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Abstract
Speech enhancement aims to separate pure speech from noisy speech, to improve
speech quality and intelligibility. A complex convolutional recurrent network with a
parameter-free attention module is proposed to improve the effect of speech enhance-
ment. First, the feature information is enhanced by improving the convolutional layer
of the encoding layer and the decoding layer. Then, the redundant information is
suppressed by adding a parameter-free attention module to extract features that are
more effective for the speech enhancement task, and the middle layer is selected for
the bidirectional gated recurrent unit. Compared with the best of several baseline
models, in the Voice Bank + DEMAND dataset, Perceptual Evaluation of Speech
Quality (PESQ) increased by 0.17 (6.23%), MOS predictor of intrusiveness of back-
ground noise (CBAK) increased by 0.14 (4.34%), (MOS predictor of overall processed
speech quality) COVL increased by 0.40 (12.42%), and (MOS predictor of speech dis-
tortion) CSIG index increased by 0.57 (15.28%). Experimental results show that the
proposed approach has higher theoretical significance and practical value for actual
speech enhancement.

Keywords Speech enhancement · Parameter-free attention module · Convolutional
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1 Introduction

Speech enhancement technology is essential to improve the clarity and quality of noisy
speech signals. Traditional speech enhancement techniques include spectral subtrac-
tion [2, 7], Wiener filtering [14], minimum mean square error (MMSE) estimator [6],
and optimized logarithmic spectral amplitude speech estimator [5]. Although these
traditional methods based on the time-frequency domain have achieved better perfor-
mance in a stationary noise environment, the effect of processing nonstationary noise
is poor in most scenarios.

Wang et al. initially proposed a supervised speech enhancement algorithm based on
deep learning in 2012 [29]. This algorithm achieves more ideal results under nonsta-
tionary noise conditions than the traditional methods. In 2016, Park et al. proposed a
fully convolutional network to achieve speech enhancement tasks [15]. The enhance-
ment effect achieved by this method is better than the previous method. In addition,
considering that the speech signal has timing characteristics, recurrent neural network
(RNN) has been introduced into the field of speech enhancement [17]. To solve the
problem of gradient disappearance or gradient explosion [1], which is common in
RNN, long short-term memory (LSTM) is widely used [8, 28]. Lei Sun et al. pro-
posed a method for speech enhancement using LSTM-RNN in a 2017 study [20].
The results show that LSTM-RNN has a better effect on improving the speech quality
and intelligibility of speech enhancement than DNN. In 2021, Kumar, B proposed the
CS-based technique using generalized orthogonal matching pursuit algorithm yields
better performance than the other recovery algorithms in terms of speech quality and
distortion [13].

U-Net is a new type of network model first used for image segmentation [16]. It is
valued in the field of speech signal processing because of its excellent performance in
image segmentation tasks. Wave-U-Net was proposed by Daniel et al. [19] and used in
the task of sound source separation. The network adopts a fully convolutional U-Net
structure and is different from the model based on time–frequency characteristics.
It can directly convolve the speech signal in the time domain in 1D without time–
frequency transformation and separate the voice of music. The task has achieved
the best performance so far, showing strong feature extraction and signal recovery
capabilities. Tan et al. proposed the convolutional recurrent neural network (CRNN)
in 2018 [21], using the LSTM module as the middle layer of the U-Net model to
calculate the timing-related information of the speech signal. The multilayer LSTM
improves the quality and intelligibility of enhanced speech while reducing the training
parameters.

To further improve the effect of speech enhancement, the approach is improved
based on the convolutional recurrent network. Inspired by Tian et al. [25], the feature
space is enriched by improving the convolutional layer and the inverted convolutional
layer in the encoder and decoder, and the expression ability of the model is improved.
Key features useful for enhancement tasks are extracted by adding an attention mech-
anism to suppress redundant features to improve the accuracy of the model. Finally,
a soft pool [18] is used to replace the pooling layer in the network to solve the prob-
lem of the loss of important features in the traditional pooling layer or the significant
reduction of the overall feature strength.
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2 Model of the Study

The network model is shown in Fig. 1. The model includes an encoder layer, mid-
dle layer, decoder layer, and skip connection with feature enhancement module. The
encoder layer contains six downsampling layers, and the input is a noisy speech ampli-
tude spectrum, that is, a 2D feature map with time and frequency as the scale. The six
convolutional layers extract features from the signal layer by layer, and the number
of convolution kernels used in each layer is set to 32, 64, 128, 256, 256, and 256, and
the time–frequency feature map output by each layer is on time, and the frequency
dimension is reduced. During the experiment, this paper tries to increase the number
of downsampling layers. The increase in the number of downsampling layers does
not bring about an improvement in the speech enhancement effect, or even a decline.
Adding too many downsampling layers at the same time will increase the complexity
of the model. Speech enhancement works best when downsampling is set to six layers.
The middle layer uses a bidirectional gated recurrent unit (BiGRU) [4]. The multidi-
mensional feature tensor (Tensor) output by the encoder layer needs to be reduced by
the dimensionality adjustment (Reshape) operation because BiGRU can only process
2D feature maps. The requirements of BiGRU enable the network to complete the
learning of signal timing characteristics, and at the same time, reconstructing the ten-
sor output by BiGRU is necessary to increase the dimension. The decoder layer can be
regarded as the inverse process of the encoder layer, which includes six upsampling
layers. Each upsampling layer expands the feature map by moving the convolution
kernel, inwhich the convolution is reversed in a specific step. The output of the decoder
layer is the enhanced speech amplitude spectrum, and the phase of the noisy speech
is used to reconstruct the waveform signal. The network has a feature enhancement
module skip connection setting. It inputs the output of the downsampling layer and
the input of the corresponding upsampling layer into the feature-enhancing module
at the same time, and then splices it with the output of the corresponding upsampling
module, thereby combining the feature map is doubled. This operation is conducive
to the recovery of the pair number of the decoding layer.

2.1 DownsamplingModule

As shown in Fig. 2, the downsampling layer consists of three deep over-parameterized
convolutional layers (DO-Conv) [3], batch normalization layer (BN), activation func-
tion, residual learningwith attentionmechanism, and composition of the soft pool. The
deep over parametric convolutional layer is composed of deep convolution and tradi-
tional convolutional layers. First, the convolution kernel is deeply convolved to form
a new convolution kernel, and then, the features are traditionally convolved. They are
DO-Conv1, DO-Conv2, and D-OConv3, and their convolution kernels are set to 1*3,
3*3, and 3*1, respectively. D-OConv1 and DO-Conv3 are used to enhance the hori-
zontal and vertical features, and then, residual learning is used to influence DO-Conv2
with the obtained information, the feature space is enriched, and the expression ability
of the model is promoted. The role of BN is to maintain the output data of the convolu-
tional layer and to satisfy the independent and identical distribution assumption during
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Fig. 1 This is the model of this study. The model includes downsampling layers, intermediate layers,
upsampling layers, and skip connections with feature enhancement modules

the neural network training process. The batch normalization layer is conducive to the
convergence of the network error function and speeds up the training efficiency. The
activation function is LeakyReLU. In the last layer, a residual learning module with
an attention mechanism is used.
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Fig. 2 This is downsampling module. The downsampling layer consists of DO-Conv, BN layer, LeakyRelu
layer, a_resblock, and soft pool

This work is inspired by the deep residual shrinkage network [33], combines the
attention mechanism with residual learning, and replaces the attention mechanism
in the basic module of the deep residual shrinkage network with a parameter-free
attention module [31]. Among them, the parameter-free attention module is derived
from the basic theories of neuroscience. In neuroscience, information-rich neurons
usually exhibit different firing patterns from peripheral neurons. Moreover, activating
neurons usually inhibits peripheral neurons, that is, spatial inhibition [30]. Neurons
with spatial inhibitory effects should be given higher importance. The importance of
neurons is determined by defining the energy function as follows:

Xn(e
jw) =

∞∑

m=−∞
x(m)w(n − m)e− jwn (1)

Among them, t̂ = wt t + bt and x̂i = wt xi + bt are the linear transformations of t and
xi , where t and xi are the target neuron and the other neurons in a single channel of the
input feature, respectively. i is the index in the spatial dimension, and each channel
has neurons. All values in Eq. (1) are scalars. When t̂ is equal to yt and all other x̂i
is y0 , Eq. (1) reaches the minimum value, where yt and y0 are two different values.
By minimizing this equation, Eq. (1) is equivalent to finding the linear separability
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between the target neuron and all other neurons in the same channel. For simplicity, a
binary label is used, and a regular term is added. The minimum energy equation can
be obtained by solving as the following:

e∗
t = 4(σ̂ 2 + λ)

(t − μ̂)
2 + 2σ̂ 2 + 2λ

(2)

In Eq. (2), lower energy indicates greater difference between neuron t and surrounding
neurons and higher importance. Therefore, the importance of neurons can be obtained
1
/
et ∗.
The equation derives the energy function and taps the importance of neurons. In

the attention mechanism, the features are enhanced, as follows:

X̃ = sigmoid (
1

E
) � X (3)

Among them, E groups all et∗ across the channel and spatial dimensions. The
sigmoid function is added to limit the larger value in 1. This function does not affect
the relative importance of each neuron. In summary, in addition to the calculation of
the channel average and variance, all calculations in the module are based on element
calculations and do not involve structural adjustments. This finding is very different
from the previous attention mechanisms.

Usually, convolutional neural networks (CNNs) use the pool operation to reduce
the size of the feature map. This process is essential to achieve the local space invari-
ance and increase the receptive field of subsequent convolution. Therefore, the pooling
operation should minimize the loss of information in the feature map and limit the cal-
culation and memory overhead. The risk of losing important information is introduced
to avoid the risk of losing most activations brought about by the maximum pooling. At
the same time, to avoid the equal contribution of the activation values in the average
pooling, the overall regional feature strength is significantly reduced. SoftPool assigns
a weight to each activation value, and the weight is used as a nonlinear transformation
together with the corresponding activation value. A higher activation value is more
dominant than a lower activation value. Its weight is calculated as the ratio of the
natural index of the activation to the sum of the natural indices of all activations in the
neighborhood R, as follows:

ωi = eai∑
j∈R

ea j
(4)

The weight in Eq. (4) is the corresponding activation weight. To ensure that a larger
activation value has a greater impact on the output, this method uses the natural index
e as the bottom.

The output value of the SoftPool operation is obtained by summing all the weighted
activation criteria in the kernel neighborhood , as follows:

ã =
∑

i∈R

ωi ∗ ai (5)
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Highlighting activations with greater effects is a more balanced approach than
simply selecting the maximum value because most pooling operations are performed
in a high-dimensional feature space.

2.2 UpsamplingModule

The upsampling module in the decoder has a similar structure to the downsampling
module, consisting of a transposed convolutional layer composed of three transposed
convolutional layers, a batch normalization layer, a LeakyReLU activation layer, and a
dropout layer. Transposed convolution can be regarded as the inverse process of tradi-
tional convolution. The size settings of the convolution kernels of the three transposed
convolutions are consistent with the settings in the downsampling. The difference is
that the upsampling module realizes the expansion of the 2D time–frequency feature
map by changing the size of the convolution kernel step size of the transposed convo-
lution, and the final output is the 2D time–frequency feature map with the same size
as the network input.

A dropout layer is added after the activation layer to solve the problem to avoid
the over-fitting of the model and improve the robustness of the network model. Two
neurons do not necessarily appear in a dropout network every time because of the
dropout layer. As a result, the update of weights no longer depends on the joint action
of implicit nodeswith fixed relationships, thereby preventing some features frombeing
effective only under other specific features. The network is forced to learn more robust
features, which also exist in random subsets of other neurons. From this perspective,
dropout is slightly similar to L1 and L2 regular, reducing the weight that causes the
network to become more robust to the loss of specific neuron connections.

Finally, this article adds an output layer after the sixth upsampling layer, which
is composed of a transposed convolution layer. The size of the convolution kernel is
set to 3×3, the step size is set to 1×1, and the activation function uses the sigmoid
function.

2.3 BiGRU

Ordinary RNNs are prone to the problem of gradient disappearance in the process of
training time-series data. The proposal of LSTM and gated recurrent units solves this
problem. The performance of GRU and LSTM is similar, but it has a more concise
internal structure. The parameters of the network model can be reduced, and the
ability to prevent overfitting is improved. LSTM can increase or remove the ability
of data information to its memory space through the “gate” structure, and the “gate”
structure can also selectively allow information through. LSTM controls the input
value, memory value, and output value by three gate functions, namely input gate,
forget gate and output gate. GRU only has updated gates and reset gates, and the
structure is more concise, as shown in Fig. 3. The calculation method of the GRU
structure is shown in Eqs. (6–9), as follows:

z = δ(Uzxt + WZht−1) (6)
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Fig. 3 This is GRU and BiGRU structure diagram

r = δ(Ur xt + Wrht−1) (7)

s = tanh(Usxt + Wh(ht−1 ⊗ r)) (8)

ht = (1 − z) ⊗ s + z ⊗ ht−1 (9)

Among them, z is the update gate, r is the reset gate, δ is the activation function, ⊗
is the vector corresponding element multiplication operation, s is the current hidden
state, and ht is the final output state.

In the original RNN network, the state transmission is the unidirectional trans-
mission from front to back, and the bidirectional GRU network structure enables the
model to obtain forward dependency information and reverse dependency informa-
tion. It is up and down by two GRU networks. Stacking structure, the output is jointly
determined by two GRU networks, and its structure is shown in Fig. 3.

2.4 Feature FusionModule

A feature fusion module is used to enhance and compensate for the loss of information
in the process of downsampling to upsampling [25] . Feature fusion modules include
Conv2+RELU, Conv2, and RELU. Among them, Conv2+RELU indicates that Conv2
is tightly connected to RELU.

The realization of the feature fusion module is divided into two stages. The first
stage provides complementary information by learning the output of the features by the
corresponding upsampling layer and downsampling layer. Specifically, Conv2+RELU
and Conv2 are used in the corresponding upsampling and downsampling, respectively,
where their input and output channel number is 64. The size of the filter is 3×3.
RELU is used to perform dual-path fusion on the extracted features, and the nonlinear
transformation is performed on the extracted features. The entire process is expressed
in Eq. (10), as follows:

Offeb = R(C(R(C(Od))) + C(R(C(Ou))) (10)
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In Eq. (10), Offeb represents the output of the first stage of the feature enhancement
module, R represents the RELU layer, C represents the convolutional layer, Od and
Ou are the output of downsampling and upsampling, respectively.

The second stage is used to prevent excessive feature enhancement problems to
obtain more robust features. It has two types of operations, namely Conv2+RELU and
Conv2. First, the two layers use Conv2+RELU with a size of 64×3×3×64, where
the number of input and output channels is 64, and the size of the Conv2 convolution
kernel is 3×3. The last layer only uses Conv2 with a size of 64×3×3×3, where the
number of input and output channels is 64 and 3, respectively. This process can be
expressed in Eq. (11), as follows:

O = C(R(C(R(C(Offeb))))) (11)

3 Experimental Setup

3.1 Data Set

The data set used in this article was published by Valentini et al. [26]. They are widely
used in speech enhancement research, including clean speech data and noisy speech
data with a sampling frequency of 48 kHz, including different speakers and various
types of noise. These clean speech data are recordings from different text paragraph
sentences. Thirty English speakers were selected from the Voice Bank corpus [27],
including males and females with different accents, of which 28 and two speakers
were assigned to the training set and test set, respectively. The test set consists of
20 different noise conditions. Five types of noise are derived from the DEMAND
database [24], resulting in 824 test items, and each test speaker has approximately
20 different sentences under different conditions. In the process of calculating the
amplitude spectrum from the speech waveform, short-time Fourier transform (STFT)
should be performed on the speech signal. To this end, the speech should be framed
and windowed to obtain a speech spectrum with a specific frequency resolution. In
the experiment, the sampling rate of the corpus is all downsampled from 48 kHz to
16 kHz, the speech frame length is set to 32 ms, that is, 512 sampling points, the
frame shift is set to 10 ms and a Hamming window is added to reduce the spectrum
leakage. After STFT is performed frame by frame, the amplitude spectrum should be
considered. The obtained STFT amplitude spectrum is used as the input feature of
noisy speech and the training target of pure speech.

3.2 Experimental Design

The training models in this article are built using TensorFlow. The network iterative
training process requires the use of a loss function to calculate the error between the
input features of the network and the label. The error updates the weights of all nodes
in each layer of the network through reverse transmission and finally completes the
learning of the feature-to-label mapping relationship by selecting a suitable optimizer
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Table 1 Model and baseline
evaluation results

Method PESQ CBAK COVL CSIG STOI

Noisy 1.97 2.44 2.63 3.35 0.91

Wiener 2.22 2.68 2.67 3.23 –

SEGAN 2.16 2.94 2.80 3.48 –

U-Net 2.48 3.21 3.05 3.65 –

CRN 2.61 3.26 3.17 3.78 0.94

GCRN 2.51 3.24 3.09 3.71 0.94

DCCRN-E 2.73 3.22 3.22 3.73 0.941

Our-SIMA 2.90 3.36 3.60 4.30 0.95

Bold indicates the best results

at a specific learning rate to gradually reduce the error in a gradient descent manner.
Here, this article sets the batch size of each batch of corpus entering the network to
64, uses the mean square error (MSE) function and uses the Adam optimizer [12] to
optimize the network parameters. The Adam parameter is set to B1=0.5 and B2=0.9,
and the learning rate is set to 1e-4. This article uses the same training set to train the
baseline model and the model in this article. The network convergence indicates that
the error function drops to basic stability and then stops training; it uses the test set
corpus to test the enhancement effect of the model.

The baseline model of this experiment is set apart from theWiener filteringmethod,
SpeechEnhancementGenerativeAdversarialNetwork(SEGAN),U-Netmethod, there
are three recently proposed, namely complex spectral mapping convolution recurrent
network (CRN) [22] proposed in 2019, including six convolutional layer encoders and
six symmetry. Each layer has two lstm layers. In addition to the gate convolution layer,
the causal composite spectral mapping gate convolution recurrent network (GCRN)
[23] proposed in 2019 has the same characteristics and the same structure as crn. Deep
complex convolution recurrent network for phase-aware (DCCRN) [9] proposed in
2020 is based on the CRN model, but the convolutional layer is more complicated.

4 Results

This article uses the following objective evaluation indicators to evaluate the network
training results:

1. PESQ: objective speech quality evaluation, objective MOS value evaluation pro-
vided by Recommendation ITU-TP.862 (0.5-4.5) [11];

2. STOI: Short-term objective intelligibility (0-1) [32];
3. CSIG: Focuses only on the average opinion score (MOS) prediction of the signal

distortion of the speech signal (1-5) [10];
4. CBAK: Intrusive MOS prediction of background noise (1-5) [10];
5. COVL: MOS prediction of the overall effect (1-5) [10]. The higher score of the

five indicators results in improved speech enhancement effect.



1844 Circuits, Systems, and Signal Processing (2023) 42:1834–1847

Fig. 4 Evaluation results of the proposed model

Our SIMAmodel in Table 1 uses a nonparticipant attention mechanism. Evidently,
comparedwith the baselinemodel, the proposedmodel greatly improved the evaluation
indicators of PESQ, CBAK, COVL, and CSIG. Compared with the DCCRN-E model
in the literature [22], the PESQ index increased by 0.17 (6.23%), the CBAK index
increased by0.14 (4.34%), and theCOVL index increased by0.40 (12.42%). TheCSIG
indicator increased by 0.57 (15.28%). However, the STOI indicator hardly exhibits
any growth. The results show that the proposed model improves the coding layer and
the decoding layer in the speech enhancement task to achieve feature information
enhancement and reduce information loss. A nonparameter attention mechanism is
added to suppress redundant information, thereby extracting features that are more
effective for speech enhancement tasks. In addition, the middle layer selects Bi-GRU
to process the timing information of the voice signal and has achieved good results.

Figure 4 shows evaluation results of the proposed model. The difference is that
the attention mechanism is not added. Our ECA is different from the proposed model
in that the attention mechanism uses an efficient channel attention mechanism. Our
SIMA represents the proposed model of the attention mechanism. The experimental
results prove that adding the attention mechanism improves speech enhancement.
The previous work indicated that the high-efficiency channel attention mechanism
has a good improvement for speech enhancement tasks. For the proposed model, the
efficient channel attention mechanism also improves the speech enhancement task
to a certain extent. However, the enhancement effect brought by the parameter-free
attention module is more evident. At the same time, all calculations in the parameter-
free attention module are element-based operations, which do not involve structural
adjustments and do not increase the number of parameters. Compared with the model
before improvement, the model in this paper improves the enhancement effect and
brings a certain increase in computational complexity, but in the experiment, the size
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of the convolution kernel is reduced, and the number of convolution kernels is reduced
as much as possible. Therefore, the computational complexity and the increase in the
training and testing time of the model are also acceptable.

5 Conclusion

A complex convolutional recurrent network model with an attention mechanism is
proposed. The model is based on a convolutional recurrent network. After fine-tuning
the structure, a residual learning module with a parameter-free attention module is
added to suppress redundant information, and the downsampling work is completed
through the soft poolmodule.Thehorizontal andvertical features are enhanced through
asymmetric convolution blocks, and the traditional convolution layer is replaced by
DO-Cnov to improve the model training speed. Finally, feature fusion is added to the
skip connection module; the accuracy of the model is improved without increasing
the calculation amount. The experimental results show that the proposed method has
strong competitiveness.
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