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Abstract
Retinal fundus images provide valuable diagnostic and clinical information in the
diagnosis of ophthalmologic diseases. Retinal blood vessel analysis provides impor-
tant diagnostic information about thinning of the retinal nerve fiber layer and alteration
in the structural appearance of the optic nerve head. Here, an accurate retinal ves-
sel detection method is proposed from fundus images using a generative adversarial
network (GAN) utilizing multiple loss functions. The proposed GAN architecture
consists of the generator as a segmentation network and the discriminator as a classi-
fication network. The generator is a multi-scale residual convolutional neural network
with skip connection and up-sampling, while the discriminator is a vision transformer
that acts as a binary classifier. The inception module extracts multi-scale features of
vessel segments from different scales and captures fine vessel segments. The discrim-
inator consists of stacked self-attention networks and position-wise fully connected
feed-forward networks inferring two-class output. The attention mechanism in the
transformer is competent to preserve both global and local information while acting
as a discriminator. The proposed GAN model segments the blood vessels more accu-
rately through the adversarial learning process to produce state-of-the-art results. In
the preprocessing stage, the contrast of blood vessels is enhanced by contrast-limited
adaptive histogramequalization algorithm.The robustness and efficacyof the proposed
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method have been evaluated on publicly available DRIVE, STARE, CHASE_DB1,
HRF, ARIA, IOSTAR, and RC-SLO databases. Different performance measures like
accuracy, sensitivity, precision, intersection of union, and F1Score are adopted to com-
pare the proposed method with the existing methods available in the literature. The
proposed method attains an accuracy of 0.9873 for CHASE_DB1 database, 0.9742
for DRIVE database, 0.9773 for HRF database, and 0.9628 for ARIA database.

Keywords Blood vessel segmentation · Fundus image · Vision transformer ·
Inception module · GAN

1 Introduction

Fundus image provides valuable information about the inner structure of eye by pro-
jecting different parts like retina, optic disk (OD), fovea, and blood vessels [1]. Retinal
blood vessel analysis provides valuable information about thinning of the retinal nerve
fiber layer and alteration in the structural appearance of the optic nerve head, which
leads to the development of reproducible glaucomatous visual field defects [2]. It is
very challenging task to segment retinal blood vessels from the fundus image due to
similar color and texture with the background. Many authors have used preprocessing
techniques like contrast enhancement and intensity transformations to visualize the
blood vessels on the retinal surface.

The vessel segmentation algorithms can be divided into two categories (traditional
instruction-based algorithms and automatic machine learning algorithms) [28]. In
instruction-based methods, different image processing algorithms like filters, edge
detection, morphological, tracking approaches, region-based segmentation, etc., are
used, whereas traditional machine learning-based approaches generally used super-
vised learning algorithms. Till date, the authors used different techniques for automatic
and accurate segmentation of blood vessels using variousmachine learning algorithms.
It needs manual efforts for labeling the context used for training the datasets. But,
recently developed deep learning algorithms give satisfactory results and eliminate
the manual segmentation of vessels. In the last couple of years, a lot of work has been
done on vessel segmentation using deep learning techniques. Many authors use differ-
ent deep neural network (DNN) architectures for vessel segmentation, among which
some networks become popular due to their robustness and accuracy. For segment-
ing biomedical images, UNet [33] is used by the researchers. It is an encoder–decoder
architecture, which reveals admirable performance. Recently, an advanced deep learn-
ing architecture namedgenerative adversarial network (GAN) is introduced to generate
new data from the distribution of known data [16]. It consists of two neural networks,
the generator and the discriminator. Both the networks are trained simultaneously. The
generator creates new synthetic images or segmentation maps from training database,
and the discriminator discriminates human-annotated vessel maps (real label) from
machine-generated vessel maps (fake label).

Uysal et al. [38] have implemented fully connected convolutional neural network
(CNN) for vessel segmentation from grayscale fundus images. In the preprocessing
stage, the authors used gray-level normalization, contrast-limited adaptive histogram
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equalization (CLAHE), and gamma correction to make the dataset appropriate for
training. The authors have used CNN layer followed by batch normalization and
ReLU. Softmax loss function is used for classifying the data into two classes, vessel
and non-vessel pixels. Gu et al. [17] have proposed a context encoder network (CE-
NET) to confinemore complex high-level information and preserve spatial information
for 2D vessel segmentation. An context extractor module (consists of a dense atrous
convolution (DAC) block and a residual multi-kernel pooling (RMP) block) is used
between encoder and decoder module. These blocks capture additional high-level
features and encompass essential spatial information.

Yan et al. [42] have trained the UNet simultaneously with a joint loss, including
pixel-wise loss and a segment-level loss. The authors introduced a feature fusion
module with a multi-scale convolution block to capture more semantic information.
The fusion module preserves the spatial information by combining spatial path with
a large kernel. Huazhu and their co-authors [31] proposed a deep vessel architecture
consisting of multi-level CNN with side output layers to learn a rich hierarchical
representation and model the long-range interactions between pixels by a conditional
random field (CRF).

Hu et al. [22] segmented the blood vessels from color fundus images using CNN
and fully connected CRFs. It uses multi-scale CNN architecture with an improved
cross-entropy loss function to train DRIVE and STARE databases. Shin et al. [36]
proposed a vessel graph network (VGN) by linking CNN architecture and graph neural
network (GNN). This network jointly models both local appearances and global vessel
structures by utilizing semi-regular graph nodes. The authors divided the method into
three parts, such as (i) generating pixel-wise features and vessel probabilities, (ii)
extracting features to reflect vascular connectivity using GNN, and (iii) inference
module to produce the final segmentation map.

Recently, many researchers used GAN to improve the inferences of various tasks,
such as synthetic generation and reconstruction [12], image translation [43], image
enhancement [34], domain adaption [20], object detection [26], and segmentation
[41]. Relating to the segmentation task, different authors used GAN to increase the
segmentation performance.Xue et al. [41] proposed aGAN-based segmentationmodel
for brain tumor segmentation, called SegAN. This model consists of an adversarial
critic network, and a fully CNN generator trained simultaneously to learn both global
and local features for capturing spatial relationships between pixels. Son et al. [37]
proposed a model using GAN to generate retinal vessel maps using binary cross-
entropy loss.

Guo et al. [18] proposed a neural network architecture based on the Dense UNet
using the inception module and GAN for accurate vessel segmentation in the fundus
image. They trained both the generator and discriminator alternately using a com-
bined loss function. They have used UNet with dense block and inception module
as generator module, whereas the discriminator was a binary classifier using deep
neural network. Beom et al. [4] proposed a conditional generative adversarial net-
work called M-GAN for retinal vessel segmentation by balancing losses through
stacked deep, fully convolutional networks. The authors have used an M-generator
with short-term skip connections and long-term residual connections with a UNet
backbone and M-discriminator, a binary classifier with binary cross-entropy (BCE)



Circuits, Systems, and Signal Processing (2023) 42:1206–1235 1209

loss. The generator consisted of two stacked FCNs with multi-kernel pooling blocks.
They implemented multiple loss functions for M-generator and BCE loss function for
M-discriminator. These losses are trained alternatively to enhance the output of the
generator through adversarial training. Xinghua et al. proposed [27] a deep translation-
based change detection network (DTCDN) for optical and SAR images. They used
a deep translation network for conversion of optical images to SAR images and a
change detection (CD) network for detecting changes between the generated SAR
images and the corresponding ground truth images. The translational network con-
sists of no-independent-component-for-encoding GAN (NICE-GAN) network which
utilized basic cycle GAN architecture [49] with the introspective networks (INN) in
the discriminator part to improve the efficiency of the generator. The change detection
network utilizes a UNet++ network [48] incorporating depthwise separable convolu-
tion [7] which can produce better segmentation result. They trained the model with
weighted multi-scale loss function which significantly reduces the convergence time
with catching more information at different scales.

Zhang et al. [46] proposed patch-based deep learning network (Bridge-Net) where
both UNet and recurrent neural network (RNN) are used for extracting context infor-
mation to generate probability maps. The authors have used a patch classification
algorithmwith a patch-based loss weight mapping tominimize the imbalance between
blood vessels and background. Similarly, Xiangyu et al. [9] proposed a deformable
convolutionalM-shaped network (D-MNet) usingmulti-scale attentionmechanism for
blood vessel segmentation. They used a pulse-coupled neural network (PCNN) model
along with M-shaped convolutional neural network for multi-threshold segmentation.
The D-MNet is capable of extracting multi-angle feature information using convolu-
tion kernels of different scales, whereas the multi-scale attention model with residual
mechanism changes the acquired feature information into multi-channel information
and updates the weight of the feature information of each channel so that the network
is capable to distinguish feature information with more accuracy. Danny et al. [6]
proposed patches convolution attention-based transformer UNet (PCAT-UNet) net-
work for blood vessel segmentation which is basically an encoder–decoder network
comprising patches convolution attention transformer (PCAT) blocks.

The rest part of the paper is organized as follows: Methodology for blood vessel
segmentation using the proposed GAN model is discussed in Sect. 2. Experimental
results and analysis are discussed for the proposed model in Sect. 3. Ablation study of
the proposedmodel is discussed in Sect. 4. The performance of the proposedmethod in
segmenting low-quality retinal images is discussed in Sect. 5. Also, the computational
complexity of themodel with two types of discriminator is analyzed in Sect. 6. Finally,
the summarization of thework alongwith future research direction is presented in Sect.
7.

2 ProposedMethodology

This article proposes a new architecture for robust retinal blood vessel segmentation
using deep convolutional GAN using multiple losses which can accurately segment
the blood vessels w.r.t ground truth. The model consists of preprocessing block along
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Fig. 1 Network architecture for vessel segmentation

with a generator and a discriminator. The block diagram of the proposed method is
shown in Fig. 1.

Generator is a multi-scale residual convolutional neural network (MSR-Net) with
skip connection framed in encoder–decoder framework used for generating segmen-
tation maps. In generator, inception modules with UNet backbone is adopted with a
joint loss to accomplish end to-end segmentation and to capture fine vessel segments.

The discriminator is a binary classifier to classify real images (ground truth images
of vessels) from fake images (generated vessel images from generator). The input to
the discriminator is the human labeled ground truth images. Initially, the discriminator
is trained with the real labels. The output of the generator is given to the discriminator
and again the discriminator is trained to the fake labels. This adversarial training
continues until the generator fools the discriminator in the sense both are efficient to
produce best outputs. In the proposed method, vision transformer (ViT) [10] is used
as discriminator.

2.1 Preprocessing

Preprocessing is performed prior to the image segmentation. Here, gray-level transfor-
mation is performed based on the visualization of blood vessels in the corresponding
channels of color fundus image. Blood vessels are more predominant in green channel
compared to red and blue channels [24]. Due to this, the color image is converted
to gray scale. Data augmentation techniques like horizontal and vertical flipping are
incorporated in preprocessing stage to make the data size appropriate for training.

To enhance the blood vessels and to reduce noise, CLAHE algorithm [32] is applied
followed by Z-score normalization. Generally, adaptive histogram equalization (AHE)
[40] is used to improve contrast in images by applying histogram equalization locally
and then redistributing the brightness along the image. It has the capability of improv-
ing the local contrast of the image, but it excessively amplifies the small amount
of noises in homogeneous regions of the image. To overcome this CLAHE is used
where the contrast is limited within a fixed range by clipping the histogram at a prede-
fined value before computing its cumulative distribution function (CDF). The CLAHE
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Fig. 2 Preprocessing block for enhancing the blood vessels and to reduce noise

algorithm consists of three stages: tile generation, histogram equalization, and bilinear
interpolation. Initially the fundus image is partitioned into equally sized 64 rectangu-
lar sections called tiles. Histogram equalization is then performed on each tile using
a contrast factor which is empirically chosen as 20, to prevent over saturation of the
image. The final image is generated by combining the processed tiles by using bilin-
ear interpolation. This effectively reduces the noises in the homogeneous non-vessel
regions while enhancing the vessel pixels.

After applying CLAHE, z-score normalization is applied to reduce the noise (extra
contrast) in the fundus images. The z-score normalization is given by

Zi = xi − xmean

S
(1)

where xi represents the i th image pixel, xmean represents the mean around the pixel
and S represents the standard deviation of the local patches. The preprocessing steps
for enhancing blood vessels using CLAHE are shown in Fig. 2.

2.2 Network Architecture of Generator

The generator in the proposedmethod comprises deep convolutional network architec-
ture with encoder–decoder structure for segmenting blood vessels from fundus image.
The architecture of generator is shown in Fig. 3. Here, multi-scale convolution in
UNet backbone is adopted with a joint loss to accomplish this segmentation task. The
model consists of encoder stage and decoder stage. Thirty-two layers are present in
the encoding section, and 25 layers are present in decoder section. The first two layers
of encoder path consist of convolution layers followed by element-wise non linear
activation function (ReLU) layer along with batch normalization and a max pooling
layer. A bottleneck or identity module is created with inception block having residual
connection. It consist of inception module with two layers of convolution followed
by ReLU and batch normalization. The output of the residual module is concatenated
with its input to preserve the activation from previous layer. After the each residual
block again a set of convolution layer followed by ReLU, batch normalization and
dropout are applied to preserve the fine details corresponding to vessel segments or
pixels. This residual block with inception module is repeated for five times. Dropout
is applied after each inception module to reduce complexity of CNN network and to
utilize the dominant features.
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Fig. 3 Network architecture for vessel segmentation

In the decoder path, the activation’s are up-sampled with de-convolution and con-
catenated with the layers of encoder path of same size. This provides the positional
re-occurrence of the segmented feature. Likewise, there are five units having series of
convolutional layer followed by ReLU and batch normalization layer are used in the
expansion path. Each unit is up-sampled with an up-sampling layer and concatenated
with the encoder section. It makes use of feature maps from the lower level and with
the relevant contracting path.

Batch normalization is used to reduce internal co-variate shift and provides faster
convergence. It is performed by subtracting mean from the mini batch output and
normalized by standard deviation of the mini batch. The batch normalized activation
is given in Eq. (2).

Ai = ai − amaen√
σ 2
b + c

(2)

where amaen represents the mini batch mean, σ 2
b is the mini batch variance, and c is a

numeric constant used for numerical stability. In this case, the value of c is taken as
0.001.
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Fig. 4 Internal structure of inception module

During training the scaling and shifting parameters are updated with every epochs
for faster convergence. ReLU improves the training performance by accepting the
positive values only. It accelerates the computation. This follows the max pooling
operation for down-sampling the data. It avoids overfitting. A dropout rate of 0.5 is
employed after max pooling to reduce the overfitting.

Figure 4 shows the internal structure of inception module. It extracts features of
vessel segments in different scales. Various kernel sizes, such as 1 × 1, 1 × 3, 3 × 1,
and 3 × 3, are implemented to extract multi-scale features with dimension reduction.
Thismodule expands representational bottleneck by preserving the loss of information
due to deeper network.

The vessel and non-vessel pixels of the fundus image are not evenly distributed.
This imbalanced distribution can be overcome by using weighted binary cross-entropy
(WBCE) loss function along with dice loss. The WBCE loss is defined in Eq. (3):

LWBCE (y, ŷ) = −(yβ log(ŷ) + (1 − y) log(1 − (ŷ))) (3)

Here, y is the actual input to the prediction model, ŷ represents the predicted value
by the prediction model, and β is used to tune false negatives and false positives.

The dice loss function measures similarity between true value and predicted value.
It is represented in Eq. (4):

LDice(y, ŷ) = 1 − 2y ŷ + 1

y + ŷ + 1
(4)

Here, the extra focal loss is added to the generator for minimizing the imbalance
between foreground and background classes during training. The focal loss is defined
as

LFOCAL(pt ) = −(1 − pt )
γ log(pt ) (5)
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where,

pt =
{
p, if y = 1

1 − p otherwise

p ∈ [0, 1] is the model’s estimated probability for the class with label y = 1. The
joint segmentation loss function for the generator is represented in Eq. (6).

Lseg = LWBCE + LDice(y, ŷ) + LFOCAL (6)

2.3 Network Architecture of Discriminator as Transformer

In the proposed generative adversarial model, vision transformer (ViT) [10] is utilized
as a discriminator. It act as a binary classifier which consists of stacked self-attention
networks [44] and position-wise fully connected feed-forward networks. The trans-
former encoder consists of alternating layers of multi-headed self-attention and
multilayer perceptron (MLP) blocks initialized with layer normalization [39]. A stack
of six identical layers (N = 6) are used where each layer has two sublayers that is a
multi-head self-attention mechanism and position-wise fully connected feed-forward
networks. Residual connection [19] is utilized around each of the two sublayers, fol-
lowed by layer normalization (LN) [3]. That is, the output of each sublayer is added
with the input of sublayer followed by layer normalization. It can be represented by
LayerNorm(X + Sublayer(X)), where X is the input to the sublayer. The out-
put of this projection is mentioned as the patch embeddings. The architecture of the
discriminator model is shown in Fig. 5.

The input image of size (H × W ) is sampled to L patches of size a × a such that
L = (H×W )/a2, which then flattened and converted to input sequences of dimension
D with a trainable linear projection for the transformer encoder. These sequences can

Fig. 5 Discriminator architecture for GAN
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be represented by vectors as follows:

Sublayer0 : s0 = [s00 ; η1E, . . . , ηL E] + Epos (7)

where linear projection E ∈ R
(a2.C)×D , position embedding Epos ∈ R

(L+1)×D , ηi is
the i th patch.

Sublayeri : s′
i = MSA(LN (si−1)) + si−1 (8)

where i = 1, .., L and MSA is multi-headed self-attention layer [39] and LN is the
layer normalization.

Sublayeri+1 : si = MLP(LN (s′
i )) + s′

i (9)

where i = 1, . . . , L , MLP is multilayer perceptron layer.

Output : y = LN (s0L). (10)

The self-attention network converts the input embedding patches to three vectors
called query vector (Q), key vector (K ), and value vector (V ). These vectors are
updated during training process. The value vector is computed with positional infor-
mation and the weighted sum of the value vectors gives the output of the encoder. The
output of a self-attention layer is given by

S0 = Softmax
(Q × KT )√

(dk)
× V (11)

Multi-head attention allows the model to jointly attend the information from dif-
ferent representation sub-spaces at different positions. It has keys, values, and queries
with dk , dv , and dq dimensions, respectively. They are linearly projected and operated
in parallel to perform the attention function, yielding a dv dimensional output. The
outputs of each head are concatenated and projected that results in the final output.

The work presented in this paper employs h = 16 parallel heads. For each of these,
we use dk = dv = 1024. The reduction in the dimension makes the computation
comparable to single-head attention with full dimensionality. The MLP contains two
layers with a ReLU nonlinearity.

2.4 Network Architecture of GAN

GAN estimates generative models through an adversarial process, and it trains two
models simultaneously: a generative model G for estimating the data distribution and
a discriminativemodel D for capturing the probability that data came from the training
data rather than G. The G and D play the following min-max two-player game with
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Fig. 6 Network architecture for GAN

value function V (D,G) [16]. The objective function of GAN is defined as:

min{G} max{D} V (D,G) = Ex∼pdata(x)[logD(x)]
+ Ez∼pz(z)[log(1 − D(G(z)))]

(12)

where x is the input to the discriminator and D(x) is the output of the discriminator
which is a scalar quantity. pdata(x) is the generator’s distribution over the data x .
pz(z) is the prior input noise variable. D(x) denotes the probability that y was from
the data rather than the generator G. The discriminator D is trained to maximize the
probability of giving the correct label to both training data and fake samples generated
from the generator G. G is trained to minimize log(1 − D(G(z))) simultaneously.

In this proposed method, deep convolutional GAN is utilized where both the gen-
erator and discriminator are deep neural networks. The network architecture of the
proposed GAN model is shown in Fig. 6.

2.5 Loss Function of the Proposed GAN Network

The loss function of GAN consists of generator loss, discriminator loss, and GAN
loss. The GAN loss consists of generator loss and discriminator loss. The generator
loss is given by

LGEN = LWBCE + LDice + LFOCAL = LGAN (G) (13)

The discriminator loss is given by

LDI S = LBCE = LGAN (D) (14)
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In the training stage, the loss function of GAN consists of two separate functions
which are given as

min{G} LGAN (G) = 1

2
Ex [(1 − D(G(x)))2] (15)

min{D} LGAN (D) = 1

2
Ey[(1 − D(y))2] + 1

2
Ex [D(G(x))2] (16)

where x is the real fundus image and y is the ground truth mask. The generator of the
GAN utilizes three loss functions to produce the segmented blood vessel mask. The
WBCE loss function provides pixel-wise comparison of real image and ground truth
where the weighting factor β is used to reduce false negatives by maximizing the true
class probability.

The alternate trainingmethod is adopted to train the generative adversarial network:
Step 1: Initially, the discriminator, which acts as a binary classifier, is trained with
BCE loss function. The ground truth masks corresponding to the real samples in the
dataset and the output of the generator (with frozen weights initialized randomly) are
given as inputs to the discriminator and it is trained to classify them as real and fake,
respectively.
Step 2: Now, the generator is trained with fundus images as inputs and corresponding
masks with segmented vessels as outputs. A joint loss function is used for training. The
output of the generator is fed to the discriminator. The weights of the discriminator
are frozen with the weights estimated from the previous step during the training of the
generator.
Step 3: Step 1 is now repeated but the generator weights are frozen with weights
estimated in Step 2. If the discriminator classifies both the real and fake samples with
the same probability, we terminate the training, otherwise it will continue.

The pseudocode of alternate training is shown in Fig. 7.

3 Experimental Results and Analysis

All experiments in this research work are accomplished with the following: Linux
operating system, Intel (R) Core (TM) CPU @ 1.8 GHz, 16 GB RAM, and GTX
1660 GPU card. Then, the system is tested using publicly available database and the
performance of the proposedmodel has been evaluated by using different performance
measures. The details about databases, experimental results, performance measures,
and analysis are conferred in the subsequent subsections.

3.1 Databases

A number of publicly available retinal database have been used by the researchers for
segmentation of blood vessels and detection of retinal diseases.Mainly researches have
used Digital Retinal Images for Vessel Extraction (DRIVE) database [29], Structured
Analysis of the Retina (STARE) database [21] , and CHASE-DB1 [30] database for
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Fig. 7 Training algorithm for GAN

segmentation of blood vessels. In this paper, seven databases have been used for
analyzing the performance of the proposed method.

DRIVE database comprises 40 images as vasculature ground truth, of which 20
images are employed as training set and rest as the testing set. All the images are
captured with a 45 degree field of view (FOV), having resolution of 565× 584 pixels.
With the test database, twomanually segmented ground truths are provided, where one
set is used as gold standard and the other can be used to evaluate computer generated
segmentation for comparison.

STARE database contains 20 images with two sets of manually labeled vessel
segmented ground truths. These are captured with 35 degree field of view and having
700×605 pixel resolution. Among the two sets, the first one is labeled as ground truth
whereas the other is taken as gold standard.

The CHASE_DB1 database comprises of 14 pairs of retinal fundus images having
a resolution 960 × 999 pixels with a 30 deg FOV, collected from multiethnic school
children [30] in London. In the database, ground truth vessel annotations are available
in two sets. The first set is normally used for training and testing, whereas the second
one acts as a human baseline.

The HRF database [5] contains 15 images of healthy patients, 15 images of patients
with diabetic retinopathy and 15 images of glaucomatous patients. Binary gold stan-
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dard vessel segmentation images are available for each image. The gold standard data
is generated by a group of experts working in the field of retinal image analysis and
clinicians from the cooperated ophthalmology clinics.

The Automated Retinal Image Analysis (ARIA) database [13] for vessel extraction,
theARIAdatabase consists of 138 images taken either fromhealthy subjects, diabetics,
or from patients with age-related macular degeneration (AMD). All of these images
were collected with a Zeiss FF450+ fundus camera with a 50 degree angular field of
view (FOV).

The RC-SLO dataset [8] contains 40 image patches with a resolution of 360× 320
pixels that are annotated by experts. This dataset covers a wide range of difficult
cases, such as high curvature changes, central vessel reflex, micro-vessels, cross-
ings/bifurcations and background artifacts. The images in the RC-SLO dataset are
acquired with an EasyScan camera (i-Optics Inc., the Netherlands), which is based on
a scanning laser ophthalmoscopy (SLO) technique.

The IOSTAR vessel segmentation dataset [45] consists of 30 images with a res-
olution of 1024 × 1024 pixels. This dataset is the developed version of Scanning
Laser Ophthalmoscopy (SLO) images. The images in the IOSTAR vessel segmenta-
tion dataset are captured with an EasyScan camera, which is based on a SLO technique
with a 45 degree FOV. All the ground truth images of vessels in this dataset are anno-
tated by a group of experts working in the field of retinal image analysis.

3.2 PerformanceMeasures

Various performance measures have been suggested by the researchers to evaluate the
segmentation accuracy of the deep learning models. These performance measures are
based on the number of correctly segmented vessels and non-vessel pixels.

The correctly segmented vessel pixels are treated as true positives (T Pv), whereas
wrongly segmented vessel pixels are called false negatives (FNv). True negative
(T Nnv) and false positive (FPnv) represent the correctly segmented non-vessel pixels
and incorrectly segmented non-vessel pixels, respectively. These T Pv , FPnv , FNv ,
and T Nnv are used to calculate the different performance measures such as accuracy
(Acc), sensitivity (Sen), specificity (Spe), precision (Pre), F1Score, intersection
over union (I OU ), and area under the ROC curve (AUC) etc [11].

Accuracy (Acc) can be defined as the ratio of correctly segmented blood vessel
pixels to the total number of pixels in the image. It is the gold standard metric for
all types segmentation. Specificity (Spe) measures the correct segmented non-vessel
pixels. Sensitivity (Sen) is a measure to compute the segmented vessel pixels correctly
by the model. Precision (Pre) measures the fraction of perfectly segmented blood
vessel pixels to the total number of segmented blood vessel pixels. These measures
are represented in Eqs. (17) to 20:

Acc = T Pv + T Nnv

T Pv + T Nnv + FPnv + FNv

× 100 (17)

Sen = T Pv

T Pv + FNv

× 100 (18)
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Fig. 8 Segmentation result of the proposed algorithm for DRIVE database: a color fundus image, b ground
truth image, c generator output image, and d visual difference image (Color figure online)

Spe = T Nnv

T Nnv + FPnv

× 100 (19)

Pre = T Pv

T Pv + FPnv

× 100 (20)

On the basis of the obtained segmented heat map, the receiver operating charac-
teristic (ROC) curve is found out. The area under the ROC curve (AUC) is used as
quantitative indicators for analyzing the segmentation. In addition, F1Score is often
presented in papers as one of the evaluation criteria for segmentation. F1Score is
defined as

F1Score = 2T Pv

2T Pv + FNv + FPnv

× 100 (21)

The I OU is defined as:

I OU = T Pv

T Pv + FNv + FPnv

(22)

3.3 Results

The model is trained by Adam optimizer with learning rate 0.0002 and batch size 8.
The total training process compliedwith 150 epochs. The limit of the best epoch can be
approximately determined by observing the training accuracy curve in training dataset
and loss in validation dataset during training. The model with the best performance is
chosen as the final trained model.

The publicly available databases discussed in Sect. 3.1 have been used by the
network, and various performance measures (such as Acc, Sen, Spe, Pre, F1Score,
and I OU ) are computed and analyzed. Before feeding the databases into the network
they are preprocessed (resized and augmented). During the augmentation process
(vertical flipping, horizontal flipping, and rotation), the number of images present in
the databases is increased. The model is trained according to the proposed training
algorithm shown in Fig. 7. The segmentation results of the algorithm proposed in this
paper are shown in Figs. 8, 9, 10, 11, 12, 13, and 14. Figure 8 shows the segmentation
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Fig. 9 Segmentation result of the proposed algorithm for STARE database: a color fundus image, b ground
truth image, c generator output image, and d visual difference image (Color figure online)

Fig. 10 Segmentation result of the proposed algorithm for CHASE_DB1 database: a color fundus image,
b ground truth image, c generator output image, and d visual difference image (Color figure online)

Fig. 11 Segmentation result of the proposed algorithm for HRF database: a color fundus image, b ground
truth image, c generator output image, and d visual difference image (Color figure online)

Fig. 12 Segmentation result of the proposed algorithm for ARIA database: a color fundus image, b ground
truth image, c generator output image, and d visual difference image (Color figure online)
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Fig. 13 Segmentation result of the proposed algorithm for IOSTAR database: a color fundus image, b
ground truth image, c generator output image, and d visual difference image (Color figure online)

Fig. 14 Segmentation result of the proposed algorithm for RC-SLO database: a color fundus image, b
ground truth image, c generator output image, and d visual difference image (Color figure online)

result of an image from DRIVE database. Figure 8a represents the resized original
color fundus image, Fig. 8b represents the ground truth image, Fig. 8c represents
generator output image, and Fig. 8d represents the visual difference image, which
shows the visual difference between the generated and ground truth images in terms
of different colors. In the visual difference image, green, white, red, and blue represent
TP, TN, FP, and FN, respectively. Similarly Figs. 9, 10, 11, 12, 13, and 14 represent
the segmentation results from STARE, CHASE_DB1, HRF, ARIA, IOSTAR, and
RC-SLO databases, respectively.

The proposedmethod achieved the highest accuracy of 0.9742 for DRIVE database,
0.9486 for STARE database, and 0.9873 for CHASE_DB1 database compared to the
recorded values in the literature. Also, the proposed method shows the highest AUC
score for CHASE_DB1 database(0.9880). The proposed method achieved the highest
I OU for DRIVE and CHASE_DB1 databases. The overall performance measures for
mentioned databases are shown in Table 1.

The visual results of the proposedmethod are comparedwith different segmentation
methods, which are shown in Figs. 15 and 16. The segmentation result of the proposed
method is comparedwithUNetmodel [33],UNet++model [48], and deep vesselmodel
[15]. The proposed GAN model with transformer as discriminator is more effective
in segmenting blood vessels from fundus images by using multiple loss functions.
In Fig. 15 , the first row represents the highlighted parts of the generated output of
different models along with proposed model and the ground truth. The second row
represents the magnified parts of the generated visual difference images of different
models along with proposed model. The third row represents the visual difference
images of different models along with the ground truth image. In Fig. 16, the first
column represents the ground truth image with highlighted parts and visual difference



Circuits, Systems, and Signal Processing (2023) 42:1206–1235 1223

Table 1 Recorded performance measures for the segmented blood vessels for different databases in the
literature

Dataset Method Acc Spe Sen Pre AUC I OU

CNN (Uysal1 et al. 2020) [38] 0.9527 0.9784 0.7778 0.8417 – –

DeepVessel (Fu et al. 2016) [15] 0.9523 – 0.7603 – – –

CNN+GNN (Shin et al. 2019) [36] 0.9271 0.9255 0.9382 – 0.9802 –

SegmentLoss (Yan et al. 2018) [42] 0.9542 0.9818 0.7653 – 0.9752 –

DUNet (Jin et al. 2019) [23] 0.9697 0.8537

CE-Net (Gu et al. 2019) [17] 0.9545 – 0.8309 – 0.9779 –

DRIVE GAN + Dense UNet (Guo et al. 2020) [18] 0.9542 0.9726 0.8283 – 0.9772 0.8251

M-GAN (Park et al. 2020) [31] 0.9706 0.9836 0.8346 0.8302 0.9868 0.7129

Bridge-Net (Zhang et al. 2019) [46] 0.9565 0.9818 0.7853 0.8635 0.9834 –

D-MNet (Xiangyu et al. 2022) [9] 0.9683 0.9811 0.8363 – –

PCAT-UNet (Danny et al. 2022) [6] 0.9622 0.9932 0.8576 – 0.9872 –

Proposed method 0.9742 0.9876 0.8936 0.8748 0.9650 0.8580

CNN (Uysal et al. 2020) [38] 0.9589 0.9811 0.7558 0.8231 – –

DeepVessel (Fu et al. 2016) [15] 0.9585 – 0.7412 – – –

CNN+GNN (Shin et al.2019) [36] 0.9378 0.9352 0.9598 – 0.9877 –

SegmentLoss (Yan et al. 2018) [42] 0.9612 0.9846 0.7581 – 0.9801 –

CE-Net (Gu et al. 2019) [17] 0.8490 0.7650 0.8530 0.8050 0.8530 0.8530

STARE DUNet (Jin et al. 2019) [23] 0.9729 0.8856

M-GAN (Park et al. 2020) [31] 0.9876 0.9938 0.8324 0.8417 0.9873 0.7189

Bridge-Net (Zhang et al. 2019) [46] 0.9668 0.9864 0.8002 0.8711 0.9901 –

D-MNet (Xiangyu et al. 2022) [9] 0.9643 0.9847 0.8272 – – –

PCAT-UNet (Danny et al. 2022) [6] 0.9796 0.9937 0.8703 – 0.9953 –

Proposed method 0.9486 0.9640 0.8441 0.8212 0.9532 0.7580

DeepVessel (Fu et al. 2016) [15] 0.9489 – 0.7130 – – –

CNN+GNN (Shin et al.2019) [36] 0.9373 0.9364 0.9463 – 0.9830 –

SegmentLoss (Yan et al. 2018) [42] 0.9610 0.9809 0.7633 – 0.9781 –

DUNet (Jin et al.. 2019) [23] 0.9724 0.7510 0.9863

CHASE_DB1 M-GAN (Park et al. 2020) [31] 0.9736 – 0.9859 –

Bridge-Net (Zhang et al. 2019) [46] 0.9667 0.9840 0.8132 0.8490 0.9893 –

D-MNet (Xiangyu et al. 2022) [9] 0.9714 0.9794 0.8541 – – –

PCAT-UNet (Danny et al. 2022) [6] 0.9812 0.9966 0.8493 – 0.9925 –

Proposed method 0.9873 0.9835 0.9335 0.9154 0.9880 0.8792

CNN+GNN (Shin et al. 2019) [36] 0.9349 0.9329 0.9546 – 0.9838 –

SegmentLoss (Yan et al. 2018) [42] 0.9437 0.9809 0.7633 – 0.9781 –

HRF Bridge-Net (Zhang et al. 2019) [46] 0.9590 0.9690 0.8570 – – –

M-GAN (Park et al. 2020 [31] 0.9761 – – 0.9859 –

D-MNet (Xiangyu et al. 2022) [9] 0.9668 0.9848 0.7543 – – –

Proposed method 0.9773 0.9854 0.8885 0.8003 0.9920 0.7037
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Table 1 continued

Dataset Method Acc Spe Sen Pre AUC I OU

ARIA Graph Cut Approach 0.9400 0.9300 0.7510 – 0.8410 –

(Zhao et al. 2015) [47]

Cognitive Graph-Based 0.8190 0.8230 0.7810 – 0.8020 –

( Shehhi et al. 2016) [35]

Proposed method 0.9628 0.9840 0.7177 0.7950 0.9671 0.7492

IOSTAR Adaptive derivatives 0.9514 0.9740 0.7545 – 0.9615 –

(Zhang et al. 2016) [45]

Proposed method 0.9610 0.9788 0.7807 0.7847 0.9767 0.6492

RC-SLO Adaptive derivatives 0.9512 0.9710 0.7787 – 0.9626 –

(Zhang et al. 2016) [45]

Proposed method 0.9777 0.9871 0.8714 0.8381 0.9940 0.7459

image. The second column represents comparison of highlighted segmented parts of
the generated output of proposed model along with visual difference image. The third
column represents comparison of highlighted segmented parts of the generated output
of UNet++ model along with visual difference image. The fourth column represents
comparison of highlighted segmented parts of the generated output of DeepVessel
model along with visual difference image and the fifth column represents comparison
of highlighted segmented parts of the generated output of UNet model along with
visual difference image.

Table 1 shows a relative performance measure of recorded values in the literature
works for retinal vessel segmentation, evaluated on publicly available datasets.Mainly,
UNet-basedmethods and its extended interpretations are implemented for retinal blood
vessel segmentation purposes using different loss functions [38–42]. Authors mainly
focused on calculating accuracy, precision, sensitivity, and specificity, which demon-
strate the quality of segmentation. Uysal et al. [38] used fully connected CNN for
vessel segmentation where they achieved an accuracy of 95.27% and sensitivity of
77.78% in case of DRIVE database. Similarly, Fu et al. [15] implemented multi-scale
and multi-level CNN with conditional random field to model the network (DeepVes-
sel) for vessel segmentation. They got the highest accuracy of 95.85% for STARE
database. Shin et al. [36] implemented graph neural network (GNN) together with
CNN to segment the blood vessels from fundus images. They have used four retinal
fundus image databases namely DRIVE [29], STARE [21], CHASE_DB1 [30], and
HRF [14] databases to testify their proposed method. They achieved the highest AUC
of 98.38% for HRF database. Similarly, Yan et al. [42] achieved the highest speci-
ficity of 98.46% for STARE dataset by incorporating segment-level and the pixel-wise
losses into deep CNN model. But recently introduction of GAN into vessel segmen-
tation task gives better performance compared to UNet-based segmentation models.
Guo et al. [18] proposed the GAN architecture where the generator is a dense UNet
using the inception module and the discriminator is a deep neural network used as a
binary classifier. They achieved the highest AUC value of 0.9772 and F1Score of
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Fig. 15 Comparison of visual results for CHASE_DB1 dataset: a comparison of segmented output by the
proposed method with ground truth and other models, b comparison of magnified segmented blood vessels
by proposed method and other methods, and c comparison of visual difference images of segmented output
of the proposed method and other methods

Fig. 16 Comparison of visual results for CHASE_DB1 dataset: a ground truth image with highlighted
parts and visual difference image, b comparison of highlighted segmented parts of the generated output
of proposed model along with visual difference image, c comparison of highlighted segmented parts of
the generated output of UNet++ model along with visual difference image, d comparison of highlighted
segmented parts of the generated output of DeepVessel model along with visual difference image, e com-
parison of highlighted segmented parts of the generated output of UNet model along with visual difference
image
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Fig. 17 Receiver operating characteristics (ROC) for DRIVE, STARE, CHASE_DB1, ARIA, and HRF
database

0.8215 on DRIVE database. Similarly, Park et al. [31] proposed M-GAN model for
vessel segmentation which achieved an average accuracy of 97.06%, AUC of 98.68%,
and F1Score of 0.8317.

The proposed approach exceeds previous approaches with respect to the accuracy,
I oU , and AUC. We have compared the proposed MSR-GAN with recorded values
of related previous studies. The comparative evaluation using the DRIVE dataset,
STARE database, CHASE_DB1 database, HRF database, ARIA database, IOSTAR
database, and RC-SLO database are described in Table 1. MSR-GAN model showed
higher performance than related studies concerning accuracy, I OU , and AUC mea-
surements.

TheROCcurve for the above-mentioned databases is shown inFig. 17. It is observed
that the proposedmethod achieved the highest AUC for CHASE_DB1database (green
dashed line) and lowest for STARE database (orange dashed line). It shows the rela-
tionship between true positive rate and false positive rate.

4 Ablation Study Using Different Loss Functions and Different Patch
Sizes on the ProposedModel

To affirm the efficacy of the proposed MSR-GAN architecture, different conditions
are imposed utilizing individual loss functions on the model. At first, experiments
are conducted using WBCE loss function to the generator. The generator is trained
with WBCE loss and GAN loss and the performance measures are calculated. Then
again, the generator is trained with WBCE loss and dice loss along with GAN loss
and the performance measures are given in Table 2. The performance measures are
calculated using DRIVE, STARE, and CHASE_DB1 databases. It is observed from
Table 2 that the proposed GAN network, the intersection over union (I OU ), and
F1Score increase apparently by using GAN loss.
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Table 2 Performance metrics for segmented blood vessels from retinal images using different databases

Dataset Loss Function I OU F1Score

UNet + BCE loss 0.7490 0.7950

MSR-Net + WBCE loss + DICE loss 0.8280 0.8200

DRIVE MSR-Net + WBCE loss + DICE loss + Focal loss 0.8380 0.8560

MSR-Net + GAN loss 0.8580 0.8734

UNet + BCE loss 0.6490 0.7650

MSR-Net + WBCE loss + DICE loss 0.6980 0.8097

STARE MSR-Net + WBCE loss + DICE loss + Focal loss 0.7380 0.8163

MSR-Net + GAN loss 0.7580 0.8200

UNet + BCE loss 0.7576 0.7858

MSR-Net + WBCE loss + DICE loss 0.8582 0.8480

CHASE_DB1 MSR-Net+WBCE loss + DICE loss + Focal loss 0.8580 0.8508

MSR-Net + GAN loss 0.8786 0.8889

Table 3 Performance metrics
for segmented blood vessels
from retinal images in DRIVE
database

Model Acc Sen Spe I OU

UNet 0.8490 0.7650 0.8530 0.7490

MSR-Net 0.7980 0.6500 0.7630 0.8380

MSR-Net+GAN 0.9873 0.8936 0.9876 0.8580

Table 3 presents the performance of different models for DRIVE database. Com-
pared with the classic UNet, the MSR-Net performed better in Acc, Sen, Spe, and
F1Score. But using GAN its performance increases furthermore which verifies the
effectiveness of our proposed algorithm.

In order to justify the potentiality of the model, the experiments are conducted with
different patch sizesa using theDRIVE, STAREandCHASE_DB1databases. Initially
the results are tabulated by taking different patch sizes. It is found that the medium
sized patches (a = 32 and 64) are giving better accuracy than smaller (a = 16) and
larger (a = 128) patch sizes. The comparison of segmentation performance using
different patch sizes is given in Table 4.

4.1 Ablation Study of the ProposedModel with Two Different Types of
Discriminator

The proposed GAN architecture is experimented with two types of discriminators that
is a deep CNN-based binary classifier [18] and vision transformer [39]. Both discrim-
inators used the same binary cross-entropy loss function. The discriminator model
using deep CNN architecture is a binary classifier comprised of four convolutional
neural networks (CNNs) and two fully connected layers. After each convolutional
layer, there is a pooling layer. The convolutional layers process the input image and
extract a feature vector fed to the fully connected layers and finally the output layer is
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Table 4 Comparison of segmentation results using different patch sizes

Dataset Patch size Acc Spe Sen Pre AUC I OU F1Score

16 0.9542 0.9920 0.8778 0.8800 0.9450 0.8235 0.7200

DRIVE 32 0.9624 0.9915 0.8736 0.8862 0.9610 0.8280 0.7281

64 0.9616 0.9928 0.8700 0.8853 0.9590 0.8205 0.7168

128 0.9543 0.9888 0.8645 0.8447 0.9600 0.5654 0.7223

16 0.9600 0.9790 0.7558 0.8231 0.9450 0.8154 0.5910

STARE 32 0.9620 0.9876 0.8936 0.7577 0.9150 0.8196 0.6058

64 0.9709 0.9856 0.8968 0.8158 0.9300 0.8080 0.6200

128 0.9579 0.9855 0.8626 0.8025 0.8970 0.7912 0.6733

16 0.9812 0.9904 0.8900 0.8850 0.9930 0.8521 0.8780

CHASE_DB1 32 0.9847 0.9956 0.8909 0.9122 0.9960 0.8205 0.9014

64 0.9750 0.9887 0.8553 0.8572 0.9900 0.7283 0.8428

128 0.9787 0.9834 0.9291 0.8369 0.9880 0.7866 0.8806

Table 5 Comparison of segmentation results using two different types of discriminators

Dataset Discriminator Acc Spe Sen Pre AUC I OU F1Score

DRIVE Deep CNN 0.9542 0.9679 0.8778 0.8248 0.9450 0.8235 0.7200

ViT 0.9742 0.9876 0.8936 0.8748 0.9650 0.8580 0.8700

STARE Deep CNN 0.9513 0.9511 0.7558 0.8231 0.9320 0.7554 0.5910

ViT 0.9486 0.9640 0.8441 0.8212 0.9532 0.8154 0.6253

CHASE_DB1 Deep CNN 0.9752 0.9875 0.8900 0.8084 0.9860 0.8521 0.8708

ViT 0.9873 0.9835 0.9335 0.9154 0.9880 0.8786 0.8889

Fig. 18 CNN-based binary classifier as discriminator architecture of GAN (Color figure online)

used for binary classification. The model is shown in Fig. 18. It is found that vision
transformer-based discriminator produces better result than CNN-based binary classi-
fier model. Table 5 shows relative performance measures of the proposed GANmodel
using two types of discriminators evaluated on publicly available databases.

MSR-GAN network achieved higher accuracy and AUC in the case of the
CHASE_DB1 database and higher specificity in the DRIVE database. The generator
and discriminator of the GAN are alternatively trained using different loss functions
to achieve the best result concerning their objectivity. The generator learns ground
truth data distribution better using this adversarial training with the binary classifier
as a discriminator. The proposed MSR-GAN model achieved the highest accuracy
and sensitivity from CHASE_DB1 and DRIVE databases compared to other existing
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GAN-based segmentation algorithms [18–31]. The network’s performance is signifi-
cantly improved by using combined loss functions which consist ofWBCE loss, DICE
loss, and GAN loss. Also, additive focal loss increases the network’s performance by
reducing the false negatives and false positives. The proposed architecture is also able
to reduce the class imbalance that occurred between foreground and background dur-
ing training. Hence, the network structure can extract deep features and perform robust
retinal vessel segmentation.

The proposed approach outperformed previous research on different performance
measures. The dataset performed well in the case of the CHASE_DB1 database com-
pared to DRIVE and STARE databases. It shows the highest accuracy of 0.9873 and
sensitivity of 0.9335 in the CHASE_DB1 database and DRIVE database compared to
M-GAN architecture [31] and DI-UNet model with GAN [18].

5 Performance of the ProposedMethod in Segmenting Low-Quality
Retinal Images

In order to check the robustness of the model in the presence of noise and low-quality
retinal images, the model is used on synthetic noisy images of DRIVE and RC-SLO
databases. The synthetic images are generated by adding zero-mean Gaussian noise
of varying standard deviation (σn) to the original image present in the database [25].
The generated low-quality image is presented as

Iη(i, j) = I (i, j) + η(i, j), (23)

where I (i, j) is the original image and η(i, j) is zero-mean Gaussian noise whose
distribution is represented by

P[η(i, j)] = 1

(2π)1/2σn
exp

−η(i, j)2

2σ2n . (24)

Initially, the images are blurred by 7× 7 Gaussian filter with standard deviation σb
varying between 0.5 and 3.0. These blurred images are addedwith zero-meanGaussian
noise of standard deviation σn varying between 0.001 and 0.02. The formation of noisy
images for DRIVE and RC-SLO databases is shown in Figs. 19 and 20, respectively.

Table 6 shows the performance of the proposed model for the synthetic low-quality
images generated by the addition of blurred and Gaussian noise to the original data.
The accuracy value is found to be lie between 95.94 and 97.93% for all types of low-
quality images. These values are lies close to the segmentation accuracy value of the
retinal images without degradation. From this experiment it may be concluded that
the method is robust in presence of noise.

To analyze the visual appearance of the segmented blood vessels from the low-
quality images (affected by noise) and the images without any noise, the original
and segmented images are shown in Fig. 21. Figure 21a represents a original color
image from RC-SLO database. Figure 21b–d represents the corresponding ground
truth image, generator output image, and visual difference image, respectively. Simi-



1230 Circuits, Systems, and Signal Processing (2023) 42:1206–1235

Fig. 19 Formation of noisy image fromDRIVE database: a original color image, b generated blurred image
(σb = 3.0), c generated noisy image (σn = 0.02), d generated blurred and noisy image (Color figure online)

Fig. 20 Formation of noisy image from RC-SLO database: a original color image, b generated blurred
image (σb = 3.0), c generated noisy image (σn = 0.02), d generated blurred and noisy image (Color figure
online)

Table 6 Performance measures with added noise for DRIVE and RC-SLO databases

Dataset σb σn Acc Spe Sen Pre AUC I OU F1Score

DRIVE 0.05 0.001 0.9710 0.9838 0.8936 0.8748 0.9650 0.8580 0.8720

0.005 0.9703 0.9876 0.8936 0.8748 0.9650 0.8580 0.8694

0.02 0.9513 0.9811 0.8858 0.8231 0.962 0.8154 0.8610

1.5 0.001 0.9632 0.9829 0.8968 0.8512 0.9590 0.8554 0.8753

0.005 0.9607 0.9875 0.8900 0.8584 0.964 0.8521 0.8708

0.02 0.9594 0.9829 0.8816 0.8544 0.9400 0.8489 0.8689

3 0.001 0.9729 0.9817 0.8797 0.8660 0.9640 0.8530 0.8561

0.005 0.9710 0.9868 0.8736 0.8684 0.9630 0.8428 0.8538

0.02 0.9573 0.9871 0.8635 0.8654 0.9650 0.8359 0.8509

RC-SLO 0.05 0.001 0.9787 0.9840 0.9139 0.8228 0.9950 0.7637 0.8660

0.005 0.9793 0.9845 0.9153 0.8275 0.9950 0.7687 0.7816

0.02 0.9750 0.9824 0.8457 0.7345 0.9870 0.6477 0.7862

1.5 0.001 0.9616 0.9718 0.8510 0.7371 0.9780 0.6517 0.7891

0.005 0.9769 0.9836 0.8598 0.7511 0.9780 0.6692 0.8018

0.02 0.9766 0.9849 0.8732 0.8251 0.9840 0.7368 0.8485

3 0.001 0.9756 0.9869 0.8066 0.7588 0.98530 0.6420 0.7819

0.005 0.9742 0.9841 0.8521 0.8137 0.9770 0.7130 0.8324

0.02 0.9770 0.9847 0.8822 0.8242 0.9930 0.7425 0.8522
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Fig. 21 Comparison of segmentation results for a noisy image with original image from RC-SLO database:
a original color image, b corresponding ground truth image, c corresponding generator output image, d
corresponding visual difference image, e Noisy image with σb = 3 and σn = 0.02, f corresponding ground
truth image, g corresponding generator output image, and h corresponding visual difference image

larly, Fig. 21e represents a noisy color image (with σb = 3 and σn = 0.02) generated
from original color image from RC-SLO database. Figure 21f–h represents the cor-
responding ground truth image, generator output image, and visual difference image,
respectively. Visual difference image of the segmented blood vessels and ground truth
for the image in RC-SLO database are shown in Fig. 21d, h, respectively. These two
images are found to be identical, which represents the robustness of the proposed
method.

6 Computational Complexity

The computational time for the blood vessel segmentation algorithm for the two types
of discriminator determines the swiftness of the algorithm. The computational time of
the proposedmodel mainly depends on the architecture and nature of the discriminator
as well as the dimension of the database. Table 7 represents the training time and
inference time for various fundus databases (DRIVE, STARE, CHASE_DB1, HRF,
ARIA, IOSTAR, and RC-SLO databases) for the segmentation algorithmwith VT and
CNN-based classifier discriminators. The segmentation algorithm is trained by 105
images with 100 epochs. The training time is found to be highest for HRF database and
least for RC-SLO database. Among the two different discriminators the CNN-based
classifier is faster than vision transformer. This occurs due to complex architecture of
vision transformer.
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Table 7 Comparison of computational time for different databases using two types of discriminators

Algorithm Dataset Number of Training time Inference time
for training training images in sec in sec/image

DRIVE 105 2044.57 0.0276

STARE 105 1877.54 0.0287

CHASE_DB1 105 1875.84 0.0286

Vision transformer HRF 105 2442.45 0.0293

as discriminator ARIA 105 1874.40 0.0289

IOSTAR 105 2218.38 0.0290

RC-SLO 105 1857.55 0.0277

DRIVE 105 1397.96 0.0271

STARE 105 1382.36 0.0278

CNN-based CHASE_DB1 105 1456.93 0.0285

binary classifier HRF 105 1805.15 0.0291

as discriminator ARIA 105 1465.28 0.0287

IOSTAR 105 1615.91 0.0282

RC-SLO 105 1289.65 0.0270

7 Conclusion

In this paper, retinal blood vessels are segmented from the color fundus images by
utilizingmulti-scale residual convolutional neural network (MSR-Net) combined with
GAN. The generator in the GAN architecture utilizes deep residual blocks with skip
connections in UNet backbone (MSR-Net) for segmentation, whereas the discrimi-
nator utilizes vision transformer for binary classification. This method was tested on
various publicly available databases (DRIVE, STARE, CHASE_DB1, HRF, ARIA,
IOSTAR, and RC-SLO). Various performance measures such as accuracy, precision,
specificity, AUC , and I oU are calculated for analysis. The proposed method attains
an accuracy of 0.9873 for CHASE_DB1 database, 0.9742 for DRIVE database, 0.9773
for HRF database, and 0.9628 for ARIA database. The proposed method is compared
with recent state-of-the-art methods available in the literature. From the comparative
analysis, it is found that the proposed blood vessel segmentation method outperforms
existing methods used for vessel segmentation. Also, the proposed method is proved
to be robust in the presence of noises affected to retinal images. The use of vision
transformer as a discriminator increases the computational burden compared to the
traditional binary classifier. The performance of this technique can be improved by
implementing various GAN models like perceptual GAN and cyclic GAN. This may
overcome the problems due to overfitting and may reduce the computational time.
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