonically with respect to distance. The randomization factor κ decreases as well
with each iteration to search for more precise solutions in the localized search space.
The movement of each firefly x j is calculated as a function of attractiveness and the
vector between positions of two fireflies as given by (13).

β(r) = β0 exp(−γ r2i j )

κ(iter) = κmax − (κmax − κmin)

N
∗ i ter

x j = xi + β0 exp(−γ r2i j ) ∗ (x j − xi ) + κ ∗
(

rand − 1

x

)

(13)

Genetic algorithms are based on techniques derived from evolution and genetics
(crossovers, mutations, and selection). The versions of genetic algorithms are based
on choice of mutation, crossover technique, and selection technique [28].

The pseudocodes for all three algorithms are presented in the Appendix, and the
respective parameters for the algorithm are stated in Tables 2, 3, and 4. These values
have been chosen by running multiple cycles of code by varying the parameters.
The values of the coefficients are taken to be greater than 0.001 such that the values
are positive to ensure the stability of the transfer function. Along with the necessary
condition of stability, the sufficient condition has been fulfilled by including the death
penalty [16] in the algorithms.

Table 2 Key parameters of PSO Parameter Value

xmin, xmax 0.001, 30

Population size 50

Maximum iterations 500

Velocity range 0.2*(xmax − xmin)

κ 1

a1, a2 2.05
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Table 3 Key parameters of FA Parameter Value

xmin, xmax 0.001, 30

Population size 50

Light absorption coefficient γ 1

Attraction coefficient β0 2

Mutation coefficient α 0.2

Damping ratio αdamp 0.98

Uniform mutation range δ 0.05 ∗ (xmax − xmin)

Table 4 Key parameters of RGA Parameter Value

xmin, xmax 0.001, 30

Population size 100

PC 1

β 1

Mutation coefficient μ 0.01

σ 0.1

Selection Roulette wheel selection

Crossover Double point crossover

4 Results

The cost function of the required fractional-order filter defined by (9) is optimized
by running the evolutionary algorithms. These traverse the multimodal and nonlin-
ear space to find the coefficients to produce the optimum cost by reducing the error
between (4) and (8). The parameters for each algorithm are chosen specifically to
obtain the best results for given number of iterations as presented in Tables 2, 3, and 4.
The coefficients of the integer-order polynomial defined by (4), which is used to design
the 1+α-order filter have been obtained by running the three optimization algorithms.
These coefficients are summarized in Table 5. The value of α is considered from 0.1
to 0.9. The magnitude responses of the obtained FOLCF with the specified coeffi-
cients have been plotted in linear scale in Fig. 3 and semi-log scale in Fig. 4. Plots of
Figs. 3a and 4a correspond to FOLCF responses obtained through PSO, Figs. 3b and
4b correspond to FOLCF responses obtained through FA and Figs. 3c and 4c corre-
spond to FOLCF responses obtained through RGA. In these figures, the magnitude
responses for first- and second-order filters and display the behaviour corresponding
to individual fractional-order by showing the required change in the slope for each
curve. A slope of −20(n+α) dB/dec is observed corresponding to a curve associated
with (n+α) FOF. The slopes can be seen increasing by a factor of −2 dB/dec with an
increase in order by 0.1. While all three algorithms produce the filters following the
ideal fractional-order Chebyshev low-pass filters, it has been observed that the plots
for the PSO optimized LPFs are more accurate. This analysis has been derived from
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Table 5 Values of coefficients of the rational polynomial obtained through PSO, FA, and RGA

Optimization f3 f2 f1 f0 g3 g2 g1 g0

α = 0.1

PSO 0.001 2.467 18.022 6.578 3.67 23.232 24.047 6.638

FA 0.001 0.918 14.583 14.992 1.448 18.684 29.628 14.81

RGA 0.006 13.681 9.924 10.404 16.962 23.626 21.53 10.022

α = 0.2

PSO 0.001 1.894 14.724 6.478 4.132 21.346 20.538 6.701

FA 0.001 2.235 19.853 10.139 5.093 28.831 29.217 10.414

RGA 0.002 12.275 10.012 10.41 18.256 23.003 22.519 9.939

α = 0.3

PSO 0.001 1.797 17.313 10.404 5.887 28.714 27.047 11.102

FA 0.001 1.412 17.135 13.363 4.946 29.738 30 14.171

RGA 0.016 8.84 13.174 8.63 16.816 24.946 23.445 8.6

α = 0.4

PSO 0.001 0.882 14.358 15.221 4.949 30 30 16.588

FA 0.001 2.891 17.804 6.461 11.136 29.805 23.984 7.331

RGA 0.047 8.675 12.5 9.554 19.188 25.633 24.457 9.795

α = 0.5

PSO 0.001 1.384 14.931 9.459 9.351 30 24.584 11.152

FA 0.001 1.321 14.331 9.98 8.605 29.64 24.588 11.693

RGA 0.067 8.943 10.541 8.808 20.668 23.592 22.417 9.259

α = 0.6

PSO 0.001 1.286 13.064 7.048 11.445 26.716 21.061 8.808

FA 0.001 0.514 12.037 11.124 8.448 30 24.321 13.649

RGA 0.033 7.463 10.023 10.807 20.47 23.739 25.663 11.48

α = 0.7

PSO 0.001 0.867 10.138 5.588 11.189 21.932 17.329 7.303

FA 0.001 0.355 10.199 11.089 9.092 29.625 23.383 14.268

RGA 0.038 6.712 9.014 10.297 20.582 24.155 24.251 11.659

α = 0.8

PSO 0.001 0.829 12.782 7.704 17.187 29.83 23.944 10.422

FA 0.001 0.724 11.324 9.145 14.187 30 23.701 12.287

RGA 0.151 5.896 10.228 9.167 22.239 25.814 24.353 11.281

α = 0.9

PSO 0.001 0.001 9.374 6.406 15.599 24.328 20.028 8.903

FA 0.001 1.238 16.684 4.558 29.07 29.969 27.345 6.386

RGA 0.045 3.753 10.299 7.536 21.124 24.574 22.994 9.592
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Fig. 3 Magnitude plot of 1+α-order FOLCF compared to first- and second-order Chebyshev filter in linear
scale based on coefficients obtained by: a PSO b FA c RGA

the fact that PSO plots for fractional-order filters show properly distinguished plots,
which lie within the curves of first- and second-order plots with equidistant treads. In
the subsequent subsection, this observation has been confirmed analytically as well.

4.1 Comparison of Magnitude Responses of Obtained Filters

The results obtained from the three optimization algorithms are further compared on
the basis of errors observed in stopband and passband. The stopband error (SE) and
the passband error (PE) are calculated as [43]

ERROR = 20 log10

√∑Q
i=1 ||H1+α

C (ωi )| − |HI (ωi )||2
Q

dB (14)

where 1 < ω < 10 for SE and 0.01 < ω < 1 for PE and Q is number of frequency
points over which error is measured (1000 in this work).
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Fig. 4 Magnitude plot of 1 + α-order FOLCF compared to first- and second-order Chebyshev filter in
semi-log scale based on coefficients obtained by: a PSO b FA c RGA

Table 6 summarizes the calculated PE and SE for all three algorithms. It is seen
that the error produced by PSO in stopband and passband is minimum compared to
the other two algorithms which infers that the performance of PSO obtained filters is
the best among the three.

The comparative analysis of the algorithms for the passband and stopband errors is
shown in Fig. 5a, b, respectively. These figures draw the error histogram for α varying
from 0.1 to 0.9 for PSO, FA, and RGA. The errors for PSO are plotted as a line graph,
while the errors for the FA and RGA are plotted as columns for clear comparison. The
line plot for the PSO treads much below the columns of SE and PE of FA and RGA.
The maximum stopband and passband errors produced by PSO are −49.86 dB and
−34.99 dB for 1.6 and 1.4 order FOLCF, respectively.

4.2 Comparison of the Convergence Rate of Obtained Filters

All three algorithms are further compared on the basis of convergence and the time
taken to iterate. The comparison is done by running all three algorithms for 1.5 order
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Fig. 5 Comparison of magnitude errors of filters obtained through PSO, FA and RGA a passband error b
stopband error

Fig. 6 Comparison of the convergence rate of three algorithms

Fig. 7 Comparison of PSO, FA, and RGA based on simulation time

and recording the time of the simulation. The graphs for best cost with respect to
the number of iterations are displayed in Fig. 6, and the time taken to exhaust the
stopping criteria is compared in Fig. 7. The stopping criterion considered here is the
number of maximum iterations. The value is taken as 500 for all three algorithms. It
is observed that PSO takes the least amount of time. This is due to the fact that the
PSO does not require ranking the solutions in each iteration first and then exploring
the best solution, while both the real genetic algorithm and firefly algorithm require
the ranking and selection of best solutions in each iteration, thus, consuming greater
time.
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4.3 Comparison of Magnitude Responses of Obtained Fractional-Order Chebyshev
Filter Using PSOwith the Literature

As discussed earlier, Chebyshev modelled low-pass fractional-order filters have been
approximated and designed using different techniques in the past. Some techniques
involve manipulation of the Chebyshev differential equation [2, 14]. Some involve
approximating the second-order CFE of sα for low-pass fractional-order filters with a
higher integer-order Chebyshev low-pass filters [17, 27, 57, 67]. A comparison of the
proposed FOLCF on the basis of stopband and passband errors for some state-of-the-
art works reported in the literature on FOLCF has been made.

Table 7 along with Fig. 8a, b infers that the performance of the FOLCFs designed
in present work is better as compared to the other techniques existing in the literature.
It has been observed that the magnitude error generated in both the passband and
the stopband is much smaller in the proposed designs. This is due to the fact that
designing technique used in this paper utilizes the magnitude function of an ideal low-
pass Chebyshev fractional-order filter to derive the coefficients of the continuous time
rational transfer function. This helps in producing an accurate and optimummagnitude
response rather than comparing the approximated fractional-order filters of (n + α)

order with transfer function of (n + 1) integer-order low-pass filter. From Table 7, it
has been calculated that the stopband and passband errors observed in the proposed
FOLCF are much lower than the others reported in the literature by an average of
25.98 dB.

4.4 Designing of Higher-Order Filters

The technique presented in this paper can be used to derive the higher-order FOLCFs
as well. This can be done by increasing the order of denominator and numerator
polynomials in (4) while ensuring the stability of the circuit. This method has been
used to derive the (2 + α)-order FOLCFs. The order of the numerator polynomial is
taken as 3 (M = 3) and that of the denominator polynomial is increased to 4 (N = 4).
The coefficients for the rational transfer function are derived using the evolutionary
algorithms can be defined in terms of matrix x as

x = [
f3 f2 f1 f0 g4 g3 g2 g1 g0

]
(15)

Table 8 shows the values of coefficients obtained for (2 + α)-order Chebyshev
LPF using PSO. Figure9 shows the magnitude plot of the obtained filters, juxtaposed
with the second- and third-order Chebyshev LPF. The magnitude plots of the designed
(2+ α)-order filters lie within the magnitude curves of Chebyshev low-pass filters of
second and third orders and the uniform treading in the slopes over the range signifies
the accurate design of the filters.

FOLCFof anydesired order canbedesignedusing the similar techniqueof replacing
the value of Cn by C(n+α) where (n+α) corresponds to the order of the desired filter.
The magnitude of the desired filter can be compared with the rational polynomial of
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Fig. 8 Comparison of the proposed work with the reported literature based on a passband error and b
stopband error
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Table 8 Values of coefficients of rational polynomial obtained through PSO to design (2+α)-order Cheby-
shev LPF

Order f3 f2 f1 f0 g4 g3 g2 g1 g0

2.1 0.001 0.001 13.151 6.543 0.001 30 30 28.842 9.212

2.2 0.001 0.001 8.952 8.826 0.001 25.316 30 27.877 12.503

2.3 0.001 8.953 8.834 0.001 29.179 30 30 12.282 0.001

2.4 0.001 0.001 6.549 9.793 0.001 28.002 30 30 13.555

2.5 0.001 6.252 8.825 0.001 30 26.652 30 11.544 0.001

2.6 0.001 3.141 8.762 2.515 22.251 30 30 18.651 3.003

2.7 0.001 1.947 8.644 2.387 23.067 30 30 18.582 2.66

2.8 0.001 0.001 1.273 8.894 0.001 30 22.237 30 10.041

2.9 0.001 0.001 0.001 8.738 0.001 30 21.131 30 9.352

Fig. 9 Comparison of (2 + α)-order FOLCF with the 2nd and 3rd order Chebyshev LPF a linear scale b
dB scale

order N where the value of N increases with the value of n for the denominator and
numerators.

4.5 Comparison of Magnitude Responses of Obtained (2+ ˛)-Order Filter Using
PSOwith PreviousWork

In this subsection, the obtained (2 + α)-order Chebyshev filters are compared with
the similar filters available in the literature. Filters of orders 2.2, 2.5, and 2.8 are
compared based on stopband and passband errors in the magnitude. The comparison
is made over a frequency range of 0.01 < ω < 1 for the passband and 1 < ω < 10
for the stopband. The results of the comparison are presented in Table 9. The results
are further plotted graphically in Fig. 10 for a better comparison. It is observed that
the SE and PE for the proposed work are much smaller than the work available in the
literature. The maximum error produced in stopband is −48.84 dB for the 2.8-order
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Table 9 SE and PE comparison
of (2 + α)-order FOLCF with
the reported literature

Order 2.2 2.5 2.8

PE (dB) PSO −44.28 −35.62 −30.99

[27] −15.88 −20.55 −27.85

[17] −18.71 −20.45 −26.9

SE (dB) PSO −56.44 −53.16 −48.84

[27] −38.1 −39.98 −44.77

[17] −24.3 −40.61 −47.89

Fig. 10 Comparison of the proposed work with the literature based on SE and PE of magnitude for (2+α)-
order FOLCF a passband error b stopband error

FOLCF in the stopband and −30.99 dB for 2.8 FOLCF in the passband. The errors
are lower than the reported literature by an average of 14.38 dB.

4.6 Stability Analysis

The designed filters are tested on the basis of stability. During the computation stage
through the algorithms, it was ensured that the obtained coefficients follow the neces-
sary and sufficient conditions for stability. Thiswas doneby introducing a death penalty
in the algorithms. Stability of the designed filters is tested by plotting the pole-zero
map of the transfer functions in the s-plane. If any pole lies in the unstable region, the
filter is said to be unstable. Figure11a–c shows the pole-zero plots for (1 + α)-order
FOLCF filters obtained through PSO, FA, and RGA algorithms. Figure11d shows the
pole-zero plots for (2+ α)-order FOLCF filters obtained through the PSO algorithm.
These figures show that all the poles lie in the stable region, confirming the stability
of the designed filters.

4.7 SPICE Implementation of (n+ ˛)-Order Filters

The rational transfer function of FOLCF can be represented as a signal flow graph
shown in Fig. 12. This signal flow graph has been implemented using the Op-Amp-
based follow-the-leader topology andOTA-based circuits, as shown in Figs. 13 and 14,
respectively. Both circuits are realized using LTspiceXVII by implementing the trans-
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Fig. 11 Pole-zero plots for the designed filters a (1+ α) PSO b (1+ α) FA c (1+ α) RGA a (2+ α) PSO

fer function as respective circuits using Op-Amp 741 and LT1228. The time constant
for the circuit is considered to be 1 ms. The values of capacitances, transconductance,
and resistances have also been scaled by a factor of 1000 to ensure feasibility.

4.7.1 Design Using Op-Amp-Based Circuit

The transfer function of the SFG can be given as

Vout
Vin

= b0s3 + b1s2 + b2s + b3
s3 + a1s2 + a2s + a3

. (16)

The feedforward and feedback path resistor values are obtained by equating the
transfer function of the circuit with the canonical form of the desired fractional-order
filter obtained using PSO. The circuit diagram is presented in Fig. 13, and the values
of the resistors for the design of 1.5- and 1.7-order filters are presented in Table 10.
All the simulations are done using LTspiceXVII. It has been observed that the slope
of the 1.5-order FOLCF is −30.42 dB/dec and that of the 1.7-order filter is −34.53
dB/dec, which is very close to the ideal slopes of − 30 dB/dec and − 34 dB/dec for
orders 1.5 and 1.7, respectively.
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Fig. 12 Signal flow graph corresponding to the rational transfer function for (1+α) FOLCF implementation

Fig. 13 Op-Amp-based equivalent circuit for design of (1 + α)-order FOLCF

Table 10 Values of resistors for
the design of 1.5- and 1.7-order
FOLCF using Op-Amp-based
circuit shown in Fig. 13

Resistor 1.5 1.7

R1(�) 838.5 1.53k

R2(�) 311.7 510.2

R3(�) 380.4 645.7

R4(�) 988.6 2k

R5(�) 6.8k 12.9k

R6(�) 626.3 1.1k

R7(�) 9.35M 11.2M
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Fig. 14 OTA-based equivalent circuit for design of (1 + α)-order FOLCF

4.7.2 Design Using OTA-Based Circuit

The OTA-based implementation of fractional-order filters has been done in the [59,
68] as they provide compact circuits with tunability. An equivalent OTA-based cir-
cuit can be implemented based on the SFG, as shown in Fig. 14. The values of the
transconductance can be found by comparing Eq. (16) with Eq. (17).

Vout
Vin

=
g9
g4
s3 + g6g10

g4C1
s2 + g1g5g10

g4C1C2
s + g1g2g3g10

g4C1C2C3

s3 + g7g10
g8C1

s2 + g1g11g10
g8C1C2

s + g1g2g10g12
g8C1C2C3

(17)

Taking the values g1, g2, g3, g4, g8,C1,C2 and C3 as 1 and scaling the components
by 1000 with the time constant as 1 ms, values of different circuit elements can be
calculated. Table 11 shows the values obtained to designOTA-based FOLCFs of orders
1.5 and 1.7 shown in Fig. 14. The slopes obtained for the realized filters are −30.67
dB/dec and − 34.46 dB/dec, respectively.

The magnitude plots produced by LTspice are shown in Fig. 15. In this figure,
the frequency characteristics for the 1.5- and 1.7-order low-pass Chebyshev filter
have been plotted for both Op-Amp-based circuit and OTA-based circuit. The results
obtained from circuit implementation are compared with the ideal fractional-order
filters. The plots showing the error curve between the magnitudes of designed filters
and the ideal filters for both 1.5- and 1.7-order FOLCF are shown in Fig. 15. It can
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Table 11 Values of
transconductance for the design
of 1.5- and 1.7-order FOLCF
using OTA LT1228

Transconductance 1.5 1.7

g5 (mS) 1.579 1.814

g6 (mS) 0.146 0.155

g7 (mS) 3.172 3.925

g9 (mS) 0.107 0.089

g10 (mS) 1.012 0.499

g11 (mS) 2.599 3.101

g12 (mS) 1.179 1.307

Fig. 15 Comparison of the realized filter with the ideal filter response. a 1.5-order FOLCF magnitude
response b 1.7-order FOLCF magnitude response

be observed that the plots are nearly overlapping. The maximum and mean square
errors between the filters are presented in Table 12. The maximum error between the
curves for 1.5 order is observed to be − 38.82 dB and − 29.47 dB for Op-Amp and
OTA, respectively, and for 1.7 order it is observed to be − 24.37 dB and − 44.02 dB.
This is sufficient to say that the proposed design outperforms the reported literature.
The improvement in the values of the magnitude errors is large, and thus the proposed
design produces optimum magnitude response. Further, the realization of the filters
does not involve the approximation of the CPE as ladder networks. This ensures the
substantiality of the filter characteristics over a large range as opposed to approximated
CPE-based filters. The comparisons of the realized 1.5- and 1.7-order filters with the
ideal filter response showcase minimal error and confirm the significant feasibility
of the filters. Moreover, Sect. 4.5 shows that the proposed work may be extended to
design higher-order filters and the comparison with the literature of (2 + α)-order
filters showed that higher-order designs outperform the traditional designs as well.
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Table 12 Error comparison of
the spice implemented and the
ideal 1.5- and 1.7-order FOLCF

Magnitude Error 1.5 1.7

Maximum error (dB) Op-Amp −38.82 −24.37

OTA −29.47 −44.02

Mean square error (dB) Op-Amp −74.97 −69.81

OTA −70.94 −86.13

5 Conclusion

Design of a (n + α)-order fractional-order Chebyshev low-pass filter which gives
the optimum magnitude response has been proposed in this paper. This is achieved
by comparing the magnitude of the integer-order equivalent function of the desired
FOLCF with the magnitude of the same ideal FOLCF. It has been observed that the
stopband and passband errors produced by the design presented in this paper are much
lower than designs presented in the literature with an average of 26.85 dB in the
passband and 25.12 dB in the stopband. All the codes for optimization were written
using MATLAB programming language and executed in MATLAB 2019b software,
and SPICE implementations have been carried out using LTspiceXVII on an Intel(R)
Core(TM) i7-10750H processor of 2.60 GHz, with 16 GB RAM. The optimization
performed by using PSO showed the best response compared to FA and the RGA.
PSO also took lesser time to exhaust the stopping criteria. This is due to the fact that
PSO does not require to rank individual solutions for each iteration, unlike the FA and
RGA. PSO also traverses the multimodal plane efficiently, and the chances of being
trapped in the local solution are minimized. It takes into knowledge all three factors
of the individual best solution, swarm best solution, and randomness. The optimized
coefficients have been used to realize the canonical form of the filter. The Op-Amp-
based FOLCFof orders 1.5 and 1.7 has been implemented usingLTspice. The designed
filters displayed the transfer characteristics of the ideal (n+α)-order Chebyshev filter
closely, and the mean and maximum errors between the proposed design and the
ideal filters showed that the proposed design produces optimum magnitude response
with significantly low errors. Mean square errors of −74.97 dB and −70.94 dB are
observed for 1.5-order FOLCF designed using Op-Amps and OTAs, respectively.
Similarly, for these designs the mean square errors of −69.81 dB and −86.13 dB are
observed for 1.7-order FOLCF. The proposed work thus presents a simple, efficient,
and reliablemethod to design (1+α)-order fractional-order low-passChebyshevfilters
with optimum magnitude. The proposed design outperforms the reported literature
effectively, and the canonical form realization proved the feasibility of the proposed
design. Thework can further be extended to design the higher-order filters as presented
or to design the high-pass or bandpass filters in the future.
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Appendix A Pseudocodes for Algorithms

PSEUDOCODEFOR PSO

begin
Randomly ini t ia l ize the position of the population
while (number of i terations are < Max. Iteration )
Evaluate fitness of particle swarm
for n = 1 to population size
Find personal best
Check for stabi l i ty and apply the death penalty
Find global best
for x = 1 to dimension of matrix x

update position of particles by (12) and (14)
end for
end for
update the inertia weight using K

end while
end

PSEUDOCODEFOR FA

begin
Randomly ini t ia l ize the position of the population
Compute the brightness of each firef ly using (15a)
while (number of i terations are < Max. Iteration )
for i=1 to n(no. of f i re f l ies )
for j=1 to n
i f (βi < β j )
Move i towards j by (15c)
end if
Evaluate the brightness of each firef ly

Check for stabi l i ty and apply the death penalty .
end for
end for
Rank the f i re f l ies and find the best solution
end while
end



2534 Circuits, Systems, and Signal Processing (2023) 42:2507–2537

PSEUDOCODEFORRGA

begin
Randomly ini t ia l ize the position of the population
Compute the fitness of each chromosome
while (number of i terations are < Max. Iteration )
Select parents
Perform Crossover
Perform Mutation
Generate offspring population
for i=1 to n (no. of offspring)
Evaluate the fitness
Check for stabi l i ty and apply the death penalty .
end for
Generate a new population with the best n chromosomes

end while
end
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