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Abstract

Music source separation has traditionally followed the encoder-decoder paradigm
(e.g., hourglass, U-Net, DeconvNet, SegNet) to isolate individual music components
from mixtures. Such networks, however, result in a loss of location-sensitivity, as
low-resolution representation drops the useful harmonic patterns over the tempo-
ral dimension. We overcame this problem by performing singing voice separation
using a high-resolution representation learning (HRNet) system coupled with a long
short-term memory (LSTM) module to retain high-resolution feature map and cap-
ture the temporal behavior of the acoustic signal. We called this joint combination
of HRNet and LSTM as HR-LSTM. The predicted spectrograms produced by this
system are close to ground truth and successfully separate music sources, achieving
results superior to those realized by past methods. The proposed network was tested
using four datasets (DSD100, MIR- 1K, Korean Pansori, and Nepal Idol singing voice).
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Our experiments confirmed that the proposed HR-LSTM outperforms state-of-the-art
networks at singing voice separation when the DSD 100 dataset is used, performs com-
parably to alternative methods when the MIR-1K dataset is used, and separates the
voice and accompaniment components well when the Pansori and NISVS datasets
are used. In addition to proposing and validating our network, we also developed and
shared our Nepal Idol dataset.

Keywords Singing voice separation - HRNet - LSTM - Deep neural networks

1 Introduction

Music is a blend of vocal and instrumental sounds to express and evoke emotion
through a combination of melody, rhythm, and harmony. The ultimate goal of singing
voice separation systems is to separate previously mixed vocal and instrumental com-
ponents and achieve a deep understanding of each component. These systems, once
developed adequately, will have applications in bilateral cochlear implants [15], the
ability to calculate fundamental frequency [7], beat monitoring (despite dominant
voices) [49], and karaoke music production, as well as any other system that relies on
lyric, instrument and chord recognition. Other potential applications include melody
extraction/annotation [5, 34], assessment of singing ability [18], automatic lyrics
recognition/matching [23, 44], singing visualization [19], and singer identification
[20].

The separation of singing voices has long been acknowledged as a difficult task. In
recent years, researchers have focused on data-driven machine learning approaches to
separate voices from polyphonic music. These systems have generally relied on the
two-dimensional time—frequency magnitude spectrogram of the audio signal, which
help convolutional neural networks to implement audio-related tasks.

A high-level outline of our proposed singing voice source separation process is
presented in Fig. 1. We proposed a long short-term memory (LSTM)-based high-
resolution representation network to extract a final feature map from the input
spectrogram. This feature map can be used to generate a time—frequency soft mask,
which is multiplied with input spectrograms to generate predicted spectrograms. The
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Fig. 1 A basic overview of our singing voice source separation method
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predicted spectrograms can be transformed back into signals that correspond to vocal
and accompaniment tracks using the inverse of the short-time Fourier transform.

The proposed HR-LSTM network can be employed not only for singing voice sep-
aration but also for many different fields of sequence-to-sequence learning problems.
The sequence-to-sequence learning includes many different fields of computer vision
such as speech recognition, time series prediction, machine translation, and question-
answering. The deep neural networks can only be applied to problems whose inputs
and outputs are encoded with vectors of fixed dimensionality. However, this LSTM-
based HRNet can process not only single data points such as images but also entire
sequences of data such as speech and video.

Resolution is important for audio analysis using time—frequency representation
because the pixel correlation and harmonic representation in spectrogram are respon-
sible for the unique characteristics of an acoustic signal. We used HRnet; a proven
method; to keep the spatial resolution of various feature maps of the network. Tempo-
ral information is captured using the LSTM network because the music information
is globally correlated along the temporal axis. The consideration of spatiotemporal
information without losing the resolution is the main characteristic of our proposed
method that is responsible for a better result for music source separation.

The proposed network was tested using three publicly available datasets (DSD100,
MIK-1K and Pansori). The DSD100 and MIR-1K datasets were used to test how the
system separated two music sources, singing voices and accompaniments, while the
Korean traditional music Pansori dataset was used to test how the system separated
two different singing voices, as well as a drum sound. To confirm the utility of the HR-
LSTM, we also proposed a new singing voice separation dataset (referred to as NISVS).
We mixed the DSD100 and NISVS datasets and reported our results accordingly.

The proposed network’s performance was evaluated using the median value of
the signal-to-distortion ratio (SDR), source-to-interference ratio (SIR), and source-
to-artifacts ratio (SAR), each measured in decibels (dB). The proposed HR-LSTM
outperformed the current state-of-the-art result, tested against the combined DSD100
and NISVS dataset. The combination of these two datasets in the training phase can be
able to predict spectrograms closer to ground truth while testing. The addition of the
Pansori dataset, along with the incorporation of the NISVS dataset in the DSD100,
allowed our model to achieve better separation results than when it was tested only
against the DSD100 and MIR-1K datasets.

The major contributions of our study can be summarized as follows:

1. The new model HR-LSTM was proposed and was consisting of a combination of
the relatively new "HRnet" for high-resolution representation learning (devised
for application to image processing problems) with a well-known approach that
uses a long short-term memory (LSTM) module to capture the temporal features
of the acoustic signal.

2. We tested our proposed model against various state-of-the-art methods and
achieved improvement over the state-of-the-art in certain cases.

3. The new synthetic NISVS dataset was proposed and mixed with the real DSD100
dataset for training. This mixing of two datasets during the training phase improves
the result while testing in comparison with without mixing them. This type of
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experiment concludes that mixing synthetic and real data while training can
improve the accuracy in the test phase for real data in the source separation domain.
This can be shown in Tables 3 and 5.

4. HRNet has not been studied yet in the source separation community. So, one of
the primary reasons behind the performance of the network is the HRNet itself,
which maintains the high-resolution feature map of the spectrogram instead of
recovering it from low-resolution, which we explain in the third last paragraph of
the “related work™ section and the last sentence of “High-resolution representation
learning section. This is the main contribution of our paper.

2 Related Work

The study of singing voice separation has a long history. The oldest algorithms written
to achieve this goal emphasized the pitch and frequency of the audio signal using
statistical methods to separate mixed sources. Independent component analysis (ICA)
[13], nonnegative matrix factorization (NMF) [16], and sparse component analysis
(SCA) [6] were developed for use with blind source separation [3, 21]. Each of these
methods was predicated on the idea that data can be projected from a time series
onto a new set of axes based on a statistical technique. The authors of [32] first
separated the singing voice from music accompaniment using nonnegative matrix
partial co-factorization (NMPCF). The separated singing voice was subsequently used
to estimate the pitches and reconstruct the singing voice’s spectrum. The authors of
[31] attempted to separate music/voice by first identifying the periodically repeating
segment from a mixture, and then separating the repeated signal from the mix.

Today, these methods have been supplanted by deep neural networks capable of
outperforming previous approaches to source separation. To the latent information
from an audio input, deep neural networks often use a hierarchical architecture and a
nonlinear approximation function to estimate the independent music source from the
combined signals. The authors of [42, 46, 50] applied this deep learning-based sepa-
ration method. For single-channel source separation, a fully convolutional denoising
auto-encoder (CDAE) was presented by [8]. In that case, the researchers explored
whether a CDAE could derive the spectral-temporal filters and properties associated
with a source. The authors of [24] and [25] similarly used multichannel audio input
to train a DNN by focusing primarily on the spectral properties of a single frame. To
separate the source spectra, these authors employed a fully linked network and a 2D
Mel-Spectrogram. The authors of [35] suggested a modified group delay (MOD-GD)
function intended to improve the performance of the available algorithms by incor-
porating previously neglected phase spectrogram information. DNN was used by the
authors of [2] for supervised speech signal training that enhanced speech intelligibility
in noisy environments.

Some researchers have used waveform music representation for source separation
and to maintain the audio signal’s phase information. Preserving the sinusoid audio
information [4] and managing the memory requires a data-driven strategy when applied
to waveform audio representation. The U-Net-based architecture employed in [38]

Birkhduser



Circuits, Systems, and Signal Processing (2023) 42:1083-1104 1087

resampled the characteristics at various time scales. Through the incorporation of
source additivity into the output layer, upsampling, and context-aware prediction, a
modified U-Net design outperformed its peers. Similarly, the authors of [9, 22] used an
encoder-decoder approach to solve the problem of many speakers requiring multiple
audio channel source separation. The authors of [27, 30, 33] also used waveform
representation to isolate speech from noisy signals, while in the authors of [1, 11,
39, 40] instead of using waveform audio representation, divided the spectrogram into
multiple sub-bands based on frequency ranges to generate the time—frequency masks.
As the patterns of the spectrogram were different along with the frequency band,
applying a different convolutional filter in each band proved to be critical to boosting
the performance of the source separation systems.

None of the aforementioned studies on music information retrieval preserves the
high-resolution representation of the spectrogram. HRNet has recently proven suc-
cessful at human pose estimation, object detection, and semantic segmentation [45].
Accordingly, HRNet has supplanted the encoder-decoder-based networks designed to
recover high-resolution from low-resolution. HRNet, which maintains high-resolution
instead of recovering them from low to high-resolution results in highly precise and
semantically strong features. This preserves the correlation between different Mel-
bins of the spectrogram in succeeding layers of HRNet. In this paper, we sought to
determine whether maintaining spectrogram features, rather than recovering them in
subsequent layers (as is done by other deep neural networks) results in enhanced per-
formance in separating singing voices. To further improve performance at this task,
we blended the HRNet with an LSTM block. While the blending of architectures often
increases the complexity of the model in an undesirable manner, we combined the two
in a unified architecture similar to the authors of [39].

Existing singing voice separation datasets are limited in terms of both size and
musical variety. To advance our study and the field more broadly, we created a labeled
dataset for the singing voice separation problem based on data from a Nepali reality
television singing competition. Despite the fact that the proposed dataset is synthetic,
it effectively preserved the real-world music samples, ensuring that HR-LSTM per-
formance was unaffected in real-world test samples.

To further improve the system’s performance, the proposed samples of the training
dataset were mixed with training samples of DSD100, and our test results are reported
independently. As deep learning architectures are only effective when provided with
adequate and appropriate data, we compared our methods against prior state-of-the-art
alternatives using various publicly available datasets.

2.1 The New Nepal Idol Singing Voice Separation Dataset

Idols is a franchise reality television singing competition created by British televi-
sion producer Simon Fuller and developed by Fremantle [47]. Nepal Idol is a Nepali
reality television singing competition that is part of the Idols franchise. In the Nepal
Idol competition, each contestant must pass four different selection rounds (audi-
tion, theatre, piano, and gala) prior to proceeding to the final round. Our Nepal Idol
singing voice separation dataset (NISVS) was generated using recordings from the

Birkhauser



1088 Circuits, Systems, and Signal Processing (2023) 42:1083-1104

Table 1 The NISVS dataset in detail

Data Singing voice Accompaniment Mixture Average duration (s)
Training data 70 70 70 32.79
Test data 25 25 25 34.15

audition round. The contestants in this round must perform without any instrumen-
tal accompaniment. This allow us to establish ground truth sources for each singer’s
voice. Likewise, to obtain the ground truth sources for the instruments, we downloaded
Nepali instrumental sounds similar to those used in later rounds from YouTube. The
downloaded instrumental sounds and the contestant voices without instruments were
mixed together in equal length to obtain mixed signals. This process of constructing the
synthetic mixtures does not have proper alignment between instruments and singing
voices and is uncorrelated with each other. Although the synthetic data is uncorre-
lated, it can be used to add real data to increase the number of samples just during
the training phase. The synthetic data have already been used and perform well in
deep learning communities by performing various augmentation technique in image
and audio domains. Likewise, the construction of our synthetic NISVS dataset and
added it with real training dataset support to increase the accuracy of the real dataset
during the testing phase. More specifically, we merge well-aligned real training data
of DSD100 with uncorrelated training data of the NISVS dataset. The result of the
experiment during the testing phase for both real (DSD100) and synthetic (NISVS)
samples are reported in the experimental section of Tables 3 and 5. This result states
that the mixing of real and synthetic data during the training phase can improve the
accuracy in the test phase in comparison with without mixing it.

In total, we ended up identifying 95 sources, including singing voice, accompani-
ment and mixture. Seventy of these were placed in the training set while the remaining
25 were placed in a test set. The dataset was preprocessed to ensure that the singing
voice and accompaniment recordings were precisely the same length. The audio sam-
ples were of varying length, ranging from 10 to 78 s, with an average duration of
32.79 s in the training set. In the test set, samples were 13-75 s with an average dura-
tion of 34.15 s. The training data included 2296 s of recordings total, while the test data
included 854 s. Consistent with the format of the DSD100 dataset, the two sources and
mixture recordings that comprised our NISVS dataset were kept in different folders,
[26]. The details of the NISVS dataset are presented in Table 1. The log spectrogram
visualization of the two ground truth sources along with their mixture is shown in
Fig. 2.

2.2 High-Resolution Representation Learning
The most well-known encoder-decoder based networks (e.g., hourglass, U-Net,
DeconvNet, SegNet) were designed to recover high-resolution from low-resolution

representation by upsampling the feature map. The distinguishing feature of these
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Accompaniments Vocal Mixture

Fig. 2 Log spectrogram visualization of the NISVS a accompaniments, b vocal, and ¢ mixture

networks is that they connect multi-resolution convolutions in series, with the result
that the representations are weak due to location-sensitivity loss. HRNet solved this
problem by connecting multi-resolution convolutions in parallel. HRNet was origi-
nally developed as a backbone network and is currently among the best performing
networks at human pose recognition, object detection, and semantic segmentation
[45]. The features obtained from HRNet are highly precise and semantically strong
as the network maintains the high-resolution instead of recovering it from low to
high-resolution. HRNet architecture connects high-to-low-resolution convolution in
parallel with repeated fusion instead of series.

The HRNet architecture is made up of four blocks, each of which symbolizes a
multi-resolution that connects high-to-low and low-to-high in parallel. Starting with
high-resolution in the first block, network processing gradually adds high-to-low res-
olution one by one. High-to-low resolution is gradually added to create new stages
and link the parallel multi-resolution streams. This consists of resolutions from the
previous stages and one extra low-resolutions from the current stage. Multi-resolution
features are created by fusing these resolutions together. Figure 44 depicts the multi-
resolution fusion layer during low-to-high and high-to-low processes. To fully follow
its processing, readers are encouraged to view the original paper of HRNet [45].

2.3 LSTM Blocks

Recurrent neural networks (RNNs) are powerful tools used for sequence learning in
a diverse array of fields, from speech recognition to image captioning. It can also be
used in control theory for non-fragile H, synchronization. Bidirectional associative
memory inertia neural networks has recently been proposed for the synchronization
of discrete-time by combining continuous-time inertial neural networks and conven-
tional first-order bidirectional associative memory neural networks [36]. Similarly, the
method for synchronization controller has been proposed to handle the controller gain
fluctuations in [37]. So, in order to use the power of RNNs, we propose a LSTM block
that receives an N size feature map as input and provides N + 1 size feature maps
as output. The LSTM block used was made up of a 1 x 1 convolution that reduced
the number of feature maps to one. The two-dimensional feature vectors from the
single feature map are converted into a one-dimensional feature vector by using the
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Fig. 3 The LSTM block architecture

LSTM layer. There are two LSTM layers each containing 128 dimension memory
units. These memory units in the LSTM block represent the one-dimensional feature
vector of the spectrogram. The final layer of the LSTM block is a feedforward linear
layer that converted the number of LSTM units back into the input frequency.

This type of recurrent structure has the advantage of capturing the context infor-
mation from nearby frames of the mixed spectrogram. The context information is
important to capture the temporal structure of the mixed-signal from which the net-
work can memorize the longer dependencies and thus helps to improve the singing
voice separation results. The LSTM blocks has been adopted in every stage of HRNet
(as depicted in Fig. 55) to obtain LSTM-based multi-scale feature map. The features
obtained from the HRNet are effective for modeling the local structure of the spec-
trogram as it follows the CNN structure. Whereas, the features from the LSTM block
captures the global information by covering the entire frequency at once. The con-
catenation of these two multi-scale local and global features is well suited to separate
the singing voices. The architecture of the LSTM block is described in Fig. 3.

2.4 Combining LSTM with HRNet

Prior studies on source separation [39, 41] have suggested that the blending of two
networks, particularly convolutional neural networks and LSTMs, can increase audio
source separation accuracy. These blended networks achieve state-of-the-art results
when tested against various publicly available datasets. Inspired by this technique, in
this paper we aimed to adapt an HRNet for use with an LSTM to perform singing
voice separation.

The input to our HR-LSTM was the mixed magnitude spectrogram of size F' X
T x 1, in which F = 512 denoted the frequency axis, T = 64 denoted the time axis,
and 1 was the spectral channel. The HR-LSTM consisted of four branches (branch
1-4) that calculated a high-resolution spectrogram from a sub-network of branchl in
parallel with a lower-resolution spectrogram from sub-networks of branch2, branch3
and branch4. Similar to the ResNet-50, each branch consisted of four residual units
with skip connection [10]. The output feature map of the last residual block in all
branches was passed into the LSTM block of 128-dimension memory units. The
spectrogram feature map obtained from the LSTM block and the residual block were
concatenated, resulting in the output as an LSTM-based multi-scale feature map in
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all four branches as illustrated in Fig. 55. These concatenated LSTM-based multi-
scale feature maps capture the local and global features which are useful to effectively
separate the singing voices. After obtaining the feature map, there is a fusion layer,
whose objective is to fused downsampled and upsampled features by aggregating the
information obtained from high, medium, and low-resolution feature maps.

Figure 4 demonstrates the multi-resolution fusion layer that has been fused to share
the information across the different resolution. The feature maps from low resolution to
high resolution simply increase the resolution by using bilinear upsampling, whereas
the feature maps from high resolution to low-resolution decrease the resolution by
using convolutional with a stride of 2. The final feature maps of each branch are
obtained by summing all the downsampled and upsampled features, resulting in the
high-resolution representation of the mixed spectrogram. This final high-resolution
representation of the spectrogram feature map provides a better trade-off between
time and frequency resolutions.

We added the LSTM block to the HRNet at a point just prior to the downsampling
and upsampling being performed, allowing the block to capture the global structure
and the HRNet to model the fine local structure of the input mixed spectrogram. The
architecture of HR-LSTM is shown in Fig. 5.

HR-LSTM'’s first branch, given input mixed spectrograms of size F x T x 1,
produced outputs with a resolution of F x T x (C + 1). In this case, C = 32, i.e., the
number of channels obtained from HRNet, while 1 represented the feature channel
obtained from the LSTM. Similarly, the HR-LSTM’s second, third and fourth branches

7 100 g,

I] Bilinear upsampling I 3 X 3 conv and stride 2

Fig. 4 Multi-resolution fusion layer during low-to-high and high-to-low process
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Fig. 5 The architecture of HR-LSTM
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Fig. 6 The multi-resolution outputs were upsampled by a factor of 2, 4, and 8 to obtain the final feature map

gave the output size spectrogram of resolution £ ;T x(2C+ 1), £ ZT X (4C + 1),and
% x (8C + 1), respectively. All HR-LSTM branches maintained these resolutions
throughout the process. The multi-resolution feature map obtained from the low-to-
high and high-to-low processes are fused via the fusion layer to obtain the number of
feature maps (C, 2C, 4C, and 8C, for each layer, respectively). The feature of channel
2C, 4C, and 8C was bilinearly upsampled by corresponding factors of 2, 4, and 8 to
obtain feature maps of the same size. Finally, as shown in Fig. 6, all features were
concatenated to obtain the final feature map of size F' x T x (C + 2C + 4C + 8C).

2.5 Loss Function

The error rate for L2 loss will be higher because of the squared differences between
the predicted and ground truth spectrogram. So, in this work, L1 1 norm was used to
minimize the absolute difference between the target and predicted spectrograms as it
is resistant to outliers in the data which is helpful to effectively ignore the outlier of
the spectrogram and has been already studied in various types of source separation
problem [1, 29, 40]. The HR-LSTM’s time—frequency output mask for the i’ source
spectrogram is represented by M;. The input mixed spectrogram X of size FF x T x 1
was multiplied with M; to obtain the predicted spectrogram. The loss function for the
i source spectrogram was used to minimize the absolute difference between the ith
ground truth spectrogram of the music source and was given by

Lossim = [1Yi — X © M;||; ey

where © is defined as the element multiplication, || - [|;; is the 1-norm, and M;
represents the time—frequency mask for the i’" music sources. The prediction of the
HR-LSTM prior to the application of the time—frequency mask to the singing voice
is represented by Pig and prior to the application of the time—frequency mask to the
accompaniment is represented by Prnq. The time—frequency mask M is defined as
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Masky = — Pl )
| Pistl + | Panal’
The output of the network for singing voice and accompaniment is given by
singing voice(P1y) = Masky © X, 3)
Accompaniment(Papqg) = (1 — Masky) © X, “4)

Equation (1) represents loss for a single source spectrogram. Accordingly, the total
loss of the network for N music sources is defined as

Lossy = »_ Lossim (5)

2.6 Evaluation Measures

The HR-LSTM network was evaluated using the popular metrics of the median of
signal-to-distortion ratio (SDR), source-to-interference ratio (SIR), and source-to-
artifacts ratio (SAR), each measured in decibels (dB) consistent with BSS-Eval metrics
[43]. Initially, according to BSS-Eval, it was assumed that the estimation of the pre-
dicted sources Z predicted Was composed of four independent components, as given in
Eq. (6).

Zpredicted = Ztarget + €Cinterf + €noise T €artifs (6)

where Qpredicted is any source predicted by the network, Ziaget is the ground truth
source, and einerf, €noise, and eaif are error terms for interference, noise, and artifacts
[43]. The calculation of all evaluation measures requires knowledge of the ground
truth signals divided into short window segment of few seconds long. SIR reflects the
number of additional sources that can be heard in the estimated source, whereas SAR
describes the number of unwanted artifacts between the true source and predicted
source. SDR is used as a general indicator to measure the effectiveness of the source
separation system. Equations (7), (8) and (9) measure the SDR, SIR and SAR ratio
between the predicted and ground truth signal.

SDR = 1010g | Zargerl -
10 ||eartit + €interf + €noise | |2 '
7 2
SIR = 101og,, M (®)
|leintert]|
Z + e 2
SAR — 1010g]0 I target interf || ’ )

|| eartif] |2

Birkhauser



1094 Circuits, Systems, and Signal Processing (2023) 42:1083-1104

3 Experiments

The HR-LSTM was tested against four different types of source separation datasets.
The three experiments on the DSD100, MIR-1K and NISVS datasets were to test
singing voice separation, while the Korean traditional Pansori dataset was used to
test the system’s ability to separate the three sources of drum, drummer voice, and
singer voice [1]. DSD100 and MIR-1K are publicly available datasets, while NISVS
was our created dataset. Our experimental configurations were the same across all
four dataset tests as those of [1], with the exception that we increased the number
of iterations to 400,000. We also perform experiment by mixing the training data of
DSD100 and MIR1K. The mixing of two different datasets achieves slightly better
results in comparison with without mixing them.

4 Datasets

As our proposed NISVS dataset was described in Sect. 3, we will briefly review
the DSD100, MIR-1K, and Pansori dataset. Pansori music, which emerged in South
Korea, has been registered by UNESCO as an intangible heritage. In this type of music,
the singer explains the actions of characters and expresses their feelings during a stage
performance. The Pansori dataset used in [1] consisted of three different sources
to separate; drum, drummer voice, and singer’s voice. Drum and drummer voice are
repeated throughout the entire song, repeating every 0.5-3 s. The Pansori dataset mixed
samples were synthetically created by mixing drum, drummer voice and singer’s voice
with white noise. The sources for drum and drummer voice were initially physically
removed from the original Pansori song and saved in a different folder, establishing the
ground truth source for the singer’s voice. The drum and drummer’s voice in Pansori
music only contains the percussive elements, meaning that there are no harmonic and
rhythmic elements in pansori. So, the synthetic Pansori samples used just during the
training phase can successfully separate the sources for real pansori music in the test
phase [1].

The DSD100 dataset, consisting of 100 full-track songs, was originally designed by
SiSEC [26]. The dataset consists of an evenly distributed variety of musical genres and
styles. Although there are four different sources in the original DSD 100 dataset—bass,
drum, other, and vocal—the DSD100 dataset used in our experiment was adapted for
the singing voice separation task by mixing the bass, drum, and other sources into
‘accompaniment.’

The MIR-1K dataset similarly contains 1000 song clips with voice and accompani-
ment captured in the left and right channels at a sampling rate of 16 kHz. The annotation
file of MIR-1K dataset contains additional information, including pitch contours in the
semitone, indices and types of unvoiced frames, lyrics, and vocal/non-vocal segment.
Each track ranges from 4 to 13 s, and the total length of the dataset is 133 min. The
songs were performed by eight women and eleven men, most of whom had no formal
music training. To ensure a fair comparison, we selected 175 clips sung by one male
(abjones) and one female (amy) as a training set. The remaining 825 tracks were used
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for testing our source separation system. Additional details concerning these datasets
are shown in Table 2.

4.1 Results of Testing Using the DSD100 Dataset

We merged our proposed NISVS dataset with the training data of DSD100. Then, the
median SDR value for HRNet with only DSD100, HR-LSTM with only DSD100 and
HR-LSTM with DSD100 plus NISVS has been reported as a test result of DSD100.
The DSD100 dataset played two roles: (1) samples with four independent sources
had these sources separated, and (2) samples with two independent sources of vocals
and accompaniments had singing voices separated. As we designed our experiment
specifically for singing voice separation, the three sources of bass, drum, and other
were blended. As deep neural networks require large datasets for training, mixing
DSD100 and our NISVS dataset slightly improved median SDR values in the HR-
LSTM trained on the modified dataset over that trained on the original dataset. Our
HR-LSTM with mixing data can even perform better for separating the vocals which
is 0.04 dB more in other state-of-the-art networks, including MMDenseLSTM [39].
However, for separating accompaniments, this is reduced by 0.16 dB. Moreover, our
HRNet and HR-LSTM achieved comparable results with other current algorithms
when only the DSD100 dataset was used (Table 3).

Other state-of-the-art algorithms, like MMDenseNet [40], MMDenseLSTM [39],
and PSHN (4-Stack) [ 1] use multi-band spectrogram input to predict respective sources
of music. These algorithms use parallel network architectures to extract features from
each band and concatenate the output feature map from each parallel network to
estimate the final sources of music. The MMDenseLSTM, which is an improved
version of MMDenseNet, is still among the best at separating the accompaniment
which is 0.16 dB more as compared to our HR-LSTM trained on DSD plus NISVS.
With respect to vocal separation, however our HR-LSTM outperformed all existing
methods. Similarly, the authors of [29] created a fully convolutional hourglass network
that used a single-band spectrogram to extract the features using a top-down and
bottom-up approach. While the SH-4stack [29] and HR-LSTM both use single-band
spectrogram, the prior method was 0.90 dB and 0.43 dB less accurate for vocals and
accompaniments. BLEND [41] is similar to our method, as it merged two neural
network architectures (feed-forward and recurrent) by combining the output using
Wiener filtering, though it performed worse than the proposed method. NUG [24]
estimated the source spectra by combining the covariance matrix with a deep neural
network, though it achieved an accuracy of only 4.55 dB for vocals and 8.90 dB for
accompaniments. DeepNMF [17] is a conventional method for audio source separation
that utilizes a nonnegative deep neural architecture and achieved only 2.75 dB accuracy
for vocals and 8.90 dB for accompaniments.

4.2 Results of Testing Using the MIR-1K Dataset

HRNet and HR-LSTM were tested without mixing our NISVS dataset with the MIR-
1K [12] dataset, as the MIR-1K dataset contains enough audio samples for training
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Table 3 Median SDR values in

decibel (dB) for singing voice Method Vocals Accompaniments

separation on DSD100 dataset
DeepNMF[17] 2.75 8.90
NUG [24] 4.55 10.29
BLEND [41] 5.23 11.70
SH-4stack [29] 5.45 12.14
MMDenseNet [40] 6.00 12.10
MMDenseLLSTM [39] 6.31 12.73
PSHN (4-Stack) [1] 6.01 12.42
HRNet (only_DSD) 5.90 12.37
HR-LSTM(only_DSD) 6.28 12.51
HR-LSTM(DSD_plus_NISVS) 6.35 12.57

Bold values indicate the highest accuracy measure

(825). Moreover, the musical genres in our proposed NISVS dataset are too different
from those contained in the MIR-1K dataset.

The performance of MIR-1K dataset has been reported to compare with other state-
of-the-art algorithms using GNSDR, GSIR, and GSAR for both singing voice and
accompaniment. Global normalized SDR (GNSDR), global SIR (GSIR), and global
SAR (GSAR) are calculated as weighted means of NSDR, SIR, and SAR, respectively,
which is based on BSS-EVAL metrics [28, 43]. Table 4 presents the experimental
results achieved by our combined HR-LSTM and HRNet. The HR-LSTM and HRNet
as assessed by GSAR and GNSDR at separating singing voice and accompaniments
exceeded all other baseline architectures. Specifically, HR-LSTM performed the best
as assessed by GNSDR (for accompaniment separation) and GSAR (for singing voice
separation). The HRNet performed best as assessed by GSAR at accompaniment
separation, though PSHN (4-Stack) [1] was still best at separating singing voices, as
it had a GNSDR value of 10.83 dB and GSIR value of 16.54 dB. PSHN (4-Stack) also
separated accompaniment well, as assessed by GSIR, outperforming our HR-LSTM
by 0.09 dB.

4.3 Results of Testing Using the NISVS Dataset

Table 5 shows the results of three experiments conducted with the NISVS dataset.
First, the mixed audio of the DSD100 and NISVS datasets was used for training. The
HR-LSTM network trained on this mixed dataset performed well during testing. It
helps, of course, that the music in these two datasets is similar in terms of genre.
The connections of the multi-resolution convolutions in parallel in the HRNet has the
accuracy of 17.59 dB for vocals and 8.04 dB for accompaniments. This experiment
on HRNet only uses our NISVS dataset for training.

A second experiment that used the blended LSTM block and HRNet (HR-LSTM)
increased performance by 1.23 dB for vocals and 0.78 dB for accompaniments over an
HRNet trained only on our NISVS dataset. Incorporation of our NISVS dataset into the
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Table 4 GNSDR, GSIR, and

GSAR values in decibel (dB) for ~Method GNSDR GSIR GSAR

singing voice separation using

the MIR-1K dataset Singing voice
MLRR [48] 3.85 5.63 10.70
U-Net [14] 7.43 11.79 10.42
SH-1stack [29] 10.29 15.51 12.46
SH-2stack [29] 10.45 15.89 12.49
SH-4stack [29] 10.51 16.01 12.53
PSHN (4-Stack) [1] 10.83 16.54 12.67
HRNet 10.57 16.29 12.53
HR-LSTM 10.46 15.43 12.70
Accompaniments
MLRR [48] 4.19 7.80 8.22
U-Net [14] 7.45 11.43 10.41
SH-1stack [29] 9.65 13.90 12.27
SH-2stack [29] 9.64 13.69 12.39
SH-4stack [29] 9.88 14.24 12.36
PSHN (4-Stack) [1] 9.89 14.01 12.65
HRNet 9.94 14.13 12.95
HR-LSTM 9.97 14.15 12.71

Bold values indicate the highest accuracy measure

Table 5 Median SDR values in

decibel (dB) for singing voice Method Vocals Accompaniments

separation using our developed

NISVS dataset HRNet (only_ NISVS) 17.59 8.04
HR-LSTM(only_NISVS) 18.82 8.82
HR-LSTM(DSD_plus_NISVS) 19.46 8.85

Bold values indicate the highest accuracy measure

system improved the HR-LSTM'’s accuracy for two reasons; first, the incorporation of
the LSTM block before every downsampling and upsampling operation captured the
global structure for modeling the fine local features of the input mixed spectrogram,
and second, the LSTM treated the feature map of the spectrogram as sequential data
along the time axis which captured the long range dependencies present in the mixed
spectrogram.

The third experiment tested the HR-LSTM on the blended DSD100 and NISVS
dataset. This mixed dataset resulted in the most accurate model performance, reaching
19.46 dB for vocals and 8.85 dB for accompaniments.

We also visualize the predicted and ground truth spectrogram for one of the test
audio samples of singing voice and accompaniment of the NISVS dataset. In Table
5, the mixing of the real DSD100 dataset and synthetic NISVS dataset gives better
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Fig. 7 The results of comparison between ground truth and predicted spectrograms in one of our test set.
a Ground truth for accompaniment, b ground truth for singing voice, ¢ predicted accompaniment, d predicted
singing voice

accuracy in comparison with without mixing it. So, the visualization of the test resultin
Fig. 7 has been carried out using the HR-LSTM model trained with a mixing DSD100
and NISVS datasets. The visualization results prove that the predicted spectrogram
for singing voice and accompaniment are close to ground truth and hence separate the
music sources successfully.

4.4 Results of Testing Using the Pansori Dataset

Table 6 shows the outcomes of our study, as well as a comparison to the baseline
[1] using Pansori dataset. The Pansori dataset was originally published in [1], in
which a parallel stack hourglass network (PSHN) with different architectural varia-
tions—PSHN (1-Stack), PSHN (2-Stack), PSHN (3-Stack), and PSHN (4-Stack) — was
constructed. The PSHN (4-Stack) performed the best, at 15.97 dB for drum, 12.86 dB
for drummer voice, and 16.12 dB for singer voice. The masks that had been estimated
in the intermediate stage of the parallel hourglass module were passed into the next
module, which resulted in the excellent performance of the PSHN (4-Stack). The
HRNet and HR-LSTM architectures designed in this paper surpassed even the PSHN
(4-Stack) in accuracy. The HR-LSTM exceeded the HRNet along with all variants of
the baseline at drum, drummer voice and singer voice separation. The outperformance

19 Birkhauser



1100 Circuits, Systems, and Signal Processing (2023) 42:1083-1104

Table 6 Median SDR values in

decibel (dB) for the Pansori Method Drum Drummer voice Singer voice

source separation dataset
PSHN (1-Stack) [1] 15.65 12.40 15.76
PSHN (2-Stack) [1] 15.81 12.54 15.94
PSHN (3-Stack) [1] 15.89 12.66 16.03
PSHN (4-Stack) [1] 15.97 12.86 16.12
HRNet 15.83 12.91 16.25
HR-LSTM 16.23 13.41 16.91

Bold values indicate the highest accuracy measure

is attributed to the fact that our HRNet connected multi-resolution convolutions in
parallel, and the fusion of the HRNet with a LSTM block. Even the HRNet without
the LSTM block performed well compared to the baseline, achieving 15.83 dB for
drum, 12.91 dB for drummer voice, and 16.25 dB for singer voice (0.14 dB less for
drum, 0.05 dB more for drummer voice, and 0.03 dB more for singer voice than the
PSHN (4-Stack)).

5 Discussion

The research in [17] makes use of nonnegative deep networks, from which the
nonnegative parameters were produced via source separation based on nonnegative
factorization. This results from unfolding NMF iterations by untying its parameters.
Similarly, the work in [24] combine deep neural networks with spatial covariance
matrices to do source separation. In addition to this, [48] propose an algorithm called
MLRR to learn the subspaces using online dictionary learning. All these methods
[17, 24, 48] uses common approach called matrix factorization which is the conven-
tional and old approach for source separation and is far beyond in compare with our
deep learning-based method. Moreover, we compare our proposed HR-LSTM net-
work with other deep learning-based methods [1, 29, 39-41]. The work in [1, 39,
40] uses multi-band spectrogram as input and feed each band input into the separate
network. Whereas, in our case, we use single-band spectrogram which makes our
architecture less complex in compare with them. In addition to this, the key advan-
tage of our method in compare with all other methods in Tables 3, 4, and 6 is that
our method can preserves the high-resolution representation of the spectrogram rather
than recovering it from low-resolution. This process of maintaining the spectrogram
brings highly precise and semantically strong features. The mixing of our proposed
NISVS dataset with publicly available DSD100 dataset while training in our method
is another advantage for improving the accuracy in test data in compare with other
methods in the literature.
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6 Conclusion

We developed an LSTM and HRNet-based high-resolution representation learning
method to perform singing voice separation task. HR-LSTM connects multi-resolution
convolution in parallel instead of series which helps to maintain the resolution of the
spectrogram throughout the whole process. In our unified design the blending of
HRNet and LSTM blocks received mixed spectrogram representations as input and
predicted the masks for each source. The predicted mask was then multiplied with the
input spectrogram to obtain an estimated spectrogram, which was then transformed
back into the signal using the inverse of the short-time Fourier transform. The signal-
to-distortion ratio (SDR), source-to-interference ratio (SIR), and source-to-artifacts
ratio (SAR) values were used to determine the system’s accuracy in decibels (dB).
We validated the HR-LSTM architecture using four datasets: NISVS, DSD100, MIR-
1K, and the Korean traditional music (Pansori). Our experiments confirmed that the
developed HR-LSTM outperforms state-of-the-art networks at singing voice sepa-
ration when the DSD100 dataset is used, and performs comparably well when the
MIR-1K dataset is used. To further boost performance, we combined the DSD100 and
NISVS training datasets, and the test results were presented separately. This newly
developed NISVS dataset will assist future researchers working on the problem of
voice separation, just as our HRNet will, we anticipate, prove useful in applications
that require voice separation.
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