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Abstract
In the past decades, CT images have been widely used and played a critical role in
medical diagnosis. However, low-dose CT images are often contaminated by noise,
this being themost important factor affecting the quality of aCT image. This paper pro-
poses a novel integrated framework and a denoising method for low-dose medical CT
images to obtain a better denoising effect whilst at the same time preserving an image’s
local structure information. First, an image moving decomposition is employed to
decompose the CT image. The original CT noisy image is decomposed, and the com-
ponents will be processed separately, so that the details and edges of the CT image
can be better preserved. Next, the Shearlet Transformation-based denoising method
is applied to the component which contains edges and detailed information of the
CT image. The multi-directionality and multi-scale property of the Shearlet make it
possible to obtain better effect in denoising the detail parts. BM3D filtering is used to
remove noise in the component similar to the origin image, and obtain ideal denoising
results in denoising the approximate components (mainly low frequency part) of the
CT image. With the two processed components and the inverse decomposition, the
denoised image is obtained. Finally, simulations and clinical experiments are con-
ducted and comparisons made. The experimental results show the proposed denoising
method can obtain better performances in terms of PSNR value, SSIM and FoM and
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thus have very competitive results compared with other existing CT denoising meth-
ods.

Keywords Medical CT imaging · Shearlet transformation · Moving decomposition
framework · BM3D

1 Introduction

Compared with conventional X-ray techniques and their deficiency in being unable to
distinguishmuscles, ligaments, blood vessels and other organs, computed tomography
(CT) techniques make medical imaging more precise thus much more effective. The
cross section image obtained by CT has high density resolution, accuracy in thickness,
is clear and without interference from the structure outside the plane. However, the
extensive uses of CT in medical practice have raised a public concern over the associ-
ated radiation dose to patients [7]. Reducing the radiation dose may lead to increased
noise and artifacts, which can adversely affect the radiologists’ judgment and confi-
dence [11]. Hence, extensive efforts have been made in recent years to develop better
image reconstruction or image processing methods to reduce low-dose CT noise and
suppress artifacts.

The denoising methods, proposed in the literatures, are in fact to mainly denoise the
low-dose CT image. In recent years, many researchers have proposed new denoising
methods. There are spatial domain filters like the Wiener filter [19], which calculates
the local mean and variance of the image. The pixel value of a point in the image is
calculated according to the estimation of local variance. The Wiener filter has a better
suppression effect on Gaussian noise than median filter. However, Wiener filtering
often reduces the edge information of the image while suppressing the noise.

The non-local means (NLM) filter, proposed by Buades, works on the basis that
adjacent pixels have some kind of correlations and these can be expressed as the val-
ues of their weights. The NLM filter replaces the target pixel value by the weighted
sum of the pixel values in the window on an image, the closer to the target pixel, the
greater the weight of one certain pixel in the window [2]. NLM filtering considers
the self-similarity of pixels in the image. It can identify better than traditional bilat-
eral filtering the details of the image as NLM determines the similarity of the two
pixels according to the similarity between the images with a certain size. Li et al.
[15] proposed a NLM-based CT denoising algorithm, which improves the traditional
NLM algorithm by addressing the fact that uniform filtering strength in NLM cannot
deal with a situation where the noise level of each slice of CT image is different.
In the literature [16], an adapted denoising algorithm for CT image using NLM is
proposed. By integrating NLM with correlation-based wavelet packet thresholding, a
CT image denoising method is proposed in the literature [8], which can improve the
detail preserve ability compared with that using NLM.However, the time cost of NLM
filtering is seriously affected by image size and search window size. As the size of
the image or the size of the search window increases, the time required for denoising
increases rapidly, and the size of the search window often determines the denoising
performances of the NLM filter.
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Having a similar but improved process on image denoising, block matching 3D
denoising (BM3D) was proposed [5]. BM3D combines the strategy of block-wise
estimation and transformation domain filtering, and thus it is a kind of hybrid domain
filter. In the stage of block-wise estimation, the image will go through the process of
block matching, and the BM3D algorithm makes full use of the redundancy of the
3D image block groups. This comes from the process of block matching by filtering
these block groups with a 3D sparse transformation-based denoising algorithm, and
thus BM3D is faster and more efficient than NLM. The PSNR value of the image with
BM3D denoising is excellent.

Shearlets, a typical method of transformation domain filter has been extensively
studied and can obtain both the location and direction information of the signal [6, 13,
17, 22]. Shearlets have optimal sparse approximation properties in combination with
their unified treatment of the continuum and digital realm.Wavelet transformation has
become a powerful tool for signal analysis in recent decades. Wavelets are optimally
efficient in representing functionswith point-wise singularities.However,Wavelets are
very limited at catching the regularity of edge curves becauseWavelets cannot provide
a sparse representation for line or curve singularities. Compared with Wavelets, the
multi-directional frequency-domain support of Shearlets makes the Shearlet more
sensitive to the capture of the singular curve and more sensitive to anisotropy features.

G. Ghimpeteanu et al. proposed a newmethod to provide aMoving Decomposition
Framework (MDF) to the denoising process [9]. The basis of this method is to com-
pute the components of the image in a moving frame that encodes its local geometry
(directions of gradients and level lines). Processing of these components is more effec-
tive than processing directly on the origin images. Three different denoising methods
are reported to have been improved with the MDF, i.e. a local variational method,
a patch-based method, and a method combining the patch-based with a filtering in
spectral domain approach.

The K-SVD method is usually used for image denoising, and its effect is very
remarkable. TheK-SVDmethod realizes denoising by sparse coding. The noisy image
can be regarded as composed of the original image and noise. The original image is
considered sparse, that is, can be represented by a finite number of atoms, while
the noise is random and non-sparse. Therefore, sparse components can be extracted
and then used to reconstruct the image. In this process, the noise is discarded as the
residual between the observation image and the reconstructed image, thus playing a
role of noise reduction. Inspired by compressed sensing methods, an adapted K-SVD
method was proposed [4] to reduce artifacts in CT images.

The recent explosive development of deep neural networks suggests new thinking
and huge potential for the medical imaging field, and deep learning is introduced in
the denoising methods for CT image [3, 18, 20]. In the literature [21], a low-dose
CT image denoising method using generative adversarial network with Wasserstein
distance and perceptual loss is proposed. The residual network, while increasing the
number of network layers, can also guarantee the performance of the neural network,
and has a good improvement on the training problems such as overfitting. In the image
denoising convolutional neural network (DnCNN), the residual learning method is
used to learn and train the image noise to obtain an image denoising model [23, 24].
A CNN and multi-feature extraction-based denoising method with a combination of
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batch normalization and residual learning is proposed to solve the problem of noise
removal in medical CT images [25]. Because of the black box nature of deep learning-
based method, the dependence on neural network structure model and training data
set, deep learning-based denoising methods usually make it difficult to obtain stable
results in CT image denoising.

The contributions of the proposed method are as follows:

• A novel integrated framework and denoising method for medical CT images was
proposed to obtain better denoising results, so thatCT image denoisingmust reduce
the image noise while retaining the details and edges of the CT image.

• The noisy CT image is decomposed and the components are processed separately.
Different denoising methods are utilized to deal with the high frequency band and
low frequency band respectively, so that the details and edges of the CT image can
be better preserved.

• The multi-directionality and multi-scale property of the Shearlets enable to obtain
better effect in denoising the detail parts, and the BM3D obtain ideal denoising
results in denoising the approximate components.

• Simulations and clinical experiments are conducted and comparisons made with
other existing methods, showing the proposed denoising method can obtain better
performances in terms of PSNR value, SSIM and FoM.

The organization of this paper is as follows. Section 2 presents the main idea
of the proposed algorithm and the schematic diagram of the proposed method. The
main constructing components of the approach are also illustrated in this section.
Section 3 presents the experimental and comparison studies of the proposed approach.
Conclusions and some perspectives are discussed in Sect. 4.

2 A Novel DenoisingMethod for Medical CT Images

The proposedmethod is to combine Shearlet and BM3Dwith amoving decomposition
framework (MDF). With MDF, the image will be decomposed into two components.
One component will contain details and texture of the image whereas the other com-
ponent will be similar to the original image only with the gradient’s norm subtracted.
These two components contain different information allowing different parts of image
to be dealt with in different ways.

2.1 Moving Decomposition Framework

This section introduces the moving decomposition framework (MDF) [9]. Let I : � ⊂
R2 → R be a gray-level image, and (x, y) be the standard coordinate system of R2.
Ix and Iy denote the derivatives of I with respect to x and y respectively. ∂ I denotes
the gradient of I . The decomposition is divided into two stages. In the first stage, an
orthonormal moving frame P was constructed by Ix , Iy and ∂ I . In the second stage,
the components (J1, J2, J3) of the R3-valued functionwere computed in thatmoving



Circuits, Systems, and Signal Processing (2022) 41:6885–6905 6889

Fig. 1 Set μ = 0.05, a original CT image, b J1 component obtained by moving frame decomposition, c
J3 component obtained by moving frame decomposition

frame. The moving frame P is defined as follows:

P(x, y) =

⎛
⎜⎜⎜⎜⎝

Ix (x,y)√
|∂ I (x,y)|2(1+μ2|∂ I (x,y)|2)

−Iy(x,y)
|∂ I (x,y)|

−μIx (x,y)√
(1+μ2|∂ I (x,y)|2)

Iy(x,y)√
|∂ I (x,y)|2(1+μ2|∂ I (x,y)|2)

Ix (x,y)
|∂ I (x,y)|

−μIy(x,y)√
(1+μ2|∂ I (x,y)|2)

μ|∂ I (x,y)|2√
|∂ I (x,y)|2(1+μ2|∂ I (x,y)|2) 0 1√

(1+μ2|∂ I (x,y)|2)

⎞
⎟⎟⎟⎟⎠

(1)

It should be noted μ is a scale parameter and its value has an obvious influence on
denoisingperformance.The results of denoising the image after applying the decompo-
sition frame are the same as the results of denoising the image directly for limμ → 0.
The higher the value of μ, the better the recovery of the clean component J3, whereas
the smaller the value of μ, the better the recovery of the clean component J1. Com-
ponents (J1, J2, J3) of each pixel are computed as follows:

⎛
⎝

J1(x, y)
J2(x, y)
J3(x, y)

⎞
⎠ = P−1(x, y)

⎛
⎝

0
0

I (x, y)

⎞
⎠ (2)

In Fig. 1, component J1 contains the edges and textures of the image whereas
component J3 is similar to the original image.

⎛
⎝

δ(x, y)
τ (x, y)
Î (x, y)

⎞
⎠ = P(x, y)

⎛
⎝
Jrec1(x, y)
J2(x, y)

Jrec3(x, y)

⎞
⎠ (3)

where Jrec1 and Jrec3 denote the denoised version of J1 and J3 respectively, and
Î (x, y) is the pixel of denoised image. The decomposition framework enables the gra-
dient information and approximate information of the image to be processed separately
and efficiently.
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2.2 Shearlet Transformation and Its Discretization

Since being introduced in 2005, the Shearlet system became the distinctive approach
capable of deal with multiple dimension signals [12]. Shearlets have the advantages of
simple mathematical structure, multi-resolution, multi-directionality and localization.
Nowadays, Shearlets have been widely used in the domain of signal processing, in
areas such as image denoising, image fusion, edge detection, etc.

The Shearlet system is defined as follows:

SH(�) =
{
�a,s,t := a− 3

4 �(A−1
a S−1

s · (−t)) : a ∈ R∗, s ∈ R, t ∈ R2
}

(4)

where A, S are n×n invertible matrices and | det S| = 1. A, S are defined as follows:

A =
(
a 0
0

√
a

)
S =

(
1 −s
0 1

)

Discrete data processing must be used when the algorithm is implemented and the
image is processed. In order tomake the framework of continuous Shearlet transforma-
tion applicable to data processing, it is necessary to discretize the continuous Shearlet.
Discrete Shearlet is actually obtained by discretizing the parameters of continuous
Shearlet under certain conditions. In this paper, we discretized the Shearlet system
using band-limited Shearlets. We chose band-limited Shearlets because it does allow
a high localization in frequency domain and it does admit a precise digitization of the
continuum theory which is important for image denoising. Better localization means
that we can use different algorithms to deal with the corresponding regionsmore effec-
tively, and more accurate digitization enables us, to a greater extent, to reduce the loss
of image information caused by discretization, and the results of image processing
will be closer to ideal situation.

In order to provide support for the inverse transformation of the Shearlet, the Shear-
let system must conform to the Parseval frame defined as follows:

∑
j,l,k

∣∣〈 f , ϕ j,l,k
〉∣∣2 = ‖ f ‖2 (5)

Set ϕ̂(ξ) be the Fourier transformation of ϕ j,l,k , for any ξ = (ξ1, ξ2) ∈ R̂2, ξ1 �=
0. Let ϕ j,l,k satisfy:

ϕ̂(ξ) = ϕ̂(ξ1, ξ2) = ϕ̂1(ξ1)ϕ̂2

(
ξ2

ξ1

)
(6)

where ϕ̂1, ϕ̂2 ∈ C∞
(
R̂
)
, supp ϕ̂1 ⊂ [− 1

2 ,− 1
16

] ∪ [ 1
16 ,

1
2

]
and supp ϕ̂2 ⊂ [−1, 1],

and thus the frequency support of ϕ̂(ξ) can be obtained:

ϕ̂ j,l,k ⊂
(

(ξ1, ξ2) : ξ1 ∈ [−22 j−1,−22 j−4
] ∪ [

22 j−4, 22 j−1
]

∣∣∣ ξ1
ξ2

+ l2− j
∣∣∣ ≤ 2− j

)
(7)
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The discretized Shear matrix becomes A2 j and the parabolic scale matrix becomes
Sk in formula (5). After discretization, the function parameter (a, s, t) in formula (4)
changes into

(2− j ,−k2− j
2 , A−1

2 j S
−1
k cm), c ∈ (R+)2. Set c = (c1, c2) ∈ (R+)2, the discrete

Shearlet system in Fourier domain is as follow:

ψ̂ j,k,m(ω) = ψ̂(AT
a j
STs j,kω)e−2π i〈ω,tm 〉

= ψ̂1(4
− jω1)ψ̂2(2

j ω2

ω1
+ k)e−2π i

〈
ω,

m1
M

m2
N

〉
, ω ∈ � (8)

�(ω1, ω2) :=
(

ω1 = − ⌊M
2

⌋
, . . . ,

⌈M
2

⌉ − 1
ω2 = − ⌊ N

2

⌋
, . . . ,

⌈ N
2

⌉ − 1

)
(9)

When the parameters meet a ≤ 1 and |s| ≤ 1, the segmentation caused by the cone
boundary will occur at |k| = 2 j , only in the situation of |s| = 1. For these two cones,
it can be seen that two half Shearlets at |s| = 1 have a gap at the joint. The gap in
these conical regions is the undefined region of Shearlet. In order to fill these gaps
to obtain the frequency domain support of the complete Shearlet, we glue the three
parts together by superposition. The formulas of discrete Shearlet transformation are
as follows:

SH( f )(η, j,m, k) :=

⎛
⎜⎜⎝

〈 f , ϕm〉 , η = 0〈
f , ψη

j,k,m

〉
, η ∈ {h, v}〈

f , ψh×v
j,k,m

〉
, η = ×, |k| = 2 j

⎞
⎟⎟⎠ (10)

where j = 0, 1, . . . , j0 − 1, and 1 − 2 j ≤ |k| ≤ 2 j − 1.

2.3 Process of Shearlet Transformation-Based Denoising

This section introduces the process of Shearlet transformation-based denoising. Let
I denote the image, L is the number of layers the image will be decomposed into,
and j is the number of layers the image is currently decomposing. Main steps of the
Shearlet transformation are:

• Pyramid filters will be applied to image I to obtain high-pass band image Ihigh j
and low-pass band image Ilow j .

• Converting Ihigh j into pseudo-polar coordinates by Fourier transformation, and
then obtain PIhigh j which is in pseudo-polar coordinates.

• Applying direction bandpass filter to PIhigh j .
• Applying two dimensional inverse FFT or inverse pseudo-polar discrete Fourier
transformation (PDFT) to PIhigh j to obtain corresponding Shearlet coefficients.

• Set j = j + 1, and repeat the previous steps until j = L .
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2.4 Block Matching 3D Denoising (BM3D)

BlockMatching 3D denoising (BM3D) uses the redundant information of an image to
perform denoising [5, 14]. There is a connection between adjacent pixels in an image.
BM3D takes advantage of this connection. It groups similar blocks, establishes a 3D
array, and converts the 3D array into a sparse representation in the transform domain
by using the collaborative filtering method to restore the image. The combination
of transform domain method and grouping technique enables BM3D to obtain an
excellent sparse representation of group data. BM3D thus has the ability to obtain
great PSNR values of denoised image whilst also preserving some essential unique
features of the image.

The BM3D algorithm includes two key steps and is presented as follows:

1. Step one:

• Searching the neighborhood of each block in the image, finding similar blocks
and stacking these blocks to form a 3D array. All similar blocks of reference
blocks form a set of 3D arrays.

• Converting these 3D arrays into transform domain, and conducting collabo-
rative filtering to the coefficients by hard thresholding. Applying the inverse
transform to these coefficients to obtain the estimation for each block.

• Computing the basic estimate of the true-image by weighted averaging all of
the obtained block-wise estimates that overlap.

2. Step two:

• Grouping the basic estimate of the true-image as in step one, finding the similar
blocks in the basic estimate of the true-image, using the same location of these
blocks to obtain another group in the noisy image.

• Applying the Wiener filter to both groups to obtain a second estimate. Using
the energy spectrum of the basic estimate as the true energy spectrum when
performing the Wiener filter to the group of noisy image.

• Using a weighted average to compute a final estimate of the true-image as at
the end of step one.

However, BM3D also has its shortcomings. Its high complexity means that BM3D
cannot be processed in real time and the literature [26] points out nonlocal similarity
might not be fully exploited. In fact, it is possible that image details of similar blocks
may be weakened or blurred by the BM3D algorithm, particularly under the circum-
stance of strong noise. In the method proposed in this paper, BM3D will be applied to
deal with the noisy version of component J3, obtained by applying a decomposition
frame to the noisy image, to avoid blurring the detail of the real image.

2.5 Steps of the Proposed DenoisingMethod for Medical CT Images

Different from general image denoising, medical image denoising requires preserving
more details, because some initial lesionsmay appear in the details of the image. There-
fore, for medical CT image denoising, it is more suitable to use different denoising
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Fig. 2 The schematic diagram of the proposed framework and integrated approach

methods to dealwith the high frequency band and low frequency band respectively. The
proposed method takes this characteristic into account by using MDF to decompose
CT image and deals with components respectively. The proposed denoising approach
is described in algorithm 1, and the schematic diagram and main steps of the proposed
framework and approach are shown in Fig. 2.



6894 Circuits, Systems, and Signal Processing (2022) 41:6885–6905

Algorithm 1: The Proposed Denoising Method for Medical CT Images
Input:

• Observed CT image I ∈ RN×N

• Patch size p ∈ RM×M

Output:

• The estimation of noiseless CT image Î ∈ RN×N

Procedure:

• Construct a decomposition frame P

• J1, J2(Zero), J3 ← P−1(x, y)

⎛
⎝

0
0

I (x, y)

⎞
⎠

• J11high, · · · , J1 j
high

ST⇐� J1

• Jrec11high, · · · , Jrec1 j
high

T hresholdingShrinkage⇐� J1nhigh, (n = 1, · · · , j)

• Jrec1
I ST⇐� Jrec11high, · · · , Jrec1 j

high

• Jrec3
BM3D⇐� J3

• Î ← P(x, y)

⎛
⎝

Jrec1(x, y)
J2(x, y)

Jrec3(x, y)

⎞
⎠

In the above algorithmic steps, ST denotes Shearlet Transformation and IST denotes
Inverse Shearlet transformation. J1, J2 and J3 are the three components generated
by MDF decomposition.

Remark 1 After MDF decomposition, component J2 is actually a zero matrix which
contains only zero elements. Components J1 and J3 need to be processed in the
following denoising steps with Shearlet Transformation-based denoising method and
BM3D denoising respectively, while component J2 (zero matrix) requires no addi-
tional processing.

Different from general image denoising, medical image denoising must reduce the
image noise while retaining the image details. Firstly, based on the moving decom-
position framework (MDF), the proposed method encodes the image pixel by pixel
with a small-size sliding window box, and decomposes the details (mainly high fre-
quency) and non-details (the approximate components, mainly low frequency) parts
from the original noisy image. For these two parts, Shearlet-based denoising and
the block matching and 3D filtering (BM3D) denoising are applied respectively. The
multi-directionality and multi-scale property of the Shearlet make it possible to obtain
better effect in denoising the detail parts, and the BM3D denoising algorithm can
also obtain ideal denoising results in denoising the approximate components (mainly
low frequency part) of the image. Finally, with the two processed components and
the inverse transformation method of the decomposition frame, the denoised image is
obtained.
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The original noisy CT image is decomposed by decomposition frame and then
processed separately, so that the details and edges of the CT image can be better
preserved. The final denoising results obtained by this proposed integrated method not
only ensure the effect of image denoising, but also retain CT image details and edges
well. It is confirmed with simulation and clinical experiments that the final denoising
results, obtained by denoising the details and non-details partswith their corresponding
methods after MDF decomposition, will be better than the results obtained by using
the algorithm directly for the medical image.

3 Experimental Studies of the Proposed DenoisingMethod

Experimental studies of the proposed denoising approach are presented in this sec-
tion. Studies were conducted on two simulated CT images and on two clinical CT
images with various degrees of noise variance respectively and their denoising per-
formances are provided. Comparative studies of the proposed method against other
existing denoising algorithms are also presented. The algorithms chosen for compar-
ison were BM3D [5], Shearlet [10], NLM [2], and K-SVD [1]. The software used in
the experiments was MATLAB R2014a. In simulation study, the GWNoisy2 function
was used to simulate noise to the image within the parameters of noise intensity. Each
algorithm window measures 5 ∗ 5. The ‘thresh’ function in ShearLab-1.1 was used to
conduct threshold processing in the process of Shearlet-based denoising.

Assuming the noise variance of image is N , and the parameter ‘sigma’ in Shearlet
shrinkage denoising will be selected as a *N . In the process of BM3D, the parameter
‘sigma’ in function BM3D will be selected as b*N . The values of a and b were
obtained through the experiments. These showed the J1 component will be very
weak when μ is selected as 0.0001. In order not to destroy the edge details in the J1
component when denoising, the threshold is very small.

Through simulations and experiments, the parameters were chosen as following:
a = 1

25 , forμ = 0.001 and a = 1
87 , forμ = 0.0001. b = 1.02.

3.1 Evaluating Indices

(1) Peak Signal-to-Noise Ratio (PSNR)
In the evaluation of denoising performance, peak signal to noise ratio (PSNR) is

adopted as a comparison indicator to conduct a quantitative analysis. The formula for
PSNR is as follows:

PSNR
(
I , Ī

) = 10log10

(
2552

MSE

)
(11)

where Ī denotes the denoised image, and I the original image.
The expression of MSE is:

MSE = 1

MN

M∑
i=1

N∑
j=1

(Ii, j − Īi, j )
2

(12)
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where M and N are the length and width of the two-dimensional code respectively.
The larger the MSE value, the worse the image quality.

(2) Structural Similarity (SSIM)
SSIM is used to measure the structure similarity of two images, and its formula is

defined as follows:
SSIM(I , Ī ) = l(I , Ī )c(I , Ī )s(I , Ī ) (13)

where l(I , Ī ) = 2μIμ Ī+C1

μ2
I+μ2

Ī
+C2

is used to measure the average brightness similarity of two

images.μI , μ Ī and σ 2
I , σ

2
Ī
represent the mean and variance of the noise-free reference

image and the estimated image respectively. c(I , Ī ) = 2σI σ Ī+C2

σ 2
I +σ 2

Ī
+C2

is a function that

reflects the similarity of two images. s(I , Ī ) = σI , Ī+C3

σI σ Ī+C3
is the correlation coefficient

function between the measured images, and σI , Ī represents the covariance between I

and Ī .
The SSIM value is in the range of [0 1], the higher the value of SSIM, the higher the

similarity between I and Ī . Variables C1,C2,C3 are positive integer regularization
parameters, and these variables are added to avoid denominator to be zero. C1 =
(k1L)2, C2 = (k2L)2, k1 = 0.01, k2 = 0.03, L denotes max range of image pixel
values, and C3 = 0.5C2

(3) Pratt’s Figure of Merit (FoM)
FoM is utilized to numerically evaluate the quality of edge detectors and is defined

as follows:

FoM(I , Ī ) = 1

max(PI , PĪ )

PI∑
i=0

1

1 + αd2i
(14)

where PI and PĪ represent the number of pixels that are ideal and actually detected
edge of the image respectively. α is a constant which is usually taken α = 1/9, and
di represents the distance between the edge pixel and the nearest ideal edge pixel.
The range of FoM is [0,1], and the higher the FoM value, the higher the coincidence
degree. When FoM value is 1, this indicates the edge of the detected image is exactly
the same as the ideal image edge.

3.2 Experimental Results on Simulated Images

Simulated CT1 and CT2 images for the denoising experimental studies are shown
in Fig. 3. Tables 1 and 2 with different δ show the proposed approach has a better
effect on simulated CT images denoising than other algorithms. As Fig. 4 shows,
the texture of simulated CT1 image denoised with the proposed approach (Fig. 4b)
has been preserved better than other algorithms while most of the noise has been
removed. BM3D (Fig. 4c), Shearlet (Fig. 4d), K-svd (Fig. 4e) and NLM (Fig. 4f) blur
the details of the original image in different degrees. This is particularly the case in
Fig. 4f, the image denoised by NLM, for the blurring of the image means the details
in the original image can hardly be seen. The comparison of denoising results of the
proposed approach with other existing algorithms for simulated CT1 image is shown
in Fig. 5. It can be seen, as noise variances increase, the advantages of the quantitative
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Fig. 3 a simulated CT1, b simulated CT2

Fig. 4 μ = 0.001 and δ = 40, a the noisy simulated CT1 image , b denoised by proposed method, c by
BM3D, d by Shearlet transform, f by K-svd, g by NLM

results obtained by the proposed method (blue line) over other methods also gradually
increases. It is pretty clear the proposed method has the most effective denoising
ability.

Inmost cases, the difference betweenCT images andordinary images is thatmedical
images havemore detailed textures. Thismakes itmore difficult to distinguish the noise
from the real image. The ability of a denoising algorithm to preserve image texture
structure is therefore particularly important in medical image denoising. The denoised
version of simulated CT2 image is shown in Fig. 6. The performances of denoising
the simulated CT2 image are shown in Table 2 and in Fig. 8 respectively.
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Table 1 Comparison of denoising performances for simulated CT1 image

Methods Proposed Proposed BM3D Shearlet K-svd NLM
μ = 0.0001 μ = 0.001

δ = 40 PSNR 26.2150 26.2028 25.9913 24.9863 25.5241 24.5509

SSIM 0.7615 0.7381 0.7166 0.6006 0.5588 0.4949

FoM 0.8011 0.8344 0.8145 0.7560 0.7743 0.7304

δ = 30 PSNR 27.6648 27.5858 27.3568 25.8814 26.9597 25.5497

SSIM 0.8309 0.8211 0.8049 0.6795 0.6800 0.6029

FoM 0.8554 0.8592 0.8488 0.8266 0.8043 0.7229

δ = 20 PSNR 29.6620 29.6603 29.6492 27.5752 29.3274 27.7062

SSIM 0.8946 0.8927 0.8946 0.7740 0.8026 0.7493

FoM 0.8527 0.8606 0.8513 0.8459 0.8500 0.7944

δ = 10 PSNR 34.2556 34.2241 34.2197 31.5244 33.9401 32.6923

SSIM 0.9678 0.9664 0.9677 0.9003 0.9249 0.9243

FoM 0.9209 0.9226 0.9192 0.9172 0.9284 0.9116

Fig. 5 Comparison of performances for denoising of the simulated CT1 images. a PSNR, b SSIM, c FoM

To show the image more intuitively, Fig. 7 presents two components before and
after denoising process to show the relationship between the denoising of J1 and J3
components.

As canbe seen fromFig. 7, the denoised J1 component (c) has lostmost of its texture
but preserved its edges information, and the denoised J3 component (d) is similar to its
original image. Actually, the performances of different evaluation indices of resulting
denoised images are relative to those of J1 and J2 components.

Figure 6 shows the proposed method (Fig. 6b) has filtered almost all noise in the
noisy image, and blurred some details and edges in origin image while filtering. The
results of Shearlet (Fig. 6d), K-svd (Fig. 6e) andNLM(Fig. 6f) are not satisfactory. The
results of Shearlet (Fig. 6d) add too much scratch in the denoised image not present in
the original image. The results of K-svd (Fig. 6e) and NLM (Fig. 6f) have corrupted
a large amount of structural information in the original figure. The results of BM3D
(Fig. 6c) seem to have better edge preservation than the proposedmethod (Fig. 6b), but
as can be seen from Fig. 8, the proposed method has better performances than those of
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Fig. 6 μ = 0.001 and δ = 40, a the noisy simulated CT2 image, b denoised by proposed method, c by
BM3D, d by Shearlet transformation, f by K-svd, g by NLM

Fig. 7 a J1 noisy image, b J3 noisy image, c denoised J1 image, d denoised J3 image
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Table 2 Comparison of denoising performances for simulated CT2 image

Methods Proposed Proposed BM3D Shearlet K-svd NLM
μ = 0.0001 μ = 0.001

δ = 40 PSNR 30.3395 30.2441 30.0706 29.3294 29.1359 28.2858

SSIM 0.7965 0.7962 0.7839 0.7337 0.6894 0.6546

FoM 0.8394 0.8411 0.7981 0.8016 0.7503 0.7145

δ = 30 PSNR 31.5219 31.5008 31.4580 30.6223 30.4096 29.3252

SSIM 0.8278 0.8104 0.8262 0.7815 0.7370 0.6029

FoM 0.8413 0.8550 0.8229 0.8302 0.7498 0.7229

δ = 20 PSNR 33.4165 33.4425 33.4083 32.5099 32.4511 31.1015

SSIM 0.8850 0.8840 0.8835 0.8432 0.8174 0.7493

FoM 0.8883 0.8828 0.8833 0.8911 0.8750 0.7944

δ = 10 PSNR 37.1157 37.1306 37.1231 36.0385 36.5804 34.1641

SSIM 0.9454 0.9477 0.9468 0.9229 0.9257 0.8797

FoM 0.9245 0.9366 0.9203 0.9111 0.9027 0.9213

Fig. 8 Comparison of performances for denoising of simulated CT2 images. a PSNR, b SSIM, c FoM

other algorithms. The PSNR, SSIM and FoM of the denoised image obtained by the
proposed method have advantages over those by other algorithms. As a result of these
experiments, in most cases the proposed algorithm was found to have advantages over
the others. The proposed method can obtain a better performance than that of BM3D
or Shearlet alone. The denoised images obtained by the proposed method not only
have a higher PSNR, but also remove image noise whilst simultaneously preserving
the edge of the images. This is reflected in the fact that the proposed algorithm can
achieve higher SSIM and FoM. The selection of μ depends on the characteristics of
the image. For general cases, the restoration of medical images focuses more on the
structure of the restored images, and thus in the case of serious noise disturbance, a
value of μ is suggested as 0.0001.
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Fig. 9 a Mediastina window, b Pulmonary window

Table 3 Comparison of denoising results for real CT1 image and real CT2 image

Methods Noisy image Proposed BM3D Shearlet K-svd NLM

NIQE(CT1) 5.5240 8.7373 8.5066 6.2396 6.7275 8.4316

NIQE(CT2) 5.1950 10.9593 10.8352 7.2465 8.4867 10.0697

3.3 Experimental Results on Real Clinical CT Images

This section presents experimental results on two real clinical CT images. The exper-
iments are conducted on a pulmonary window CT image and on a mediastina window
CT image respectively. The resolutions of CT images are 512 ∗ 512 and 256 gray
scales. Two clinical CT images are shown in Fig. 9.

Because a noise-free real CT image does not exist, the natural image quality eval-
uator (NIQE) which is a completely blind image quality analyzer has been applied to
evaluate the quality of an image.

It is obvious that the proposedmethod, as shown in Figs. 10a and 11a, can effectively
remove noise and simultaneously preserve the details of clinical CT images. BM3D
is similarly effective as shown in Figs. 10b and 11b. Nevertheless, as can be seen in
Table 3, the NIQE values of the proposed method is best, meaning it obtains better
results compared to BM3Dfiltering. TheCT images smoothened by Shearlet as seen in
Figs. 10c and 11c, have some striped interference like cracks in the filtered CT images.
The images filtered by K-svd shown in Fig. 10d and 11d, show some improvements
on noise suppressing, but do not perform as well as expected. The NLM, shown in
Figs. 10e and 11e, have good performances in suppressing the noise but at the cost of
obscuring the edge of the CT images.

Remark 2 In the field of image denoising, such as some medical images, sparse repre-
sentation still plays an important role. TheK-SVDmethod realizes denoising by sparse
coding. The discrete Fourier transform or wavelet transform, for example, yields a
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Fig. 10 Denoised results of clinical CT1 images. a by proposed method, b by BM3D, c by Shearlet, d by
K-svd, e by NLM

Fig. 11 Denoised results of clinical CT2 images. a by proposed method, b by BM3D, c by Shearlet, d by
K-svd, e by NLM
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series of orthogonal bases, while the dictionary obtained by sparse representation is
a series of non-orthogonal bases. An orthogonal basis can only represent a certain
feature of an image, but not other features at the same time. Therefore, the sparsity
of an orthogonal basis is not as good as that of a non-orthogonal basis. However,
medical CT images are more monotonous than natural images, and their attributes are
too simple. As a result, more noise components are learned as atoms for its dictionary
learning, and thus K-SVD has a worse performance for denoising of CT images.

Remark 3 It is true that the denoising performance improvements shown in the last
few sections of the paper are likely to extend to a wider class of medical images, for
instance, to ultrasound medical images. According to the existing literature, in the
transform domain, the distribution of speckle noise in the clinical ultrasound image is,
to some extent, similar to that in the LowDose CT images, and thus the improvements
are likely to extend to ultrasound medical images.

Remark 4 Recently, we also carried out research onCT image denoisingmethod based
on deep learning. Based onmulti-feature extraction and convolutional neural network,
we proposed a method for CT image denoising, and compared its performance with
that of BM3D, KSCV, DnCNN, and FFDNet [25]. According to the research results,
denoising methods based on deep learning have better denoising performances than
that of BM3D, KSVD and other denoising methods. Meanwhile, the deep learning-
based denoisingmethods also have slightly better performances than that of themethod
established in this paper. However, because of black box nature of deep learning-
based method, difficulty of obtaining the corresponding dataset with enough labeled
CT images, problem of the generalization ability of the trained model, dependence
on neural network structure model and training data set, a large number of network
parameter calculations and updates in the training process, and the low training effi-
ciency of the network, deep learning-based denoisingmethods usuallymake it difficult
to obtain stable results in CT image denoising.

4 Conclusions

This paper proposes a novel integrated denoising algorithm that combines BM3D
and Shearlet in a moving decomposition framework (MDF). Simulations and clinical
experiments were conducted and comparisons with other existing methods made. The
results show the proposed denoising method can obtain better performances in terms
of PSNR value, SSIM and FoM. From experimental studies, it can be seen in terms
of the evaluation index FoM, that the proposed algorithm has a better ability to retain
edges when the value of μ is selected at 0.001. By experiment, it was determined that
the value of μ is related to the effectiveness of the denoising of the two components
after decomposition on the final denoising image. The value of μ is proportional to
the contribution of the denoising effectiveness of J1 component on the final denoising
image, and inversely proportional to J3. The optimal selection of the value of μ

remains an open problem requiring further research. For the selection of parameters
a and b of the threshold function, optimal selection depends on image characteristics
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and the hardware environment in which the experiments are conducted, and these also
need further study.
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