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Abstract
This paper focuses on the quasi-stabilization of the quaternion-valued fractional-order
memristive neural networks. Based on the contraction mapping theory, a sufficient
condition is derived to ensure the existence of the equilibrium point for the memris-
tive neural networks. Subsequently, by means of Lyapunov functional and fractional
Laplace transform, a algebraic inequality-based condition is developed to guarantee
the quasi-stability of the equilibrium point. In addition, a related question is whether
the convex closure proposed by the quaternion parameters is meaningful, to overcome
this issues, a vector ordering approach is proposed, which can be used to compare
the “magnitude” of two different quaternions. Finally, the corresponding simulation
results are included to show the effectiveness of the proposed methodology derived in
this paper.

Keywords Quaternion-valued · Fractional-order · Memristive neural networks ·
Quasi-stabilization control · Vector ordering approach.

This work was supported by the Young Talent Fund of Association for Science and Technology in Xi’an,
China under grant No. 095920221333, and the Fundamental Research Funds for the Central Universities
under grant No. GK202103005.

B Ruoxia Li
ruoxiali1227@163.com

Jinde Cao
jdcao@seu.edu.cn

1 School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710062, China

2 School of Mathematics, Southeast University, Nanjing 210096, China

3 Yonsei Frontier Lab, Yonsei University, Seoul 03722, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-022-02105-4&domain=pdf
http://orcid.org/0000-0002-4817-9906


6734 Circuits, Systems, and Signal Processing (2022) 41:6733–6749

1 Introduction

Based on the nonlinear relationship between charge q andmagnetic flux ϕ, the concept
of memristors was first theoretically postulated by Chua [4], which was recognized
as the first real-life understanding of the so-called missing fourth circuit element.
Subsequently, Chua and Kang extended the idea of memristors to memristive systems
anddevices in [5]. In a seminal paper that appeared in late 2008, a two-terminal titanium
dioxide nanoscale device that exhibited memristive characteristics was unveiled by
Hewlett–Packard (HP), which was considered as the starting point for the design of
a new class of high-density processors, thus igniting renewed interest in memristors.
One immediate application is enabling low-cost technology for nonvolatile memories
where future computers will turn on instantly without the usual “booting time” that
is currently required in all personal computers. This feature leads to the memristive
neural networks have been widely studied in [9–30].

Among which, by means of a robust analysis approach, the synchronization control
of memristive neural networks was studied in [31], which provides a new method
to deal with the switching feature of the connection weights. In [18], a memristive
neural networkwith nonmonotonic piecewise linear activation functions is studied, the
coexistence of the multiple equilibrium points for the memristive neural networks is
discussed, and then the corresponding sufficient condition of the local mu-stability is
given. In [1–30], the fractional-order delayedmemristive neural networks are invested,
and several criteria on state estimation, synchronization, and stabilization are obtained.
While, in the above conclusions, one can find that the error system converges to zero
as time goes to infinity. In fact, different systems may have different states, which can
affect the stability of the error system, thus, the error system tends to a small region
will be much more reasonable. This is one of our motivations for researching this
article.

Modeling different real-world phenomena, using fractional definitions, has become
the most highly appreciated areas of realistic sciences. This is because the nonlo-
cal properties of fractional operator enable these differential models to condense the
information, about recent and historical situations. For the last few decades, many
advancements have been made in this regard to enhance the definitions and properties
of fractional calculus, which enrich the capabilities of fractional differential models
by bringing diverse significance. Hence, the behaviors of many fractional differential
equations have been studied and various techniques have been developed in [7–17],
but still, there are many things that can be done in this area.

Generally speaking, complex-valued system has many different and more com-
plicated properties than real-valued ones. Very recently, a system with quaternion
parameters is proposed,which contains one real part and three imaginary parts. Quater-
nion performed a number of meaningful applications from various areas, such as
attitude control, quantum mechanics as well as computer graphics. It should be men-
tioned that the imaginary parts in a quaternion are not commutative, which makes
the studying of the quaternion neural networks much more difficult. Moreover, vector
algebra is not a division algebra and suffers from mathematical deficiencies when
modeling orientation and rotation. In this case, the quaternion domain offers a conve-
nient and unified way to process 3-D and 4-D signals [11–25]. Therefore, quaternion
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neural networks are supposed to give further investigation for their broad applications
[3–23].

The main objective of this paper is to design a new controller that provides a
system with the quasi-stability property. In this regard, using contraction mapping
theory, a sufficient condition is derived to ensure the existence of the equilibrium
point for the memristive neural networks. Subsequently, fractional Laplace transform
is utilized to deal with the quasi-stability of the equilibrium point. Here, a vector
ordering approach is employed, which can be used to compare the “magnitude” of
two different quaternions, and thus, the convex closure proposed by the quaternion
connection weights is meaningful.

The remaining paper contains: the basic definitions of the quaternion, the Caputo
fractional derivative and the model description of the memristive neural networks.
Next, the existence of the equilibrium point and the quasi-stability scheme of the
proposed equilibrium point are described in detail. Furthermore, a comprehensive dis-
cussion of the a vector ordering approach is imparted.Conclusively, effective outcomes
of the whole attempt are transliterated by a simulation.

2 Preliminaries

This section comprises the illustrative preliminaries of the paper, which include some
major definitions and properties of the quaternion algebra, caputo derivative and the
description of the memristive neural networks.

A quaternion can be described by:

θ = θ R + θ I i + θ J j + θK k, (1)

in which, the three imaginary parts i , j , k, are defined as:

⎧
⎪⎪⎨

⎪⎪⎩

i2 = j2 = k2 = i jk = −1,
i j = − j i = k,
jk = −k j = i,
ki = −ik = j .

(2)

SetQ � {hR + hI i + hJ j + hK k|hR, hI , hJ , hK ∈ R}, the conjugate of h is denoted
by θ̄ , with:

θ̄ = θ R − θ I i − θ J j − θK k.

The modulus of θ ∈ Q is defined as:

|θ | =
√

θ θ̄ =
√

(θ R)2 + (θ I )2 + (θ J )2 + (θK )2.

Besides, for θ = (θ1, θ2, . . . , θn)
T , set |θ | = (|θ1|, |θ2|, . . . , |θn|)T be the modulus of

θ , and ‖θ‖ =
( ∑n

p=1 |θp|2
) 1

2
be the norm of θ .
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Definition 2.1 [19] For ω(t), D−ε
t0,t is presented as:

D−ε
t0,tω(t) = 1

�(ε)

∫ t

t0
(t − τ)ε−1ω(τ)dτ,

where �(·) implies gamma function.

Definition 2.2 [19] The Caputo derivative of ω(t) implies:

CDε
t0,tω(t) = D−(n−ε)

t0,t
dn

dtn
ω(t) = 1

�(n − ε)

∫ t

t0
(t − τ)n−ε−1ω(n)(τ )dτ,

where n − 1 < ε < n ∈ Z+.

In the following lines, Dε is short for CDε
t0,t .

Lemma 2.1 If a = (a1, . . . , an) and b = (b1, . . . , bn) are sequences of quaternion
numbers, then

∣
∣
∣
∣

n∑

p=1

apbp

∣
∣
∣
∣

2

≤
( n∑

p=1

|ap|2
)( n∑

p=1

|bp|2
)

holds, if and only if the sequences a and b are proportional.

Proof Let a = aR+aI i+aJ j+aK k = (aR+aI i)+(aJ +aK i) j , thus, a quaternion a
can be seen as a complex number, then, based on Lemma 8 in [33], the above inequality
is correct. ��
Lemma 2.2 [23] Set x, y ∈ Q, ε > 0 be a constant, then

yx + x̄ ȳ ≤ εx̄ x + 1

ε
y ȳ

holds.

Lemma 2.3 [26] For 0 < ε ≤ 1, ∀τ > 0, if | arg(λ)| > π
2 , det(�(t)) = 0 has no pure

imaginary roots, then the zero root of

Dεx(s) = −Ax(s) + Bx(s − τ)

is globally Lyapunov stable, where λ is the eigenvalues of −A + B.

Lemma 2.4 [26] For a model as given below:

{
Dες(t) ≤ −ε1ς(t) + ε2ς(t − τ), 0 < ε ≤ 1,
ς(t) = π(t),
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and a linear system:

{
Dε(t) = −ε1(t) + ε2(t − τ), 0 < ε ≤ 1,
(t) = π(t),

where ς(t), (t), t ∈ (0,+∞), are continuous and nonnegative, π(t) ≥ 0. Then
ς(t) ≤ (t), ε1, ε2 > 0.

Definition 2.3 For the system, the trivial solution is quasi-stability, if there has �,
when t goes to infinity, the system y(t) converges to a bounded region � = {y(t) ∈
Q | ‖y(t)‖ ≤ ε} with an error level ε > 0.

In general, the dynamical equation of memristive system with Caputo fractional
derivative can be written as:

Dεxp(t) = − dpxp(t) +
n∑

q=1

apq(xp(t)) fq(xq(t))

+
n∑

q=1

bpq(xp(t)) fq(xq(t − τ)) + Jp,

(3)

where 0 < α < 1, dp > 0 is the neuron state, apq(xp(t)), bpq(xp(t)) are the con-
nection weights, fq(·) stand for the active functions, τ signifies the delay, and Jp is a
external input.

The initial condition of (3) is:

xp(t) = ϑp(t), p = 1, 2, . . . , n,

with ϑp(0) = 0.
The parameters apq(xp(t)), bpq(xp(t)) in system (3) are defined as:

apq(xp(t)) =
{
aᵀ
pq = aR

1pq + aI
1pq i + aJ

1pq j + aK1pqk, |xp(t)| ≤ Sp,

aᵀᵀ
pq = aR

2pq + aI
2pq i + aJ

2pq j + aK2pqk, |xp(t)| > Sp,

bpq(xp(t)) =
{
bᵀ
pq = bR1pq + bI1pq i + bJ1pq j + bK1pqk, |xp(t)| ≤ Sp,

bᵀᵀ
pq = bR2pq + bI2pq i + bJ2pq j + bK2pqk, |xp(t)| > Sp,

where the switching jump Sp > 0.
(A1): There exist constants mq , Mq > 0, such that for q = 1, 2, . . . , n,

| fq(x1) − fq(x2)| ≤ mq |x1 − x2|, | fq(x)| ≤ Mq

hold.

Definition 2.4 (Generalized Inequalities [12] ) For any cone N ⊆ Rn , the partial
ordering relation in Rn is defined as:
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(I).

α � β ⇔ β − α ∈ N ;

(II).

α ≺ β ⇔ β − α ∈ intN ,

where intN is the interior of N .

Remark 2.1 As one knows, a complex value can be seen as a two-dimensional vector,
thus the generalized inequalities can be employed to compare the “magnitude” of two
complex values, i.e, if N stands for the first (or fourth) quadrant of the complex plane,
then any complex value on its “right” side is greater than it, and the complex number
in the “upper right” of a complex value is strictly greater than it.

For example, given two different complex values x1 = a1 + b1i , x2 = a2 + b2i ,
then, x2−x1 = a2−a1+(b2−b1)i . Now, two cases will be proposed in the following
lines: (i) (a2 − a1) · (b2 − b1) ≥ 0, (ii) (a2 − a1) · (b2 − b1) < 0. For the case (i), if
a2 − a1 > 0, b2 − b1 > 0, then x1 ≺ x2; if a2 − a1 = 0, b2 − b1 > 0, or a2 − a1 > 0,
b2 − b1 = 0, then x1 � x2; if a2 − a1 < 0, b2 − b1 < 0, then x1 � x2; For the case
(ii), if a2 − a1 > 0, b2 − b1 < 0, then x1 ≺ x2; if a2 − a1 < 0, b2 − b1 > 0, then
x1 � x2.

For twodifferent quaternions x1 = a1+b1i+c1 j+d1k = (a1+b1i)+(c1+d1i) j �
x11 + x12 j , x2 = a2 + b2i + c2 j + d2k = (a2 + b2i)+ (c2 + d2i) j � x21 + x22 j , the
first step is to compare two pairs of the vectors x11 and x21, x12 and x22, respectively.
If x11 ≺ (�)x21 and x12 ≺ (�)x22, then x1 ≺ (�)x2; if x11 � x21, x12 ≺ x22, or
x11 ≺ x21, x12 � x22, then one has x1 � x2; if x11 � (�)x21, x12 � (≺)x22, then
x1 � (�)x2; if x11 ≺ (�)x21, x12 � (�)x22, then x1 � (�)x2.

By applying the above theory, ápq , àpq , b́pq and b̀pq can be derived correspondingly,
thus, system (3) can be written as:

Dεxp(t) ∈ − dpxp(t) +
n∑

q=1

co[àpq , ápq ] fq (xq (t)) +
n∑

q=1

co[b̀pq , b́pq ] fq (xq (t − τ)) + Jp,

(4)

where àpq = min{aᵀ
pq , a

ᵀᵀ
pq }, ápq = max{aᵀ

pq , a
ᵀᵀ
pq }, b̀pq = min{bᵀ

pq , b
ᵀᵀ
pq }, b́pq =

max{bᵀ
pq , b

ᵀᵀ
pq }.

Now, using the differential inclusion, system (3) is developed as:

Dεxp(t) = − dpxp(t) +
n∑

q=1

a′
pq(t) fq(xq(t))

+
n∑

q=1

b′
pq(t) fq(xq(t − τ)) + Jp, p = 1, 2, . . . , n,

(5)

where a′
pq(t) ∈ co[àpq , ápq ], b′

pq(t) ∈ co[b̀pq , b́pq ].
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3 Quasi-Stability Analysis

The existence and uniqueness of the equilibrium point will be proposed by means of
contraction mapping theory. Thenceforth, we exercise the Lyapunov functional and
fractional Laplace transform to derive the quasi-stability condition for the equilibrium
point.

Theorem 3.1 Under the assumption (A1), if the following inequality holds:

0 < ρ =
( n∑

p=1

n∑

q=1

( (|a∗
pq | + |b∗

pq |)mq

dq

)2
) 1

2

< 1,

then system (3) has a unique equilibrium.

Proof Let u∗
p = dpx∗

p, constructing a mapping � : Qn → Qn , with:

�p(u p) =
n∑

q=1

a∗
pq fq(

uq
dq

) +
n∑

q=1

b∗
pq fq(

uq
dq

) + Jp,

where a∗
pq ∈ co[àpq , ápq ], b∗

pq ∈ co[b̀pq , b́pq ]. ��
For two different vectors u, v ∈ Qn , one has:

‖�(u) − �(v)‖ =
( n∑

p=1

(�p(u p) − �p(vp))(�p(u p) − �p(vp))

) 1
2

=
( n∑

p=1

|�p(u p) − �p(vp)|2
) 1

2

=
( n∑

p=1

∣
∣
∣
∣

n∑

q=1

a∗
pq

(
fq (

uq
dq

) − fq (
vq

dq
)
)

+
n∑

q=1

b∗
pq

(
fq (

uq
dq

) − fq (
vq

dq
)
)∣
∣
∣
∣

2) 1
2

≤
( n∑

p=1

[ n∑

q=1

∣
∣
∣ãpq

∣
∣
∣

∣
∣
∣ fq (

uq
dq

) − fq (
vq

dq
)

∣
∣
∣ +

n∑

q=1

∣
∣
∣b̃pq

∣
∣
∣

∣
∣
∣ fq (

uq
dq

) − fq (
vq

dq
)

∣
∣
∣

]2) 1
2

≤
( n∑

p=1

[ n∑

q=1

(|ãpq | + |b̃pq |)mq

dq
|uq − vq |

]2) 1
2

≤
( n∑

p=1

[ n∑

q=1

( (|ãpq | + |b̃pq |)mq

dq

)2 n∑

q=1

|uq − vq |2
]) 1

2

=
( n∑

p=1

n∑

q=1

( (|ãpq | + |b̃pq |)mq

dq

)2
) 1

2 ‖u − v‖, (6)

in which, Lemma 2.1 is utilized in the above process, and ãpq = max{|aᵀ
pq |, |aᵀᵀ

pq |},
b̃pq = max{|bᵀ

pq |, |bᵀᵀ
pq |}, where | aᵀ

pq |=| aR
1pq | + | aI

1pq | i+ | aJ
1pq | j+ | aK1pq |

k, besides, | aᵀᵀ
pq |, | bᵀ

pq |, | bᵀᵀ
pq | have the same definition.
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It follows from the definition of ρ, one has:

‖�(u) − �(v)‖ ≤ ρ‖u − v‖,

which means that � is a contraction mapping on Qn , thus, system (3) has a unique
equilibrium. The proof is thus completed.

Set x∗
p be the equilibrium of system (3), i.e.,

0 = − dpx
∗
p +

n∑

q=1

a∗
pq fq(x

∗
q ) +

n∑

q=1

b∗
pq fq(x

∗
q ) + Jp, (7)

then, shifting the above equilibrium to the origin by yp(t) = xp(t) − x∗
p, one has:

Dε yp(t) = − dp yp(t) +
n∑

q=1

a′
pq (t) fq (xq (t)) −

n∑

q=1

a∗
pq fq (x∗

q ) +
n∑

q=1

b′
pq (t) fq (xq (t − τ))

−
n∑

q=1

b∗
pq fq (x∗

q )

= − dp yp(t) +
n∑

q=1

(a′
pq (t) − a∗

pq ) fq (xq (t)) +
n∑

q=1

a∗
pq ( fq (xq (t)) − fq (x∗

q ))

+
n∑

q=1

(b′
pq (t) − b∗

pq ) fq (xq (t − τ)) +
n∑

q=1

b∗
pq ( fq (xq (t − τ)) − fq (x∗

q )).

(8)

In order to stabilization the equilibrium, the following controlledmemristive system
is necessary:

Dε yp(t) = − dp yp(t) +
n∑

q=1

(a′
pq (t) − a∗

pq ) fq (xq (t)) +
n∑

q=1

a∗
pq ( fq (xq (t)) − fq (x∗

q ))

+
n∑

q=1

(b′
pq (t) − b∗

pq ) fq (xq (t − τ)) +
n∑

q=1

b∗
pq ( fq (xq (t − τ)) − fq (x∗

q )) + u p(t)

≤ − dp yp(t) +
n∑

q=1

a∗
pq ( fq (xq (t)) − fq (x∗

q )) +
n∑

q=1

(ápq − àpq ) fq (xq (t))

+
n∑

q=1

b∗
pq ( fq (xq (t − τ)) − fq (x∗

q )) +
n∑

q=1

(b́pq − b̀pq ) fq (xq (t − τ)) + u p(t).

(9)
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Theorem 3.2 Under the assumption (A1), if there exist some positive constants σp,
p = 1, 2, 3, 4, such that:

λ1 =min
p

(
2dp + 2υp − σ1m

2
p − 1

σ1

n∑

q=1

ãpq ¯̃apq − 1

σ2

n∑

q=1

b̃pq
¯̃bpq

− 1

σ3

n∑

q=1

(ápq − àpq)( ¯́apq − ¯̀apq)

− 1

σ4

n∑

q=1

(b́pq − b̀pq)(
¯́bpq − ¯̀bpq)

)
> 0,

λ2 =σ2 max
p

m2
p > 0,

λ3 =
n∑

p=1

(
σ3 + σ4

)
M2

p, λ1 > λ2

hold, then the trivial solution of (9) is quasi-stable under the following controller:

{
u p(t) = −ηp(t)yp(t),
Dεηp(t) = ξp ȳp(t)yp(t),

(10)

where ηp(t) ∈ R, and ξp is an arbitrary positive constant. Moreover, system (9) will

converges to a small region � =
{
yp(t) ∈ Q | ‖y(t)‖ ≤

√
λ3

λ1−λ2
+ ε

}
.

Proof Consider the following function:

V (t) =
n∑

p=1

ȳp(t)yp(t) +
n∑

p=1

1

ξp
(ηp(t) − υp)

2. (11)

By computing Caputo fractional-order derivative of V (t) from (9), one has:

DεV (t) ≤
n∑

p=1

(
Dε ȳp(t)

)
yp(t) +

n∑

p=1

ȳp(t)D
ε yp(t) +

n∑

p=1

2

ξp
(ηp(t) − υp)D

εηp(t)

≤
n∑

p=1

(
− dp ȳp(t) +

n∑

q=1

( f̄q (xq (t)) − f̄q (x
∗
q ))ā∗

pq +
n∑

q=1

f̄q (xq (t))( ¯́apq − ¯̀apq )

+
n∑

q=1

( f̄q (xq (t − τ)) − f̄q (x
∗
q ))b̄∗

pq +
n∑

q=1

f̄q (xq (t − τ))(
¯́bpq − ¯̀bpq ) + u p(t)

)
yp(t)

+
n∑

p=1

ȳp(t)
(

− dp yp(t) +
n∑

q=1

a∗
pq ( fq (xq (t)) − fq (x

∗
q )) +

n∑

q=1

(ápq − àpq ) fq (xq (t))
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+
n∑

q=1

b∗
pq ( fq (xq (t − τ)) − fq (x

∗
q )) +

n∑

q=1

(b́pq − b̀pq ) fq (xq (t − τ)) + u p(t)
)

(12)

+
n∑

p=1

2(ηp(t) − υp)ȳp(t)yp(t)

=
n∑

p=1

[
− (2dp + 2υp)ȳp(t)yp(t) +

n∑

q=1

(
( f̄q (xq (t)) − f̄q (x

∗
q ))ā∗

pq yp(t)

+ ȳp(t)a
∗
pq ( fq (xq (t)) − fq (x

∗
q ))

)
+

n∑

q=1

(
( f̄q (xq (t − τ)) − f̄q (x

∗
q ))b̄∗

pq yp(t)

+ ȳp(t)b
∗
pq ( fq (xq (t − τ)) − fq (x

∗
q ))

)
+

n∑

q=1

(
f̄q (xq (t))( ¯́apq − ¯̀apq )yp(t)

+ ȳp(t)(ápq − àpq ) fq (xq (t))
)

+
n∑

q=1

(
f̄q (xq (t − τ))(

¯́bpq − ¯̀bpq )yp(t)

+ ȳp(t)(b́pq − b̀pq ) fq (xq (t − τ))
)]

,

from Lemma 2.2, there exist four constants σ1, σ2, σ3, σ4 > 0, such that:

( f̄q(xq(t)) − f̄q(x
∗
q ))ā

∗
pq yp(t) + ȳp(t)a

∗
pq( fq(xq(t)) − fq(x

∗
q ))

≤σ1( f̄q(xq(t)) − f̄q(x
∗
q ))( fq(xq(t)) − fq(x

∗
q )) + 1

σ1
ȳp(t)a

∗
pq ā

∗
pq yp(t)

≤σ1m
2
q ȳq(t)yq(t) + 1

σ1
ȳp(t)ãpq ¯̃apq yp(t),

( f̄q(xq(t − τ)) − f̄q(x
∗
q ))b̄

∗
pq yp(t) + ȳp(t)b

∗
pq( fq(xq(t − τ)) − fq(x

∗
q ))

≤σ2m
2
q ȳq(t − τ)yq(t − τ) + 1

σ2
ȳp(t)b̃pq

¯̃bpq yp(t),
f̄q(xq(t))( ¯́apq − ¯̀apq)yp(t) + ȳp(t)(ápq − àpq) fq(xq(t))

≤σ3 f̄q(xq(t)) fq(xq(t)) + 1

σ3
ȳp(t)(ápq − àpq)( ¯́apq − ¯̀apq)yp(t)

≤σ3M
2
q + 1

σ3
ȳp(t)(ápq − àpq)( ¯́apq − ¯̀apq)yp(t),

f̄q(xq(t − τ))(
¯́bpq − ¯̀bpq)yp(t) + ȳp(t)(b́pq − b̀pq) fq(xq(t − τ))

≤σ4M
2
q + 1

σ4
ȳp(t)(b́pq − b̀pq)(

¯́bpq − ¯̀bpq)yp(t).

(13)

��
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Taking into account of equations (12)-(13), the fractional derivative of V (t) is simpli-
fied to the following system:

DεV (t) ≤
n∑

p=1

[
− ȳp(t)

(
2dp + 2υp − σ1m

2
p − 1

σ1

n∑

q=1

ãpq ¯̃apq − 1

σ2

n∑

q=1

b̃pq
¯̃bpq

− 1

σ3

n∑

q=1

(ápq − àpq )( ¯́apq − ¯̀apq ) − 1

σ4

n∑

q=1

(b́pq − b̀pq )(
¯́bpq − ¯̀bpq )

)]
yp(t)

+ σ2

n∑

p=1

m2
p ȳp(t − τ)yp(t − τ) +

n∑

p=1

(
σ3 + σ4

)
M2

p,

(14)

which implies that:

DεV (t) ≤ − λ1V (t) + λ2V (t − τ) + λ3, (15)

i.e.,

Dε
(
V (t) − λ3

λ1 − λ2

)
≤ − λ1

(
V (t) − λ3

λ1 − λ2

)
+ λ2

(
V (t − τ) − λ3

λ1 − λ2

)
,

(16)

set ω(t) = V (t) − λ3
λ1−λ2

, then (16) can be rewritten as:

Dεω(t) ≤ − λ1ω(t) + λ2ω(t − τ). (17)

Consider the following system:

Dεψ(t) = −λ1ψ(t) + λ2ψ(t − τ), (18)

in which ψ(t) ≥ 0, (18) and V (t) have the identical initial values.
Themain contribution of the following lines are proving system (18) is quasi-stable.

Employing the Laplace transform on (18) gives:

sεψ(s) − sε−1ψ(0) = − λ1ψ(s) + λ2

∫ +∞
0

e−stψ(t − τ)dt

= − λ1ψ(s) + λ2

∫ +∞
−τ

e−s(ν+τ)ψ(ν)dν

= − λ1ψ(s) + λ2e
−sτ

∫ 0

−τ
e−sνψ(ν)dν + λ2e

−sτ
∫ +∞
0

e−sνψ(ν)dν

= − λ1ψ(s) + λ2e
−sτ ψ(s) + λ2e

−sτ
∫ 0

−τ
e−sνψ(ν)dν,
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which implies:

(sε + λ1 − λ2e
−sτ )ψ(s) = sε−1ψ(0) + λ2e

−sτ
∫ 0

−τ

e−sνψ(ν)dν,

thus, the characteristic equation is given by:

det(�(s)) = sε + λ1 − λ2e
−sτ = 0. (19)

Now, based on Lemma 2.3, one need to prove (19) has no pure imaginary solutions.
If s = vi = |v|(cos π

2 + i sin(±π
2 )) satisfies (19), this means that:

|v|ε(cos επ

2
+ i sin(±επ

2
)) + λ1 − λ2 cos vτ + iλ2 sin vτ = 0, (20)

thus,

{ |v|ε cos επ
2 + λ1 = λ2 cos vτ,

|v|ε sin(± επ
2 ) = −λ2 sin vτ,

then,

|v|2ε + 2λ1 cos
επ

2
|v|ε + λ21 = λ22, (21)

thus,

� = (2λ1 cos
επ

2
)2 − 4(λ21 − λ22) < 0,

obviously, if λ2 < λ1 sin επ
2 , then (21) has no real roots.

Considering that λ2 < λ1 sin επ
2 ≤ λ1, thus, the eigenvalues of λ2 − λ1 < 0, and

this implies | arg(λ∗)| > π
2 , λ

∗ is the eigenvalues of λ2 − λ1.
Now, based on Lemma 2.3, the zero solution of (18) is global asymptotically stable,

i.e., ψ(t) → 0 as t → ∞. On the other hand, a straightforward of Lemma 2.4 gives
0 < ω(t) ≤ ψ(t), thus ω(t) → 0 as t → ∞. Then, for ∀ε > 0, there has T > 0, such
that ω(t) < ε as t > T , i.e., V (t) ≤ λ3

λ1−λ2
+ ε as t > T .

Considering that ‖y(t)‖2 ≤ V (t), which implies that

‖y(t)‖ ≤
√

λ3

λ1 − λ2
+ ε, t > T .

This suggests that unique equilibrium of system (3) is quasi-stable from Definition
2.3. This completes the proof.

Remark 3.1 In this paper, the parameters are taking values in the quaternion field, thus,
the closed convex hull consisted by the quaternion-valued can be derived, i.e., one need
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to compare the “magnitude” of two quaternions. In some existing results [21–28], the
quaternion-valued system is transformed into four real number systems, this may
undermine the integrity of the quaternion-valued system. To solve such problems, a
vector ordering approach is employed, which can be used to compare the “magnitude”
of two different quaternions. Moreover, this method provides a new way to study the
quaternion-valued neural networks with uncertain terms.

4 Numerical Examples

This section exemplifies our theoretical results with one example.

Example 1 The highlights of this example are to expound the effectiveness of the tech-
nical analysis for the quasi-stabilization control of the given system, thus considering
system (3) with the following coefficients:

a11(x1(t)) =
{
1.5 + 1.6i + 1.16 j + 1.35k, |x1(t)| ≤ 1,
1.2 + 1.2i + j + 1.1k, |x1(t)| > 1,

a12(x1(t)) =
{−0.1 − 0.1i − 0.12 j − 0.11k, |x1(t)| ≤ 1,

−0.2 − 0.12i − 0.13 j − 0.12k, |x1(t)| > 1,

a21(x2(t)) =
{−1.1 − 1.4i − 1.24 j − 1.3k, |x2(t)| ≤ 1,

−1.1 − i − j − 1.12k, |x2(t)| > 1,

a22(x2(t)) =
{
1.2 + 2.1i + 2.2 j + 2.1k, |x2(t)| ≤ 1,
1.7 + 2.15i + 2.35 j + 2.2k, |x2(t)| > 1,

b11(x1(t)) =
{−1.5 − 1.5i − 1.57 j − 1.23k, |x1(t)| ≤ 1,

−1.2 − 0.9i − 1.35 j − 0.89k, |x1(t)| > 1,

b12(x1(t)) =
{−0.1 − 0.1i − 0.11 j − 0.11k, |x1(t)| ≤ 1,

−0.13 − 0.13i + 0.13 j + 0.1k, |x1(t)| > 1,

b21(x2(t)) =
{−0.23 − 0.53i − 0.3 j − 0.57k, |x2(t)| ≤ 1,

−0.2 − 0.51i − 0.2 j − 0.21k, |x2(t)| > 1,

b22(x2(t)) =
{−1.9 − 1.3i − 1.2 j − 1.49k, |x2(t)| ≤ 1,

−1.8 − 2.9i − 2.1 j − 1.32k, |x2(t)| > 1,

besides, d1=d2=1.6, the time delay and activation function are τ = 0.1, fq(·) =
0.1 tanh(·), respectively. From the assumption (A1), it follows that Mq = mq = 0.1,
with the above-mentioned parameters, the constants σp are defined as σ1 = 8, σ2 = 8,
σ3 = 1, σ4 = 1, then according to the conditions derived in Theorem 3.2, one can
calculate that:

2d1 + 2υ1 − σ1m
2
1 − 1

σ1

2∑

q=1

ã1q ¯̃a1q − 1

σ2

2∑

q=1

b̃1q
¯̃b1q − 1

σ3

2∑

q=1

(á1q − à1q )( ¯́a1q − ¯̀a1q )

− 1

σ4

2∑

q=1

(b́1q − b̀1q )(
¯́b1q − ¯̀b1q )
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Fig. 1 Trajectories of the states x R(t) and control parameters ηR(t)

=2υ1 − 0.0215 > 0,

2d2 + 2υ2 − σ1m
2
2 − 1

σ1

2∑

q=1

ã2q ¯̃a2q − 1

σ2

2∑

q=1

b̃2q
¯̃b2q − 1

σ3

2∑

q=1

(á2q − à2q )( ¯́a2q − ¯̀a2q )

− 1

σ4

2∑

q=1

(b́2q − b̀2q )(
¯́b2q − ¯̀b2q )

=2υ2 − 5.2125 > 0,

λ2 =σ2 max
p

m2
p = 0.08 > 0,

λ3 =(σ3 + σ4)

2∑

p=1

M2
p = 0.04,

then, set υ1 = 0.056, υ2 = 2.7, one has: λ1 = 0.0905, which implies that λ1 > λ2.
Based on the conclusions derived in Theorem 3.2, one can see that the error sys-

tem (9) is quasi-stability, and the stability region can be calculated as ‖y(t)‖ ≤√
λ3

λ1−λ2
+ ε = 1.977, where ε = 0.1. Set, ξ1 = ξ2 = 0.1. then, one can depict

the transient behaviors of the states and the control parameters in Fig. 1, 2, 3, 4, from
which it is apparent that the quasi-stability for the system (9) is achieved.

5 Conclusion

In this present work, we discussed the quaternion-valued fractional-order memristive
neural networks and its quasi-stability behavior. Using contraction mapping theory,
a sufficient condition is derived to ensure the existence of the equilibrium point for
the quaternion-valued fractional-order memristive neural networks. Subsequently, the
corresponding conclusion is given to ensure the quasi-stability of the derived equilib-
rium point. What should be mentioned is that, a vector ordering approach is proposed,
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Fig. 4 Trajectories of the states xK (t) and control parameters ηK (t)

which provides an effective method to compare the “magnitude” of two different
quaternions, thus, the convex closure composed by the quaternion connection weights
is meaningful. Finally, a numerical example is given to demonstrate the usefulness of
the proposed quasi-stability criteria.

It should be mentioned that although the vector ordering method is employed in
this paper, while, some problems should be considered further, for example, is there
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any other methods to compare the “size” of two different quaternions? Thus, it is also
challenging andwill be discussed in our future research.Moreover, dynamic behaviors
of the fractional-order discrete-time memristive neural networks are also our future
works.

Data Availability All data generated or analyzed during this study are included in this published article.
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