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Abstract
Kernel adaptive filtering algorithms have been successfully applied in many areas,
among which the fraction lower power order statistics error criterion (FLP) is a bet-
ter choice due to its prominent performance in robust design. However, the growth
of network size in kernel adaptive filtering affects the convergence rate and testing
accuracy. This paper proposes a sparse Gaussian kernel adaptive filtering algorithm
based on the Softplus function framework to address the network size. The frame-
work is constituted by the fraction lower power order statistics error criterion and
an improved novelty criterion. The exponential loss function is employed to describe
a new novel criterion, which can accurately achieve fast classification and limit the
data selection of the dictionary size. This new algorithm is called the kernel fraction
lower power order statistics error criterion based on the Softplus function with a modi-
fied novelty criterion (SKFLP-MNC) algorithm. In particular, the proposed method is
employed for the Mackey–Glass chaotic time series prediction and noise cancellation
under the cases of Gaussian and non-Gaussian noise. Simulation results show that the
filtering accuracy of the SKFLP-MNC algorithm, the dictionary size, and steady-state
mean-squared errors rival some of the sparse kernel least mean square algorithms.
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1 Introduction

In recent decades, adaptive filtering algorithms have been widely examined. These
algorithms automatically adjust the filter parameters according to the changes in sig-
nal characteristics tomake thefiltering processmore accurate. In practice, conventional
adaptive algorithms are often designed with linear systems. The most popular conven-
tional adaptive algorithms are recursive least squares (RLS) and least-mean squares
(LMS) algorithms; see, e.g., [8, 25, 30]. Nonlinear problems such as time series pre-
diction, pattern classification, radial basis function (RBF) networks, and nonlinear
regression [1, 17, 22, 25, 33] have not attracted much attention. Kernel adaptive filter-
ing (KAF), which is regarded as a nonlinear adaptive algorithm, has been developed
to address the above problems. Kernel adaptive filtering algorithms have been applied
in machine learning and nonlinear signal processing, showing better results. KAF
algorithms use Mercer kernels [28] to map the input space into high-dimensional
reproducing kernel Hilbert spaces (RKHS) and then perform linear learning in the
feature space [30, 31]. However, the KAF needs to assign a new kernel unit as a dic-
tionary center for every input sample. In other words, the network size will linearly
grow with each new sample, which creates a growing structure.

Previously, kernel expansions of kernel algorithms have been observed, therefore
various methods have been proposed to manage the growing network size of KAF
algorithms, which are called sparse KAF (SKAFs). For instance, a sparse robust adap-
tive filtering algorithm based on the q-Renyi kernel function was extended in [34].
[22] proposed nonlinear adaptive filtering with a kernel set-Membership approach.
To date, the existing SKAFs heavily rely on the well-selected sparse criteria, which
can measure the similarity between two inputs. Several sparse criteria are commonly
used to control the dimension of the kernel dictionary (or model) structure. In [28],
the prediction variance criterion (PVC) was used for sparse, which has a medium
complexity about quadratic. Concretely, sparsification methods include the surprise
criterion (SC) [29], the quantization vector (QV) [5] method and the coherence crite-
rion (CC) [13]. The novelty criterion (NC) [26] is widely studied as one of the simplest
criteria. To significantly suppress the input space, the key idea of the NC is to establish
two thresholds to evaluate the network performance. Among the NC family, examples
include novelty criterion kernel least mean square (KLMS-NC) [22], as well as their
numerous variations [29]. In the case of maintaining high learning performance, the
use of sparse constraints can generate a small network. However, themean square error
(MSE) is adopted as a cost function, which leads to lower robust performance. The
MSE-based SKAF algorithms only capture the second-order statistics of the data, so
its performance may be seriously degraded in some non-Gaussian cases [15]. There-
fore, a well-selected cost function is a good choice for kernel adaptive filtering, which
plays an important role in the overall design of KAFs to gain high performance.

Recently, some non-quadratic error criteria have gained significant attention. For
example, Gao proposed a kernel least mean square p-power algorithm (KLMP) [14]
based on the fractional low-order statistical error criterion.Additionally, the algorithms
associated with the maximum correntropy criterion (MCC) (i.e., Quantized kernel
maximum correntropy (QKMC), Maximum correntropy Kalman filter and so on) [6,
32, 33] have shown their robust power against non-Gaussian circumstances. However,
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the above SKAFs are usually sparse with conventional sparsification methods, and the
tracking capability of those algorithms can be reduced. NC, as a typical sparsification
method, is quite effective and heuristic in nature. Nevertheless, when the measured
data contain various noise distributions or large outliers, the NCmay not always bring
the best performance.

Motivated by this situation, we present an exponential loss function [18] as the
sparse evaluation and construct a new sparse frame. In this paper, the modified nov-
elty criterion is incorporated into the kernel fraction lower power order statistics error
criterion based on the Softplus function (SKFLP) [29] to construct the sparse SKFLP
algorithm for curbing thegrowingRBFnetwork, namely, themodifiednovelty criterion
robust kernel adaptive filtering algorithm based on the Softplus function (SKFLP-
MNC). Our work here focuses on employing the exponential loss function as a sparse
criterion and conducts some changes of the original. Based on the new sparse method,
the SKFLP-MNC algorithm only contains the important input samples and uses them
to build compact networks, which is effective for practical problems. In the SKFLP-
MNC algorithm, the gradient descent methods are used to adjust the current desired
output coefficient when a new input is selected as a dictionary center. The main fea-
tures of our proposed algorithms are validated by simulation results. The rest of this
paper is organized as follows. In Sect. 2, we review the SKFLP adaptive algorithm and
related works of NC and then present the derivation of the proposed SKFLP-MNC
algorithm, which has an update check similar to all sparse algorithms. In our pro-
posed algorithms, when the update check ensures the updating of filter parameters,
a modified NC sparsification follows to control the kernel dimension. Section 3 pro-
vides convergence analysis for SKFLP with the modified sparse criterion, referring
to the exponential loss function. This section shows that the algorithm is convergent.
Simulation results are discussed and described in Sect. 4 to show the performance of
our algorithm. The algorithm yields a low steady-state MSE and a smaller dictionary
dimension. Conclusions are given in Sect. 5.

2 Gaussian Kernel Adaptive Algorithm Based on Softplus Function
with Sparse Criterion

In general, a structure can influence the convergence rate and filtering performance of
filters. A modified novelty criterion is introduced in SKFLP to produce the SKFLP-
MNC algorithm. Let us now consider the nonlinear adaptive algorithms based on the
Gaussian kernel. The kernel algorithms learn an arbitrary nonlinear mapping devel-
oped in a sequence of samples. We use the Gaussian kernel to define the type of
nonlinearity. A sequence of training samples {u(1), d(1),...(u(n), d(n))} are used as the
input–output pairs, where u(n) is the input data vector and d(n) is the desired output
at discrete time n. The mapping function is commonly known as Mercer kernels [27,
35].
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2.1 Similarity Measures in Kernel Space

To overcome the performance degradation drawbacks based on MSE under various
outliers, including impulsive interferences. Here, we propose a robust cost framework.
First, we define a softplus function [28] as:

si = loge(1 + e−α|J (w)|) (1)

where J (w) is an error function and the parameter α is a positive value that controls
the steepness of the Softplus function curve. Inspired by the saturation property of the
Softplus function, we introduce a new cost function framework based on the Softplus
function as follows:

Js(i) = 1

α
si = 1

α
loge(1 + e−Jω(i))

= 1

α
loge(1 + e−α|e(i)|p

) (2)

where J (w) is the fractional low-order statistical error criterion, as follows:

J (ω) =
∣
∣
∣d(n) − ωT (n)u(n)

∣
∣
∣

p
, 0 < p < 1 (3)

ϕ(n) is a nonlinear function induced by the Mercer kernel κ(u, ·)[30], we can.
extend linear models to nonlinear models with a nonlinear transformation ϕ(n)

Then, we can use different sparsity criteria to obtain corresponding kernel adaptive
filters. We choose the Gaussian kernel [23] as the nonlinear transformation, it can be

defined by κ(u, u
′
) = exp(−h

∥
∥
∥u − u

′∥∥
∥

2
), where h is the kernel bandwidth. w(n) is

the weight vector at n, and E denotes the expectation operator. (2) is represented as:

Js = 1

α
log(1 + e−α|e(n)|p

) (4)

e(n) is the prediction error, the desired signal is d(n) and the actual output is y(n)
= w(n)T φ(u(n)). According to (4), when there has impulse noise interference, the
gradient of the cost function tends to 0, which effectively inhibits the weight updating
process of the algorithm. Then update equations of the weight vectors can be easily
derived from the following gradient descent rule:

∇ω Js(i) = ∂ Js(i)

∂ω
= 1

α

∂si

∂ J (e(i))

∂ J (e(i))

∂ω

= 1

α

1

1 + e−(−J (e(i)))

∂ J (e(i))

∂ω

= 1

1 + e−α|e(i)|p

1

|e(i)|1−p sgn(e(i))ϕ(i) (5)
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ω(i) = ω(i − 1) + μ

i
∑

j=1

1

1 + e−α|e( j)|p

1

|e( j)|1−p (6)

where sgn() represents the sign operator andμ is the step size that satisfies 0 < μ < 2.
The SKFLP algorithm achieves a fast convergence rate at the instant and a low steady-
state error at the steady state. Nevertheless, it also has the limitation of a linearly
increasing network structure.

2.2 Novelty Criterion

As we see, adaptive data selection that retains important data and removes redundant
data is a natural method to tackle the issue of linearly increasing network structure.
There are mainly two existing criteria for online kernel learning, the novelty criterion
and the approximate linear dependency (ALD) [11]. To perform sparsification, the NC
is supposed in the present learning system as:

fi =
n

∑

j=1

a j (n)κ(c j , ·) (7)

with c j as the jth dictionary center and a j (n) as the jth expansion coefficient. The
dictionary C(n) = {c j }n

j=1 stores a new input data pattern. When a new sample
{u(n + 1), d(n + 1)} is raised, the NC needs to decide whether to accept u(n + 1) as
a new center.

To understand how the NC operates, we focus on the distance and prediction
error-based criteria. It first calculates the distance between u(n + 1) and the present
dictionary, which can be defined by Dis = min

c j ∈C(n)

∥
∥u(n + 1) − c j

∥
∥. || || represents

the Euclidean norm, U is the input space. There are two preset thresholds δ1 and δ2,
where δ1 is the tolerance for the closeness of the new data to the dictionary, and δ2
is the tolerance for the a priori error. The parameter value needs to be set in advance
for comparison; if Dis ≤ δ1, u(n + 1) will not be added into the present dictionary
center. Otherwise, it will calculate the prediction error

e(n + 1) = d(n + 1) − fi (u(n − 1)) (8)

When |e(n + 1)| ≥ δ2, the new input sample u(n + 1) will be accepted as a new
center.

2.3 Proposed Sparse Gaussian Kernel Adaptive Algorithm

In this section, we derive the proposed SKFLP-MNC algorithm in detail, which is
inspired by Platt’s adaptive sparse strategies. The novelty criterion is very useful in
reducing the numerical complexity and dynamic range requirements of the kernel
adaptive algorithms. To further improve the filtering accuracy of the algorithm, the
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following improvement measures are proposed. Motivated by the discussion of the
AdaBoost algorithm, we propose a new adaptive sparsification method as follows,
namely, modified NC (MNC). The Adaboost algorithm [24] is a classification ability
boosting algorithm that can generate a high-precision classification model with mul-
tiple low-precision models, and the exponential loss function(exp-loss) is the core of
the AdaBoost algorithm. We define the exp-loss distribution gq as follows:

gq(x) = exp(−q( f (x))) (9)

where q is a regulatory factor. In this work, we focus mainly on applying the loss to
define the modified NC theorem.

min
c j ∈C(n)

(exp(
∥
∥u(n + 1) − c j

∥
∥2)) (10)

‖‖2 denotes the Euclidean normof a vector square, which can improve the convergence
rate of the algorithm.

Similar to the SKFLP algorithm, the derivation of the SKFLP-MNC algorithm
corresponds to solving the following optimization problem:

min
	

N
∑

n

(

∣
∣
∣d(n) − 	(n)T ϕ(n)

∣
∣
∣

p
), 0 < p < 1 (11)

where 	(·) are the weights in the feature space. Then, a sparse operator O[·] in the
feature vector used to build the constraint is given by (10). As mentioned in (6), given
the SKFLP update equation, the update form of SKFLP-MNC can be obtained by
performing the sparse operator in the feature vector ϕ(u(n)), namely,

	(n) = 	(n − 1) + μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))O[ϕ(n)] (12)

Remark Gaussian kernel is used to algorithm, function κ(·, ·) used to calculate the
inner product κ(·, ·) = < φ(·)T, φ(·) > . Figure 1 shows the aforementioned Gaussian
kernel with various values of the parameter h. We can see that the kernel width h
affects the smoothness of the algorithm. To balance the data loss caused by the sparse
discarding, we choose a smoothing Gaussian kernel width h = 0.2.

Fig. 1 The element φ(× 0) = κ(·, × 0) of the feature space induced by the Gaussian kernel with h = 5, h =
3, h = 1, h = 0.2
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Let the form of input vector u(n) in the RKHS is φ(u(n)). Substituting (12) into
(11) we arrive at:

e(n) = d(n) − 	(n − 1)ϕ(n) − μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))O[ϕ(n)]ϕ(n)

(13)

Using κ(·, ·) to evaluate the dot products, the previous equation turns into:

e(n) = e(n − 1) − μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))κ(O[ϕ(n)], ϕ(n)) (14)

Then, fromEq. (14), we can take into account that the update only occurs if the error
is not very large and if the dictionary changed. We can then compute 	 recursively as
follows:

	(n) = 	(n − 1) + μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))O[ϕ(n)]

= [	(n − 2) + μ
1

1 + e−α|e(n−1)|p

1

|e(n − 1)|1−p sgn(e(n − 1))O[ϕ(n − 1)]]

+ μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))O[ϕ(n)]
. . . (15)

= 	(0) + μ

n
∑

i=1

1

1 + e−α|e(i)|p

1

|e(i)|1−p sgn(e(i))O[ϕ(i)] (16)

Setting 	(0) to zero leads to:

	(n) = μ

n
∑

i=1

1

1 + e−α|e(i)|p

1

|e(i)|1−p sgn(e(i))O[ϕ(i)] (17)

Based on this modified NC, we can decide whether the current data are available
Dis1 > δ1, |e(n + 1)| > δ2 or redundant Dis1 < δ1, and the thresholds δ1 and
δ2 need to be set in advance and need to be greater than or equal to 0. C(n) note the
dictionary at n, and c j are the elements of dictionary C(n). We initialize the dictionary

C(1) = {u(1)} and coefficient vector a(1) =
[

μ 1
1+e−α|d(1)|p

1
d(1)1−p sgn(d(1))

]

.

According to (10), calculate the distance between input u(n), which is the current
input sample. Then, compare Dis1 with δ1. If the distance Dis1 ≤ δ1, u(n + 1) will
not be added into the present dictionary center, then we have C(n) = C(n − 1), and
the dictionary remains unchanged. Otherwise, the prediction error is calculated by
Eq. (8), if the prediction error |e(n + 1)|> δ2, we have C(n) = {C(n − 1), u(n)}.



Circuits, Systems, and Signal Processing (2023) 42:522–539 529

Incorporate the MNC method into the SKFLP to generate the SKFLP-MNC algo-
rithm. For the SKFLP-MNC, if Dis1 ≤ δ1 and |e(n + 1)|> δ2, we have:

O[u(n)] = u(n)

C(n) = { C(n − 1), O[u(n)]}

a(n) =
[

a(n − 1), μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))

]

(18)

When a new training datum {u(n), d(n)} is observed, the corresponding output of
SKFLP-MNC can be calculated by:

y(n) = fn−1(u(n)) =
n

∑

j=1

a j (n − 1)κ(u(n), c j ) (19)

fn is expressed as the estimate of the kernel mapping at iteration n. It can be seen from
(10), the SKFLP-MNC only accepts the data that satisfy the modified NC criterion. A
smaller framework is generated by discarding some input data. Equations (10), (11),
(16), (18), and (19) summarize the proposed SKFLP-MNC algorithm.

3 Convergence Analysis for SKFLP-MNC

SKFLP-MNC algorithm is a novel kernel adaptive filter algorithm with sparsification.
By examining the convergence properties of the SKFLP-MNC algorithm, the success
of its learning mechanism is verified, which shows that the algorithm has inherent
learning and prediction ability. We first derive the energy conservation relation of
SKFLP-MNC and then present a sufficient condition for mean square convergence.

3.1 Energy Conservation Relation

First, a nonlinear mapping f ∗ is proposed to mark the estimated value of filtering. We
know the universal approximation property [17].Wehave an optimalweight vector	∗,
which can be seen as f ∗ = 	∗ϕ(·). Specifically, the desired signal d(n) is expressed
as:

d(n) = f ∗(u(n)) + v(n) (20)

Then, the output error of the algorithm can be expressed as

e(n) = d(n) − 	(n − 1)Tϕ(u(n)) (21)
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Equation (20) is substituted into (21):

e(n) = ∼
	(n − 1)Tϕ(u(n)) + v(n)

= em(n) + v(n) (22)

where em(n) = ∼
	(n − 1)T ϕ(u(n)) is the priori error and

∼
	(n − 1) = 	∗ − 	(n − 1)

denotes the weight error vector in the RKHS. Subtracting 	∗ from both sides of the
Eq. (12) to obtain the iteration expression of deviation, we have

∼
	(n) = ∼

	(n − 1) − μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))O[ϕ(u(n))] (23)

Define a posteriori error ep(n) = ∼
	(n)T ϕ(u(n)), we have

ep(n) = em(n) + (
∼
	(n)T − ∼

	(n − 1)T )ϕ(u(n)) (24)

By incorporating (23), we obtain:

ep(n) = em(n) − μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))O[ϕ(u(n))]Tϕ(u(n))

= em(n) − μ
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))κ(O[ϕ(u(n))],ϕ(u(n)))

(25)

Combining (23) and (25) to eliminate the prediction error e(n) yields

∼
	(n) = ∼

	(n − 1) + ep(n) − em(n)

κ(O(ϕ(u(n))), ϕ(u(n)))
O[ϕ(u(n))] (26)

The expected energy relationship is obtained by using the square of the norm of
two sides in Eq. (26), and we have

∥
∥
∥

∼
	(n)

∥
∥
∥

2
=

∥
∥
∥

∼
	(n − 1)

∥
∥
∥

2
+ ep(n)2 − em(n)

κ(O(ϕ(u(n))), ϕ(u(n)))2
− em(n)2

κ(O(ϕ(u(n))), ϕ(u(n)))2
+ ml

(27)

where ml is expressed as:

ml = 2(ep(n) − em(n)){∼
	(n − 1)TO[ϕ(u(n))]κ(O(ϕ(u(n))), ϕ(u(n)) − em(n)}

κ(O(ϕ(u(n))), ϕ(u(n)))2

(28)

Equation (27) shows the energy conservation relation for SKFLP-MNC. When the
sparsification size δ1 and δ2 approach zero,wehaveκ(O(ϕ(u(n))), ϕ(u(n))) → 1, and
in this case, (27) reduces to the energy conservation relation for the SKFLP algorithm.
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3.2 Mean Square Convergence Analysis

Substituting Eq. (25) into Eq. (27) yields the following expression:

∥
∥
∥

∼
	(n)

∥
∥
∥

2
=

∥
∥
∥

∼
	(n − 1)

∥
∥
∥

2
+ μ2

(
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n))

)2

− 2μ
∼
	(n − 1)O[ϕ(u(n))] (29)

we take expectations of both sides of (29) to obtain the mean square behavior of
the.

SKFLP-MNC and written as

E

[∥
∥
∥

∼
	(n)

∥
∥
∥

2
]

= E

[∥
∥
∥

∼
	(n − 1)

∥
∥
∥

2
]

+ μ2E

[
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n)))2
]

− 2μE[∼
	(n − 1)O[ϕ(u(n))]] (30)

E[
∥
∥
∥

∼
	(n)

∥
∥
∥

2
] represents the weight error power. Now, we use (30) to analyze the

mean square convergence of the SKFLP-MNC. If the mean square converges, then

E[
∥
∥
∥

∼
	(n)

∥
∥
∥

2
] ≤ E[

∥
∥
∥

∼
	(n − 1)

∥
∥
∥

2
]. Thus,

μ2E

[
1

1 + e−α|e(n)|p

1

|e(n)|1−p sgn(e(n)))2
]

− 2μE[∼
	(n − 1)O[ϕ(u(n))]] ≤ 0

(31)

μ ≤ 2E[∼
	(n − 1)O[ϕ(u(n))]]

E
[

1
1+e−α|e(n)|p

1
|e(n)|1−p sgn(e(n)))2

] (32)

Hence, to guarantee that the SKFLP-MNC algorithm monotonically decreases, we
obtain that the step size μ at every iteration should satisfy

0 < μ ≤ 2E[∼
	(n − 1)O[ϕ(u(n))]]

E
[

1
1+e−α|e(n)|p

1
|e(n)|1−p sgn(e(n)))2

] (33)

The existence of such a step size requires ∀n E[∼
	(n − 1)O[ϕ(u(n))]] > 0.

4 Simulation Results

In this section, we present two simulation examples to demonstrate the benefits of the
proposed SKFLP-MNC algorithm, and to compare its performance with that of the
NLMS [3] algorithm, that of theKLMS-SCalgorithm, that of theKLMS-NCalgorithm
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and the RAN algorithm. The first example is theMackey–Glass time series prediction,
which shows that our proposed SKFLP-MNC algorithm compares successfully to the
NLMS algorithm, KLMS-SC algorithm, KLMS-NC algorithm, and RAN algorithm
in terms of computational costs while achieving comparable steady-state prediction
error. It also shows that our proposed algorithms offer a flexible trade-off between
steady-state error and convergence speed. The second example shows the advantage
in terms of adaptive noise cancellation compared to the KLMS-SC algorithm and the
NLMS algorithm. The performance of the adaptive solution was estimated by the
testing MSE metric.

4.1 Short TermMackey–Glass Time Series Prediction

Thefirst example is the short termMackey–Glass sequence prediction,which is used to
create a chaotic sequence. We take the previous points u(n) = [x(n − 7), x(n − 6),· · ·,
x(n − 1)]T to predict the current one point x(n). We take advantage of the following
time-delay ordinary differential equation to generate the time series:

dx(n)

dn
= −bx(t) + cx(n − τ)

1 + x(n − τ)10
(34)

where b = 0.1, c = 0.2, τ = 25. When using time series, it is usually best to select the
last part of the series for validation, especially when using the data for prediction. First,
three representative sparsity criteria are selected to obtain the corresponding kernel
adaptive filtering algorithms to verify the effectiveness of SKFLP-MNC algorithm. A
Gaussian kernel with kernel parameter h = 0.2 is chosen. Two hundred Monte Carlo
[19] simulations were performed, each with 500 iterations to compute the learning
curve with different realizations of noise. The noise used here includes the zero-mean
Gaussian noise with variance 0.009 and the uniform noise distributed over [− 0.3,
0.3] and [− 1, 1]. The step size for NLMS is 0.1. For RAN, the step size is 0.05, and
the tolerance for prediction error is 0.05. The step size is 0.5 for KLMS-NC, δ1 and
δ2 are used in this paper to be the same as those in NC. KLMS-SC uses a step size of
0.5, T2 = − 1, and λ = 0.01. The distance resolution parameters are [0.05, 0.5].

The parameter setting of Ran is shown in [19]. SKFLP-MNC algorithm uses δ1 =
0.15, δ2= 0.01, p = 0.9, andα = 1. The parameters are set by cross validation. Figure 2
shows the learning curves of the KLMS-NC, KLMS-SC, RAN, NLMS and SKFLP-
MNC under zero-mean Gaussian noise with variance 0.009 noise environments in
short term Mackey–Glass time series prediction.

It is seen fromFig. 2 that the performances ofRAN,KLMS-NC,KLMS-SC,NLMS,
and SKFLP-MNC are comparable, and SKFLP-MNC significantly outperforms con-
ventional algorithms in the steady state. The network sizes are listed in Table 1. It
can be seen that SKFLP-MNC has a much smaller network size than other methods,
which shows the modified criterion over the heuristic NC. In addition, the MNC is
better than the NC in the sense that it makes use of the exponential loss function to
generate a high-precision classification model.

Then, we focus on the filtering performance of the SKFLP-MNC algorithm with
different noise. The proposed SKFLP-MNC algorithm with no fixed budget is tested
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Fig. 2 Learning curves of the KLMS-NC, KLMS-SC, RAN, NLMS, and SKFLP-MNC under Gaussian
noise environments in Mackey–Glass time series prediction

Table 1 Network sizes of RAN,
KLMS-NC, KLMS-SC, and
SKFLP-MNC 算法 网络尺寸

RAN 362.72 ± 11.789

KLMS-NC 274.96 ± 8.9988

KLMS-SC 117.24 ± 6.8707

SKFLP-MNC 31.64 ± 13.8044

in the uniform noise distributed over [− 0.3, 0.3] and [− 1, 1]. Figures 3 and 4 show
the results of this experiment, one can observe that:

The SKFLP-MNC algorithm has fast convergence speed, and its steady-state error
performance is the strongest under the same convergence speed. In other words, the
proposed algorithm can achieve high filtering accuracy, respectively. We increase the
distribution range of the uniform noise process from 0.3 to 1(− 1 to − 0.3), which
will increase the size of outliers. Therefore, we can find that the proposed algorithm
has strong robustness and low computational complexity to reach a steady-state error.

4.2 Adaptive Noise Cancellation

In the second trial, we compare the performance of the SKFLP-MNCwith the KLMS-
NC and the NLMS algorithms. The proposed algorithm is employed to the signal noise
cancellation. A total of 200 simulations were averaged, each with 1000 iterations to
compute the learning curve. Supposing the original input signal is s(n), and random
noise v(n), the input signal of filter u(n) is obtained through the nonlinear distortion
function. The filter system structure of this adaptive noise cancellation is shown in
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Fig. 3 Learning curves of different algorithms under the uniformly distributed [− 0.3, 0.3] noise environment
in Mackey–Glass time series prediction

Fig. 4 Learning curves of different algorithms under the uniformly distributed [− 1, 1] noise environment
in Mackey–Glass time series prediction

Fig. 5. The distortion function of the noise source is a nonlinear function. As a deter-
ministic model, it is assumed that the relationship between v(n) and u(n) is

u(n) = v(n) − 0.3u(n − 1) − u(n − 1)v(n − 1) + 0.5v(n − 1) + 0.2u(n − 2)
(35)

For our proposed SKFLP-MNC algorithm, the noise source used here includes the
zero-mean Gaussian noise with variance 0.1 and the uniform noise distributed over [−
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Fig. 5 System structure of adaptive noise cancellation

0.5, 0.5], where the waveform of the noise source is shown in Figs. 6 and 7. Hypothesis
the original input s(n) = 0. Based on the simulation results above, the parameters are
similar to experiment one, which are experimentally selected to achieve their optimal
performance.

In the stationary environment, Fig. 8 shows the learning curves of different algo-
rithms in the same noise environment. It is seen from Fig. 8 that the steady state MSE
of the SKFLP-MNC is smaller than that of the others algorithms in uniform noise
environments. Interestingly, we observe the SKFLP-MNC algorithm has the fastest
convergence rate. The averaged evolution curves for different adaptive algorithm are
plotted in Fig. 9. The results indicate that our method produce a strong stability,
which explains why its filtering behavior is outstanding to complex noise environ-
ment, although the rate of convergence is slower than that of KLMS-NC algorithm.

5 Conclusion

In this paper, we introduce a novel robust kernel adaptive filtering algorithm based
on the Softplus function with sparsification in both Gaussian and non-Gaussian noise
environments, which well solves the growth network size in kernel filtering. A novel
NC structure with the exponential loss function is incorporated into SKFLP to curb the
filtering network size. The proposed SKFLP-MNC algorithm’s characteristics, such
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Fig. 6 Uniform distributed noise over [− 0.5, 0.5]

Fig. 7 The zero-mean Gaussian noise

as convergence speed, stability, and network size are presented for discussion. Mean-
while, to obtain a sufficient condition for mean-square convergence, the mean-square
convergence analysis of the SKFLP-MNC algorithm is indirectly derived. Benefiting
from this analysis, the SKFLP-MNC algorithm to reach filtering accuracy is better
than the other adaptive algorithms under different noise levels. Simulation results on
theMG timer series predictions and noise cancellation demonstrate the usefulness and
effectiveness of our proposed method.
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Fig. 8 Learning curves of the NLMS, KLMS-NC, and SKFLP-MNC under uniform noise source environ-
ments in noise cancellation

Fig. 9 Learning curves of the NLMS, KLMS-NC, and SKFLP-MNC under Gaussian noise source environ-
ments in noise cancellation
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