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Abstract
In recent years, researchers have considered quantum steganography and its various
methods with the development and progress of research in computation theory and
quantum signals processing. The destructive use of quantum steganography meth-
ods to establish illegal covert communications is rising, so it is essential to introduce
ways to detect hidden data in a quantum medium. Accordingly, this paper presents a
frequency-baseduniversal audio steganalysis approach todetectingquantumsteganog-
raphy. First, based on the quantum Fourier transform, the characteristic of the quantum
spectrum centroid (QSC) was computed, and its circuit network was implemented to
extract feature vectors. The proposed method classifies quantum audio signals using
a quantum machine learning approach called a quantum ensemble of quantum clas-
sifiers. This approach was implemented within the framework of the Deutsch–Jozsa
algorithm, which uses the superposition property to create an ensemble of classifiers
evaluated in parallel, significantly increasing the computational speed. The accuracy
weight of the classifiers is adjusted based on the classifiers’ performance in training
data classification; finally, the measurement of the first n qubits of the Deutsch–Jozsa
algorithmpredictswhether the quantumaudio signals belong to the stegoor clean class.
The idea stems from the classic ensemble methods that try to build more robust mod-
els by combining different classifiers. The results show that the proposed frequency
domain steganalysis method with 95% accuracy performs better than the previous
methods in the time domain.
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1 Introduction

In recent years, steganalysis of audio signals as a cover media has been one of the
most important research topics because audio data are becoming a good platform for
hiding confidential data. The main goal of steganalysis is to distinguish the modified
signals “stego” relative to the original signals “cover”. Hence, steganalysis techniques
are based on learning algorithms and feature extraction methods. With the advent
of quantum computing theory and quantum communication networks, communicat-
ing confidentially and securely has become challenging. The quantum audio signal
represents digital audio as it stores the whole digital audio in a superposition state.
The first attempt at digital audio quantum representation was made by Wang et al.
(2015) under the title quantum representation digital audio (QRDA) [23]. The QRDA
representation inspired novel enhanced quantum representation (NEQR) to store dig-
ital audio signals; it uses two entangled qubit sequences to store amplitude and time
information. Yan et al. (2017) proposed a flexible representation of the quantum audio
(FRQA) method, which displays the information of the sample amplitude values in
2’s complement system, providing a more realistic representation of the time samples
of a quantum audio signal, compared to the previous methods [4]. Li et al. (2018) sug-
gested a quantum representation of digital signals (QRDS) that, similar to previous
methods, uses two quantum sequences to store the amplitude and time information
of a digital audio signal; the amplitude information can be a non-integer value in 2’s
complement system [10]. Therefore, the amplitude value of an audio signal sample is
n + 1-qubit, including one sign qubit, m integer qubits, and n − m fractional qubits.
Moreover, Sahin et al. (2019) have proposed a quantum representation ofmultichannel
audio (QRMA) using three-qubit sequences [17].

A study divides the classical audio steganalysis approach into two general cate-
gories, compressed and non-compressed [7]. Non-compressed methods are of two
types: calibrated and non-calibrated. In the non-calibrated method, the steganalysis
features are extracted directly from the audio signal. While in calibrated methods, the
steganalysis features are obtained by comparing the audio signal with an estimated
cover signal or the hidden message. Non-calibrated methods are of two categories:
time domain and frequency domain. Steganography in the frequency domain has sev-
eral advantages. First, perceptual models can increase the permeability of data-hiding
methods. Second, the distribution of energy from the transform allows data to be
hidden throughout the audio signals. Third, changes in the frequency domain can
be more easily embedded when working with compressed audio or video. Despite
using the advantages of the frequency domain and their versatility, these methods
cause inevitable changes in the statistical features of host signals that can be used
as an efficient and effective tool in building comprehensive and accurate steganaly-
sis. Steganography methods try to hide data in areas of frequency and time signals.
The human auditory system does not understand embedded data in frequency ranges.
Therefore, feature extraction in the signal frequency domain can significantly improve
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the differentiation power of audio steganalysis. Liu et al. (2009) have used the fea-
tures based on the short-time Fourier transform (STFT), which include components of
mean, standard deviation, skewness on the second-order derivation, andMel frequency
cepstral coefficients (MFCC) [11, 12]. Wei et al. (2011) introduced a combination of
STFT-based features that consists of second-order derivation features, MFCC, audio
quality metrics, and linear prediction residue features [24].

A study by Chen et al. in 2017 suggested two LSB-based quantum audio steganog-
raphy protocols [4]. The FRQA representation is used in these protocols to store a
quantum audio signal’s amplitude and time information [4]. Furthermore, the qubit
layer concept in the LSQb algorithm is used to demonstrate the position of the qubits
in the cover quantum audio signal. So, the sequence’s least significant qubit is called
the 1st qubit layer, and the most significant qubit of the sequence is called Mst qubit
layer. The first protocol used the least significant qubit of the amplitude information
sequence. The second protocol to increase the robustness of the cLSQ method used
the qubit layers with the more substantial number for the embedding operation. In
2020, two quantum audio steganography–steganalysis methods were presented for
quantum audio signals. The steganalysis section uses the quantum power module and
the quantum Mean module in the time domain to extract the features. It performs
classification based on the quantum K-nearest neighbour (QKNN) algorithm and the
Hamming distance criterion [2, 3].

Steganography causes inevitable changes in the frequency domain’s statistical char-
acteristic of the host signal. It can be used as an efficient and effective tool to build
comprehensive and accurate steganalysis. This paper proposes a blind steganalysis
method in the quantum frequency domain. First, the quantum Fourier transform
is applied to the input quantum audio signals. Then, statistical feature vectors are
extracted from the proposed feature extraction circuit network. Finally, a quantum
ensemble classifier distinguishes "cover-audio" and "stego-audio" within the frame-
work of the Deutsch–Jozsa quantum algorithm.

The remaining paper is organized as follows. Section 2 introduces QRDS represen-
tation, some quantum arithmetic modules required in the proposed feature extraction
method, the Deutsch–Jozsa algorithm, and the quantum Fourier transform. Section 3
presents the proposed steganalysis method, which includes implementing the quantum
circuits network to extract the statistical features and the proposed quantum ensemble
classifier. Simulation results of the proposed steganalysis scheme and analysis are
presented in Sect. 4. The paper ends with a conclusion and future work.

2 Preliminaries

The first subsection introduces the quantum audio representation approach used in this
paper. The second subsection presents some of the fundamental quantum arithmetical
modules, and at the end of the subsection, the quantum Fourier transformation and its
quantum circuit network are described.
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2.1 QRDS Representation

The QRDS is one of the methods of representing digital signals in a quantum manner.
A fractional quantum sequence is used in this representation, which displays quan-
tum signals more accurately than other methods. The QRDS is a fractional quantum
sequence with length (n + 1 + l), in which n + 1-qubit is related to the storage of
signal amplitude information, and l-qubit is associated with the storage of signal time
information. Equations (1–4) express the QRDS representation for an audio signal.

|A〉 = 1√
2l

2l−1∑

t=0

|At 〉 ⊗ |t〉 (1)

|t〉 = |t0t1 . . . tl−1〉, ti ∈ {0, 1} (2)

|At 〉 =
∣∣∣Am

t Am−1
t . . . A0

t A
−1
t . . . Am−n

t

〉
, Sit ∈ {0, 1} (3)

l =
{
log2l l > 1
1, l = 1

(4)

where the signal amplitude information is stored using sequence |At 〉, which is a
fractional sequence in 2’s complement notation. In this sequence, At

m is the sign
qubit, Am−1

t . . . A0
t are integer qubits, and A−1

t . . . Am−n
t are fractionally qubits. The

time information stored by the one-qubit sequence |t〉. Figure 1 shows the audio signal
A = {3, 0.5,−1.5,−1.125,−1.25, 2} using the QRDS method.

Fig. 1 Example of a QRDS audio signal (figures and descriptions adapted from [10])
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2.2 Quantum Basic Arithmetic Modules

This subsection presents two basic arithmetic modules: adder and sum. Furthermore,
fundamental quantum modules are required to design circuits related to the proposed
feature extraction module in Sect. 3.3, like comparator [10, 22], multiplier [10, 21],
divider [10, 20], and absolute value [3]. The relevant references fully explain how to
perform the computation of these modules and their quantum circuit network.

2.2.1 Quantum Adder

The quantum addition operation adds two quantum numbers together. Because sample
values of an audio signal in the QRDS representation are signed numbers, the adder
module has been used, as suggested in [5, 10, 13, 19, 21]. The quantum ADD module
adds two quantum sequences |a〉 and |b〉, representing numbers a and b, respectively.
The quantum circuit network and the ADDmodule are shown in Fig. 2. The operation
of the ADD module can be defined using Eq. (5).

ADD|a〉|b〉 = |a〉|a + b〉 (5)

where two sequences |b〉 and |a〉 are input’ signed numbers with length (n + 1) qubits,
also two outcomes |b〉 and |a + b〉. According to Fig. 2, a quantum adder includes
2n − 1 “carry” and 2n “sum” sub-modules.

Fig. 2 The quantum circuit and its corresponding module for sum (a), carry (b), and addition for two signed
numbers (c) ((figures and descriptions adapted from [10])
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2.2.2 Quantum Sum

The quantum sum is another essential quantum arithmetic operation that computes
the algebraic sum of a series of quantum numbers, such as the sum of the amplitude
values of some samples of quantum audio. The quantum sum module suggested in
[10, 21] computes the algebraic sum of a series of QRDS audio samples. This module
and its circuit network are shown in Fig. 3, where |At 〉 = |an . . . a1a0〉 is amplitude
informationof the audio signal sampleswith lengthn+1-qubits and |t〉 = |tl−1 . . . t1t0〉
is time information with length l-qubits; Moreover, n + 1 ancillary qubits |0〉 are
employed to store the final result of the summodule. In this implementation, 2l addition
modules are used to calculate the sum of |At 〉 in 2l time position |t〉. In addition,
quantum subtraction could be performed using a quantum addition circuit network.
A black bar is placed on the left side of the ADD module to indicate the subtraction
module.

2.3 The Deutsch–Jozsa Algorithm

The Deutsch–Jozsa algorithm uses quantum parallelism and entanglement properties
to determine whether a function is constant or balanced [1, 8]. Consider a function
f : {0, 1}n → {0, 1}, where f is constant (all zeros or all ones) or balanced (half zero
and half ones). This algorithm can determine if the function is constant or balanced
with just one call. The circuit of this algorithm is shown in the figure. The steps of the
algorithm, according to Fig. 4, are as follows[8]:

Step1 Prepare the initial state |ψ0〉 = |0〉⊗n|1〉.
Step2 Apply Hadamard gate on all qubits and create the quantum states as follows :

|ψ1〉 = 1√
2n

∑

x{0,1}n
|x〉

[
1√
2
(|0〉 − |1〉)

]
(6)

Fig. 3 The quantum circuit and its corresponding module for the sum of all amplitude values (figures and
descriptions adapted from [10])
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Fig. 4 The Deutsch–Jozsa algorithm for functions with n-qubit input (figures and descriptions adapted from
[8])

Step 3 The function f is applied using a unitary transform U f : |x, y〉 →
|x, y ⊕ f (x)〉:

|ψ2〉 =
∑

x

(−1) f (x)|x〉√
2n

[ |0〉 − |1〉√
2

]
(7)

Step 4 Applying the Hadamard gate to the first n qubits and the quantum state as
follow:

|ψ3〉 =
∑

z

∑

x

(−1)x .z+ f (x)|z〉
2n

[ |0〉 − |1〉√
2

]
(8)

where x .z is the bitwise inner product modulo 2. Finally, the probability of measuring
the state |0〉⊗n is as follows:

p(0 . . . 0) =
∣∣∣∣∣
1

2n
∑

x

(−1) f (x)
∣∣∣∣∣

2

(9)

If the result of the probability function is 0, then f (x) is balanced; else, the f (x) is
constant.

2.4 Quantum Fourier Transform

The quantum Fourier transform (QFT) is a vital ingredient of many quantum algo-
rithms [6, 14]. The QFT is defined to be a linear operator with the following action
based on states |0〉, |1〉, . . . , |N − 1〉 as:

QFT| j〉 = 1√
N

N−1∑

k=0

e2π i jk/N |k〉, (10)

where exp(2π i jk/N ) = ω
jk
N and N = 2n .
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Fig. 5 QFT 1√
2
(|0〉 + |1〉) = 1√

2
(QFT|0〉 + QFT|1〉) (figures adapted from [15])

Equivalently, the action on an arbitrary state may be written as:

QFT

⎛

⎝
N−1∑

j=0

x j | j〉
⎞

⎠ =
N−1∑

k=0

Xk |k〉 = 1√
N

N−1∑

k=0

N−1∑

j=0

e2π i jk/N |k〉 (11)

where the amplitudes {Xk} are the classical discrete Fourier transform of a amplitudes
{x j }. The QFT performs a unitary operation only on basis states and does not act on
coefficients of basis states. Figure 5 shows an illustration of how QFT acts on basis
states |0〉 and |1〉.

An efficient quantum circuit for computing QFT with the n qubit state is presented
in [14]. The states |0〉, . . . , |2n − 1〉 are the computational basis for an n qubit quantum
computer. In this case, the state | j〉 can be written using binary representation j =
j1 j2 . . . jn or j = j12n−1 + j22n−2 + · · · + jn20. Furthermore, the notation 0 ·
jL jL+1 . . . jm represents the binary fraction jL/2 + jL+1/4 + · · · + jm/2m−L+1.
Using algebra, the quantum Fourier transform is obtained as:

QFT| j1, . . . , jn〉 →
(
|0〉 + e2π i0. jn |1〉

)(
|0〉 + e2π i0. jn−1 jn |1〉

)

. . .
(
|0〉 + e2π i0. j1 j2... jn |1〉

)
/
(
2n/2

)
(12)

Equation (10) makes it possible to implement a QFT circuit and proves a unitary
operator. This circuit has been implemented using elementary gates, Hadamard’s, and
Controlled-R, as shown in Fig. 6.

According to the QFT circuit, each term requires one Hadamard gate; hence, an
n-qubit Fourier transform will require n Hadamard gates. Also, the first term requires
(n − 1)Controlled-R gates, the next one requires (n − 2)Controlled-R gates, and each
following term requires one fewer Controlled-R gates. By summing up the number of
gates, n + (n − 1) + · · · + 1 = n(n + 1)/2 = O

(
n2

)
the gate is obtained. Therefore,

the computational complexity of the QFT circuit is O
(
n2

)
.
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Fig. 6 The QFT circuit using Rk , Hadamard gates and N = 2n input or n-qubit (figures adapted from [14])

3 Proposed QuantumAudio Steganalysis Schemes

The proposed steganalysis method is organized in the following four sections.

• Sect. 1: Quantum audio dataset preparation
• Sect. 2: Introduces the statistical feature extraction method based on the second-
order derivative of the quantum audio spectrum.

• Sect. 3: Implementation of the quantum feature circuit obtained from step 2.
• Sect. 4: Implementation of the quantum ensemble classifier.

3.1 Quantum Audio Dataset Preparation

Since there is no dataset for quantum signals in general, the necessary quantum audio
datasets must be created by converting classical signals into quantum form. For this
purpose, our classical audio dataset consists of 200 WAV audio files. This database
contains various audio files like music and male and female speech. These audio sam-
ples are with the specification of 44,100 Hz Sample Rates, mono, 16-bit quantization
in uncompressed, PCM encoded WAV files. They have a duration ranging from 10 to
60 s. All audio samples from the classical dataset are first converted to quantum audio
signals using the QRDS representation to produce quantum audio datasets. These
quantum signals constitute clean (cover) quantum datasets. The next step is convert-
ing the classic secret image to a quantum one using FRQA representation. In the final
step, using the three methods of cLSQ1 and pMSQ4 presented in [4], and LSFQ pre-
sented in [2, 3], the quantum image is embedded in the host’s quantum audio signal
to form the stego quantum dataset. Eventually, the necessary quantum audio dataset
will consist of the clean and stego quantum audio signals. The details of producing
the quantum audio dataset can be described as follows:

Step 1 Prepare a classic audio dataset and perform pre-processing operations on its
samples.
Step 2 Prepare the classic secret image and perform pre-processing operations on it.
Step 3 Converting audio samples of the classical audio dataset to quantum audio
samples using QRDS representation and obtaining quantum clean audio samples.
Step 4 Converting classical image to quantum image using FRQA representation.
Step 5 Embedding the secret quantum image into quantum audio samples using the
cLSQ1, pMSQ4, and LSFQ methods to obtain quantum stego audio samples.
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Step 6 Creating quantum audio datasets using clean and stego quantum audio samples.

3.2 The Proposed Feature ExtractionMethod for the Quantum Audio Spectrum

In audio signal processing, second-order derivatives are used to identify confidential
data. Given that most of the power of an audio signal is concentrated at low and
middle frequencies, hiddendata aremore embedded in thehigh-frequencydomain.The
second-order derivatives can reveal changes in high-frequency components relative to
the original audio [24]. This paper uses the quantum spectrum centroid (QSC) feature
to show introduced changes. Since the amplitude of the signal samples is sketched
only at their corresponding time index, sequence |Ai [n]〉n = 0, 1, . . . , N − 1 in
Eq. (13) is the amplitude of the nth sample of the quantum audio signal, where n is
the time index or sample number, and i is the current frame number. Also, sequence
|Ai [k]〉, k = 0, 1, . . . , N−1 is the amplitude of the kth sample of the quantum Fourier
transform (QFT) coefficients, where k is the frequency index or sample number.

{ |Ai [n]〉
n = 0, . . . , N − 1

}
→

{ |Ai [k]〉at freq. c[k]
k = 0, . . . , N − 1

}
(13)

The spectrum centroid represents the spectral energy distribution center and is a
measure for evaluating the “center of gravity” using the Fourier transforms frequency
and magnitude information. The energy of the second-order derivation concentrates at
the high-frequency domain; hence, the stego audio’s spectral centroid is greater than
the cover audio’s. Given the formula of Spectral Centroid of the digital audio signal
in [16], Quantum Spectral Centroid (QSC) can be defined as:

QSCi =
∑ N

2 −1
k=0

∣∣|c(k)〉∣∣|Ai (k)|2
〉

∑ N
2 −1
k=0

∣∣|Ai (k)|2
〉 (14)

Here,
∣∣|Ai (k)|2

〉
is the high-frequency amplitude of “cover audio” and “stego audio”

of the ith frame after the QFT operation, N is the length of the frame, and the center
frequency is |c(k)〉. Note that only half of the data are calculated due to the symmetry
of the spectrum.

3.3 Quantum Basic Arithmetic Modules

This subsection presents some modules and corresponding quantum circuits, which
are the basis for constructing the proposed feature extraction methods.

3.3.1 QFT Circuit

Weneed a quantum circuit that performsQFT operations on the audio signals inQRDS
format to design the module and the circuits associated with the extracted feature.
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Fig. 7 Proposed quantum Fourier transform circuit on QRDS audio signal

Inspired by [9], quantum Fourier transforms on QRDS audio signals are proposed as
Eq. (15).

1√
2N

N−1∑

t=0

At ⊗ |t〉 → QFT 1√
2N

N−1∑

k=0

Ak ⊗ |c〉 (15)

The QFT transforms the QRDS content from time to frequency domain. Amplitude
information in the frequency domain in the form of fractional 2’s complement is Ak .
|c〉, which is the same range as |t〉 that records the new sample position of the QRDS
signal in the frequency domain. The proposed QFT circuit on the QRDS signal is
shown in Fig. 7.

3.3.2 Proposed QFT-Based Quantum Squared-Magnitude Module

According to article [2], to compute the amplitude squared-magnitude of a sample
of a QRDS signal |A(k)〉 = |am . . . a0a−1 . . . am−n〉, first the absolute value of the
signal ||A(k)|〉 has been computed by QABS Module, next, applying the multiplier
module, amplitudemagnitude ||A(k)|〉 ismultiplied by a duplicate of itself to obtain the
amplitude squared-magnitude

∣∣|A(k)|2〉. Here, a comparator module has been used to
multiply the simultaneous samples of signal ||A(k)|〉 and its copy signal. The quantum
circuit of amplitude spectrum squared-magnitude of a sample of a QRDS signal and
its quantum module is shown in Fig. 8.

3.3.3 Proposed QuantumMultiplication Circuit for Two Value Amplitude
Squared-Magnitude and Frequency

A quantum multiplier is similar to classical multiplication, executing the mul-
tiplication operation between two quantum numbers. To compute the quantum
multiplication of two values

∣∣|A(k)|2〉, c(k), we used the quantum multiplication
operations presented in [9, 25]. In addition, for ease of presentation, we suppose
|y〉 = |ym . . . y1y0 . . . ym−n =〉∣∣|A(k)|2〉 and |k〉 = c(k). The amplitude square of
signal QRDS is a fractional quantum sequence with length n + 1. So that the most
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Fig. 8 Proposed quantum circuit of computing quantum squared magnitude for one sample of QRDS signal
amplitude spectrum
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significant qubit is the sign of qubit, the integer and fractional parts of the amplitude
have lengths m and m − n, respectively. Quantum multiplication operation (MUL
module) can be defined according to relation (16):

MUL|x〉|y〉|z〉0 = |x〉|y〉|y〉
m−1︷︸︸︷
0...0 |p〉 (16)

The qubits |z〉 and |0〉 (including n+m and n+1 qubits, respectively) are ancillary
qubits to temporarily store the result and thefinal results of themultiplicationoperation,
respectively. The ancillary qubit |p〉 stores intermediate results at each step of the
multiplication operation. The qubits |z〉 and |p〉 are initialized with a sequence of |0〉
s. The proposed multiplication operation circuit is shown in Fig. 9.

Step 1After applying a quantum Fourier transform on the input quantum audio signal,
n + 1 Toffoli gates (controlled by the |y〉 and |xi 〉 for i = 0) are applied on the qubit
|z〉, and outcome |z〉 = |ym . . . y1y0 . . . ym−n〉|x0〉will be obtained, which is one of the
input values from the first adder module. The other input from the first adder module
is initialized as |0〉⊗n+1. The intermediate result of the addition is stored in qubit |p〉,
which in step2 has been considered the input of the second adder module. At each
step, immediately after of adder module, n + 1 Toffoli gates are employed to reset |z〉
to its original state, i.e. |0〉⊗n+m .

From the second step onwards: n + 1 Toffoli gates (controlled by the |y〉
and |xi 〉 for i = 1, . . . ,m − 1) applied on qubit |z〉 and the outcome |z〉 =
|ym . . . y1y0 . . . ym−n〉|0〉⊗i |x1〉 is obtained, which is one of the input values for the
following adder modules. Another input of the adder modules is obtained from the
sum of the previous steps. The final result of the multiplication operation is as follows:

|p〉 = |pm+n . . . p1 p0〉 = |y〉|x0〉 + |y〉|0〉|x1〉 + · · · + |y〉|0〉⊗m−2|xm−2〉
+ |y〉|0〉⊗m−1|xm−1〉 (17)

3.3.4 Proposed Quantum Circuit for the Sum of the Products of Amplitude
Squared-Magnitude and Frequency

To compute the sum of products, c(k) and
∣∣|A(k)|2〉 for all samples k of the i-th frame

of a quantum audio signal, i.e.

N
2 −1∑
k=0

c(k)
∣∣|Ai (k)|2

〉
, is shown in Fig. 10. Given that only

half of the data are computed due to spectrum symmetry, we need N
2 MULL modules

and N
2 − 1 Adder module.

3.3.5 Proposed Quantum Circuit for the Sum of the Amplitudes Squared-Magnitude

Here,

N
2 −1∑
k=0

∣∣|Ai (k)|2
〉
is the sum values of QFT amplitudes squared-magnitude of the

i-th frame of a QRDS audio signal. The module presented in [10] regarding Fig. 11 is
used to compute it.



2248 Circuits, Systems, and Signal Processing (2023) 42:2235–2258

Fig. 9 Proposed quantum multiplication circuit for two value amplitude squared-magnitude and frequency

Fig. 10 Proposed quantum circuit for the sumof the products of amplitude squared-magnitude and frequency
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Fig. 11 Proposed quantum circuit for the sum of the amplitudes squared-magnitude

3.3.6 Proposed Quantum Spectral Centroid (QSC) Circuit

This feature determines the centrality of the quantum spectrum or the amplitude-
weighted average of the QFT frequency spectrum. The QSC is obtained from the

quantumdivision of the results of the previous two subsections, i.e.

N
2 −1∑
k=0

∣∣c(k)
∣∣|Ai (k)|2

〉

as the numerator and

N
2 −1∑
k=0

∣∣∣∣|Ai (k)|2
〉
as the denominator of division. Here, for ease of

presentation, suppose |y = |ym . . . y0 =
N
2 −1∑
k=0

∣∣c(k)
∣∣|Ai (k)|2

〉
and |x = |xn . . . x0 =

N
2 −1∑
k=0

∣∣|Ai (k)|2
〉
. The quantum division operation has been performed by the quantum

division module presented in [25]. Like the classical state, the quantum division is
extended to a series of subtraction operations. Additional information is stored at

a qubit of
∣∣∣

′
x
〉

=
∣∣∣∣

′
xm . . .

′
x
1

〉
′
x
0
to record the step-by-step execution of the division

operation. The circuit network and the quantum division module are shown in Fig. 12,
implemented through the following steps.

Step 1At the start of this step, according to Fig. 12, the state |xn . . . x1〉x0 is mapped to

state

∣∣∣∣
′
xm

′
x

m−1
. . .

〉
x

m−n
by then+1CNOTgates. Following that, the states |ym . . . y1〉y0

and |xm xm−1 . . . x
0
are compared using the COMmodule. When |y〉 ≥

∣∣∣
′
x
〉
, value |e0〉

of COMmodule outcome becomes |0〉 so the SUBmodule is activated to compute the

subtraction of |v1〉 =
∣∣∣

′
x
〉
−

∣∣∣
′
x
〉
, which in step2 is an input of the COM module. After

the SUB module, the first CNOT gate (e0-controlled) stores the quotient or first qubit
of the division resulting in a qubit |qm〉. Before going to Step 2, the second CNOT
gate on e0 guarantees that |e0〉 = |0〉 and also another n + 1 CNOT gate is used to

reset the state
∣∣∣

′
x
〉
to its initialized state (sequence of |0〉⊗m entries), to prepare Step2.

Step 2 The value |0〉x |0〉⊗m−1 is assigned to the qubit
∣∣∣

′
x
〉
using n + 1 CNOT gates; to

compare with the outcome of step 1. Like step 1, |e0〉 = |0〉 determined |v1〉 ≥
∣∣∣

′
x
〉
, so
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Fig. 12 Proposed quantum circuit for calculating the division operation of quantum spectral centroid

the subtraction operation |v2 = |v1 −|x is performed. After the subtraction operation,
such as the previous step, the first CNOT gate (controlled by the |e0〉) is applied
on |qm−2〉 to obtain the second division result and the second CNOT gate ensures
|e0〉 = |0〉 before proceeding to the next step. At the end of step 2, additional n + 1

CNOT gates are similarly used to reset the state
∣∣∣

′
x
〉
from |0〉x |0〉⊗m−1 to |0〉⊗m .

Iterating the above steps, the outcome of the DIV module includes quotient, i.e. |q〉,
and the result of the subtraction in the final step, i.e. |r〉, are stored.

The QSC attribute depicts the change in high-frequency components caused by
data embedding. The circuit network of computing the quantum spectral centroid is
illustrated in Fig. 13. This circuit calculates the QSC attribute for one frame of the
QRDS audio signal in the following four steps.

Step 1 Amplitude squared-magnitude, i.e.
∣∣|A(k)|2〉, is computed by the QSMmodule

presented in Sect. 3.3.2.
Step 2 Using the Mul module presented in Sect. 3.3.3 is computed c(k)

∣∣|Ai (k)|2
〉
.

Step 3 Using the SUM module presented in Sects. 3.3.4 and 3.3.5 is computed
N
2 −1∑
k=0

c(k)
∣∣|Ai (k)|2

〉
and

N
2 −1∑
k=0

∣∣|Ai (k)|2
〉
.

Step 4 Using the Divider module presented in Sects. 3.3.6 is computed QSCi =
∑ N

2 −1
k=0

∣∣c(k)
∣∣|Ai (k)|2

〉

∑ N
2 −1
k=0

∣∣|Ai (k)|2
〉 .

3.4 Proposed Quantum Ensemble Classifier within Deutsch–Jozsa Algorithm
Framework

A quantum machine learning approach is termed a quantum ensemble of quantum
classifiers. It uses the superposition property to create a set of classifiers. This approach
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Fig. 13 Proposed quantum spectral centroid circuit

combines a set of classifiers as composite predictions to achieve higher generalizability
performance. The classifier can be described as a decision function f : X → Y that
maps the input space X to the label Y . This function depends on a set of parameters
θ and training the classifier to determine the function model f (x; θ)x ∈ X is done
by fitting the parameters to the training data sample. In a binary classifier problem
where the labels are y = {−1, 1}, y ∈ Y , if a set of classifiers is denoted by E =
{θ0, θ1, . . . , θn−1}, to compute the test data label x̂ the output result of all the classifiers
is combined as:

ŷθ = sign

(
∑

θ∈E
wθ f

(
x̂; θ

)
)

(18)

where the sign is the sign function. Weight proportional to the accuracy of each clas-
sifier in a training dataset is wθ . For more details on why accuracy can be a good
weighting scheme, refer to reference [18].

The quantum algorithm for the classification of the quantum ensemble can be
computed in the framework of the Deutsch–Jozsa algorithms. The Deutsch–Jozsa
algorithm provides a simple problem that a quantum computer can solve exponentially
faster than classical [1]. Accordingly, in this paper, to determine the probability of an
input audio signal belonging to the clean or steg dataset,we used the quantumensemble
classifier in the framework of the Deutsch–Jozsa algorithm, which is illustrated in
Fig. 14. The steps of quantum ensemble classification operation in the framework of
the Deutsch–Jozsa algorithm using five quantum registers are as follows:
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|x〉︸︷︷︸
Data

⊗ |θ〉︸︷︷︸
Parameter

⊗ ∣∣ŷθ
〉

︸︷︷︸
Output one−qubit

⊗ |y〉︸︷︷︸
label one−qubit

⊗ |0〉︸︷︷︸
Accuracy one−qubit

(19)

Step 1 Dividing quantum dataset into two parts of training and test data (30% training
data and 70% test data).
Step 2 The proposed feature-extracting method is applied to the training and test data
sample using the QSC circuit network.
Step 3 The registers |θ〉 and ∣∣ŷθ

〉
are initialized in state |0〉, and hence, the initial state is

|ψ0〉 = |0〉⊗n+1|1〉. Here, n is the parameter register length (θ), and the output result
of the classifier is stored in the register of one-qubit

∣∣ŷθ
〉
. Also, in this step, the data

register |x〉 and label register |y〉 are empty (|x〉 and |y〉 = ∅).
Step 4 The Hadamard gate is applied to all qubits in step 3 as follows:

|ψ1〉 = |x〉 1√
2n

∑

θE

|θ〉|0〉|y〉
( |0〉 − |1〉√

2

)
(20)

where parameter register |θ〉 is placed into a uniform superposition.
Step 5 First, the training data and the actual label are loaded into their registers,
and then, the unitary operator U f is applied to implement non-uniform weights and
compute the function f (x; θ). This function returns the output result of the classifier
ŷθ as:

|ψ2〉 = |x〉 1√
2n

∑

θ∈E
|θ〉∣∣ŷθ

〉|y〉
( |0〉 − |1〉√

2

)
(21)

Now, if the output result of the classifier was equal to the actual label of class Y,
by using the rotating-Gate Rz , The last qubit aθ is rotated towards |0〉 and otherwise
rotated towards |1〉. This step is repeated for all training data one after the other. Finally,
the accuracy qubit is entanglement with the parameter qubits as:

Fig. 14 Proposed quantum audio steganalysis using quantum ensemble classifier in the framework of the
Deutsch–Jozsa algorithm
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1√
2n

∑

θ∈E
||θ〉〉

(√
aθ |0〉 + √

1 − aθ |1〉
)

(22)

Before the test data sample can be loaded into the data register, the |0〉-branch of the
accuracy qubit must be postselected; in other words, the measurement of the n-qubits
first (step7) occurs only when the |0〉-branch of the accuracy qubit is postselected,
and this is done by applying the Hadamard gate and then the X -gate on the accuracy
qubit. In the last phase of this step, the test data are loaded into the data register and
the unitary operator U f is applied.
Step 6 Hadamard gates are applied to n-qubits first to achieve the desired state for the
quantum ensemble as:

|ψ3〉 = 1√
Eχ

∣∣x̂
〉 ∑

θ∈E

√
aθ |θ〉∣∣ŷθ

〉
(23)

where the normalization factor is 1√
Eχ

.

Step 7 The probability of measuring
∣∣ŷθ

〉
as:

p
(
ŷθ

) =
∑

θ∈E

aθ

Eχ
= |0〉 or |1〉 (24)

So that state |0〉 is corresponded to class prediction ŷθ = −1 and state |1〉 is corre-
sponded to class prediction ŷθ = +1.

Note that for simplicity, data are processed sample by sample without probabilistic
quantum memory. The superposition of the ensemble would be broken by measuring,
so to predict the class of each test sample, the entire quantum ensemble construction
process must be repeated.

4 Experimental Results of the Proposed Steganalysis Scheme

The proposed quantum steganalysis scheme simulation has been done on a computer
with Intel(R) Core(TM) i7-6500U CPU 2.59 GHz 8 GB RAM and 64-bit operating
system, using MATLAB 2019b. The details of this implementation and the proposed
steganalyser results are as follows.

These experiments used 200 classical audio files to prepare quantum datasets, sam-
pled at 44.1 kHz and 16-bit precision. These audio signals are down-sampled in the
range [−1, 1], and each signal has 1024 samples. These files were selected as host
audio signal datasets and converted to the quantum format using the QRDS method
(n = 7, m = 4, t = 10). Then, to create the stego database, a quantum image in NEQR
format with size 1× 1024 as confidential data in the frequency domain was embedded
in 200 audio files using the quantum audio steganography techniques presented so far,
including cLSQ1, pMSFQ4 [4], and LSFQ [2, 3].

According to the above steps, 100 stego quantum audio files were created from
200 existing ones. In the next step, based on the quantum spectral centroid (QSC)
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circuit network (Fig. 13), the feature vector is extracted for each quantum signal
frame. The mean of these feature vectors for all signal frames forms the final feature
vector. Finally, the obtained vectors from the test and training dataset are given to
the quantum ensemble’s classifier within the Deutsch–Jozsa algorithm’s framework.
For the evaluation and test of the proposed steganalysis scheme, 30% of the clean and
stego datasets were used to construct the learning datasets, and another 70%were used
as test samples.

Table 1 shows the classification result of a test data instance based on the quantum
ensemble classifier proposed in Sect. 3.4. A quantum ensemble classifier is a classifi-
cation method in which the outputs of different classifiers are combined to obtain the
final answer of the ensemble classifier. For binary classification of quantum audio sig-
nals into stego and pure audio signals, the set of classes is y = {−1, 1}. If we consider
the set of classifiers as E = {θ0, θ1, . . . , θn−1}. The accuracy of the classifier is set
each time according to the output results of the classifier ŷθ in the previous training
instance [18]. According to Eq. (19), five quantum registers were used to store samples
of the training |x〉 and test data

∣∣x̂
〉
, classifier (model) |θ〉, response of each classifier∣∣ŷθ

〉
, actual label of the training data sample |y〉 and ancillary (last qubit). The steps

to achieve the results of the proposed quantum ensemble classifier prediction are as
follows:

Step 1 Prepare training data set of QRDS audio signal (clean/stego).
Step 2 Prepare an unlabelled QRDS audio signal as a test instance.
Step 3 Compute an average value of QSC feature related to frames of an audio signal
in steps 1and step 2 as the training instance |x〉 and test instance

∣∣x̂
〉
.

Step 4 Given Eq. (20), the classifier |θ〉 and the ancillary register (last qubit) are put in
a superposition state. The training instance |x〉 and its label |y〉 are empty in this step.
Therefore, classifier response

∣∣ŷθ
〉
would be initialized in the state |0〉.

Step 5 Inputting the first training instance and its actual label. Compute class of the first
instance (classifier response ŷθ ), using Eq. (21). In this step, the classifier response ŷθ
is compared with actual label y, if ŷθ = y, the last qubit, must be rotated towards |0〉
otherwise towards |1〉, by using the rotating-Gate Rz =

(
e

−i
2 0

0 e
i
2

)
.

Step 6 Repeat step 5 for all training instances. Once all training instances have been
processed, Hadamard gate and then X-gate is applied on the last qubit; the reason for
this is the elimination of classifiers with low accuracy and random guessing and the
selection of accurate classifiers (models with accuracy higher than 0.5) [1]. At the end
of this step, the quantum ensemble classifier is ready to classify the test instance

∣∣x̂
〉
.

Step 7 TheHadamard gate is applied in four elementary registers according to Eq. (23).
To combine the quantum ensemble classifier and predict the belonging of the test
instance, predicting the test instance class p

(
ŷθ

) = |0〉 indicates audio signal prob-
ability belonging to class − 1 and p

(
ŷθ

) = |1〉 indicates class + 1. After the new
test instance has been classified, all previous steps must be repeated to determine
the class of the following test instance due to the collapse of the quantum ensemble
superposition.
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Table 1 Quantum ensemble classifier prediction results within the framework of the Deutsch–Jozsa algo-
rithm

Instance Actual label y ŷθ Setting
accuracy
qubit

Predicted class
p
(
ŷθ

)

Training data |x〉 |0.632〉 − 1 + 1 Rotation
towards |1〉

|1〉 − 1 + 1 Rotation
towards |1〉

|0.512〉 + 1 + 1 Rotation
towards |0〉

|0.175〉 + 1 − 1 Rotation
towards |1〉

|0.351〉 − 1 − 1 Rotation
towards |0〉

|0.852〉 + 1 + 1 Rotation
towards |0〉

|0.703〉 + 1 − 1 Rotation
towards |1〉

|0.597〉 − 1 + 1 Rotation
towards |0〉

|0.077〉 + 1 + 1 Rotation
towards |0〉

|0.398〉 + 1 − 1 Rotation
towards |1〉

|0.533〉 − 1 − 1 Rotation
towards |0〉

|0.043〉 − 1 − 1 Rotation
towards |0〉

|0.711〉 + 1 + 1 Rotation
towards |0〉

|0.972〉 − 1 + 1 Rotation
towards |1〉

|0.275〉 − 1 − 1 Rotation
towards |0〉

|0.421〉 + 1 + 1 Rotation
towards |0〉

|0.187〉 + 1 − 1 Rotation
towards |1〉

|0〉 + 1 + 1 Rotation
towards |0〉

|0.364〉 − 1 − 1 Rotation
towards |0〉

|0.807〉 − 1 + 1 Rotation
towards |1〉

Test data
∣∣x̂

〉 |0.959〉 |0〉 class − 1
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4.1 Performance Analysis

The set of quantum audio datasets presented in the previous section have been used to
evaluate the accuracy of the proposed quantum audio steganalysis. In order to create
the stego training datasets, we used a combination of three quantum steganography
methods presented so far: cLSQ1,pMSQ4, and LSFQ. In contrast, all quantum stego
audio was tested with one quantum steganography method. The performance eval-
uation of the proposed audio steganalysis method has been performed based on the
criteria of sensitivity (SE), specificity (SP), and accuracy (ACC). These criteria are
defined as follows [3]:

The probability of correctly detecting a stego audio signal is called sensitivity (SE),
and its formula is as follows:

SE = TP

TP + FN
× 100% (25)

The probability of correctly detecting the clean audio signal is called specificity
(SP) and is defined as:

SP = TN

TN + FP
× 100% (26)

Table 2 shows the mean values of the accuracy (ACC) detection. This criterion
expresses the probability of correct classification and is defined as follows:

ACC = TN + TP

TN + FP + TP + FN
× 100% (27)

In the above equations, the parameters TN, TP, FN, and FP are defined as follows
[3]:

True-negative (TN): The number of clean signals that are correctly classified as clean
signals.
True-positive (TP): The number of stego signals that are correctly classified as stego
signals.

Table 2 The proposed steganalysis and presented methods in [2, 3] are comparisons based on cLSQ1,
pMSQ4, and LSFQ steganography methods

Steganalysis method Steganography
method

TN TP FN FP SE
(%)

SP
(%)

ACC
(%)

Proposed cLSQ1 [4] 71 73 4 3 94.8 95.94 95.36

pMSQ4 [4] 69 71 3 4 95.94 94.52 95.23

LSFQ 71 72 3 3 96 95.94 95.97

Presented in [2] LSFQ 67 66 5 5 92.96 92.62 92.89

Presented in [3] LSFQ 62 62 8 9 88.73 87.05 87.89
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False-negative (FN): The number of stego signals that are incorrectly classified as
clean signals.
False-positive (FP): The number of clean signals that are incorrectly classified as stego
signals.

In quantum audio steganalysis, there are only two references, [2, 3], and a com-
parison has been made with these references. The experimental results in Table 2
are based on 100 test samples that were processed sample by sample. For each test
instance, the training set includes 100 samples of clean audio and 100 samples of the
corresponding stego audio. Also, a 32× 32 binary image was used for embedding into
the quantum host audio signal with a length of 1024 samples. Table 2 results indicate
that the proposed steganalysis based on statistical features of the quantum frequency
domain is more accurate in detecting and classifying quantum audio signals than the
previously presented time-domain method.

5 Conclusion and FutureWork

Steganalysis of quantum signals in the context of quantum communication networks is
an issue that has been less studied despite its high importance. In this respect, this paper
presents a universal frequency domain-based steganalysis method for quantum audio
signals. First, the QRDS quantum audio database is generated from the classical audio
dataset. Then, existing quantum steganography techniques such as LSFQ, cLSQ1,
and pMSQ4 methods have also been used for embedding secret quantum images into
host quantum audio signals. Second, a feature based on quantum Fourier transforms
called the quantum spectral centroid (QSC) is defined. Then, its quantum circuit net-
work is implemented to extract a quantum feature vector. Finally, using the quantum
ensemble classification algorithm, which is implemented within the framework of
the Deutsch–Jozsa algorithm, clean and stego quantum audio signals are classified.
The results obtained from the proposed method and its comparison with two methods
previously in the time domain show more accuracy for the proposed method. In the
future work, we will try to offer new approaches to quantum audio steganalysis based
on other features based on quantum Fourier transform and quantum neural networks.
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