
Circuits, Systems, and Signal Processing (2022) 41:6266–6294
https://doi.org/10.1007/s00034-022-02082-8

A Novel Pitch Detection Algorithm Based on Instantaneous
Frequency for Clean and Noisy Speech

Zied Mnasri1,2 · Stefano Rovetta2 · Francesco Masulli2

Received: 20 May 2021 / Revised: 31 May 2022 / Accepted: 4 June 2022 /
Published online: 25 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, a novel pitch detection algorithm (PDA) is proposed. Actually, pitch
detection is a classical problem that has been investigated since the very beginning of
speech processing. However, the novelty of the proposed method consists in establish-
ing an empirical relationship between fundamental frequency ( f0) and instantaneous
frequency ( fi ), which serves as a basis to develop the proposed PDA. Even though f0
and fi are defined as attributes of two different transforms, i.e., the Fourier transform
and the Hilbert transform, respectively, the relationship proposed in this paper shows
some interaction between both of them, at least empirically. The first step of this work
consists in validating the proposed relationship on a large set of speech signals. Then,
it is leveraged to develop an algorithm capable to (a) detect voiced/unvoiced parts of
speech and (b) extract f0 contour from fi values in the voiced parts. For evaluation pur-
poses, the yielding f0 contour is compared to some well-rated state-of-the-art PDA’s.
The main findings show that the quality of pitch detection obtained by the proposed
technique is as satisfactory as some of top PDA’s, either in clean or in simulated noisy
speech. In addition, one of the main advantages consists in bypassing the traditional
short-time analysis required to assume local stationarity in speech signal.
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1 Introduction

Pitch is among the most prominent parameters in speech. From a phonological point
of view, pitch is responsible of intonation and accentuation, whereas from the acoustic
side, pitch is quantified by voiced/unvoiced (V/UV) decision and f0 contour. Along
with acoustic energy, it conveysmost para-verbal content andmay dramatically change
the meaning of the verbal component, for instance by representing the interrogative
form or ironic intent. It is also a major component of emotion, a key human–machine
communication mode which is still in its infancy, and can be used to diagnose several
neuropsychological conditions like early cognitive impairment or depression.

These application domains have received a strong boost in the past few years with
the widespread diffusion of vocal assistants, vocal interfaces, personal health devices,
and with the developments in collaborative and cooperative robotics, all of which call
for detection methods that are both effective and computationally light-weight and
more accurate than the state of the art.

Pitch detection is probably the speech processing problem which have had the
biggest interest. Several techniques have been implemented during the last half century,
to provide an accuratemeasure of such a highly variable speech feature. Actually, pitch
depends on a variety of parameters, mainly the speaker’s gender, age and the language
type, i.e., tonal or non-tonal. A classification of the main pitch detection techniques
can be made according to the domain of analysis, whether temporal, spectral or time-
frequency [12]. In [17], another classification is proposed, dividing the pitch detection
methods into event-detection techniques, like peak-picking and zero-crossing, and
short-time average f0 detection techniques, such as cepstrum [28], autocorrelation [32]
and average magnitude difference functions (AMDF) [34], minimal distance methods
[17] and harmonic analysis-based techniques [12, 16, 38]. As a common point, the
aforementioned techniques are applied on short time frames, to reduce the effects of
non-stationarity of the speech signal. However, such a short time processing may lead
to errors while estimating the pitch periods [19]. On another side, multiresolution
analysis methods, such as discrete wavelet transform (DWT), are utilized to extract
pitch [21]. Nevertheless, their performance is influenced by their inherent defaults,
mainly poor time-frequency resolution and spectral leakage, as noticed in [19].

To tackle these issues, another concept has emerged in the last two decades, based on
techniques applied along thewhole signal, instead of short-time analysis. Themajority
of these techniques are based on the analysis of instantaneous frequency ( fi ), which is
a theoretic concept. By definition, fi is the time-derivative of the phase of the analytic
signal. The latter is a complex signal obtained by Hilbert transform [6]. However,
using fi values to extract f0 contour still suffers from the lack of a direct/explicit
relationship between the two quantities.

Therefore, a novel relationship, although still empirical, is proposed in this work,
in order to (a) determine the voiced vs. unvoiced parts of the speech signal, and
(b) extract f0 contour from fi values in the voiced parts. This work is described as
follows: Sect. 2 reviews the related work, with a focus on harmonic analysis-based and
fi -based pitch detection techniques; Sect. 3 presents themethod adopted, including the
proposed empirical relationship between fi and f0 in speech signal, and detailing the
algorithm developed to extract f0 from fi through this relationship. Section 4 presents
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the objective evaluation protocol and the results yielding from the application of the
proposed algorithm on clean and simulated noisy speech. Finally, the performance
measures are commented and discussed, with some proposals for improvement.

We note that the empirical relationship between f0 and fi was already presented
in [26], whereas the description of the proposed PDA has recently been accepted
in [27]. The present paper contains an extended description of the utilized method,
and especially a comprehensive evaluation, including not only the performance of the
proposed algorithm with respect to its parameters, but also the comparison to state-
of-the-art techniques, in various noise conditions and separately for male and female
speakers.

2 RelatedWork

Even though pitch detection is a classical audio and speech processing problem,
research in this field has never given up. In fact, several challenges are still open,
such as multi-pitch detection, accurate pitch detection in noisy environments and real-
time pitch tracking. Thus, two main directions are followed, (i) the classical harmonic
analysis based on short-time Fourier transform (STFT) and (ii) the instantaneous spec-
trum based on Hilbert transform (HT).

2.1 Pitch Detection by Harmonic Analysis

The use of harmonics to detect f0 in speech and music signals has been the key idea of
several pitch detection algorithms, such as the subharmonic summation (SHS) [16],
subharmonic-to-harmonic ratio (SHR) [38] and residual harmonics [12].

In [40], a harmonic model is applied to estimate voiced speech parameters. In
particular, amaximumaposteriori probability is estimated to compute the fundamental
frequency ( f0). In [45], an algorithm named YAAPT (Yet Another Algorithm for
Pitch Tracking) leverages the STFT spectrum of the filtered squared signal to provide
a primary estimation of f0. Then, the f0 candidate values are refined, and dynamic
programming is applied to select the path containing the series of f0 candidates that
minimizes a cost function composed of amerit term and a transition term. This method
has been particularly robust to white and babble noise.

In [5], the BaNa algorithm is presented. This algorithm is qualified as hybrid since
it combines two main pitch detection approaches, i.e., harmonic ratios, like in SHR
[38], and cepstrum analysis [28]. The final pitch value is calculated using a Viterbi
algorithm to decode the optimal path search, where the cost function is defined as a
sum of the log-ratio of each pair of f0 candidates plus a weighted confidence score.
The evaluation of this method to some state-of-the-art PDA’s such as PRAAT [7] and
YIN [10] shows that it is more robust to noise.

In [42], a method based onmulti-band summary correlogram (MBSC) is developed
for the problem of pitch detection in noisy environments. Thus, the input signal is
filtered by multiple wide-band FIR filters. The extracted envelope at each frequency
band is filtered again with a multi-channel comb filter and harmonic-to-subharmonic
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ratio (HSR) computation. Then, the MBSC is computed on the samples selected by
HSR. Finally, the pitch value is retained as the candidate that has the smallest MBSC.

In [14], a PDA named PEFAC (Pitch Estimation Filter with Amplitude Compres-
sion) has been proved to be quite efficient in noisy speech, even with negative SNR.
This PDA proceeds by: (i) normalizing the signal to remove channel dependencies, (ii)
attenuating the strong noise components by harmonic summation and (iii) applying
temporal continuity constraints to the selected pitch candidates.

More recently, [44] has proposed harmonic enhancement to cope with the issue of
missed and submerged harmonics in spectrum before performing pitch detection; and
lately, [33] has developed a spectrum-based PDA for singing voices. The latter method
is based on candidate harmonic partials detection using a random forest classifier. Each
triplet of successive f0 candidates undertakes a harmonicity/ unharmonicity check
using adapted thresholds.

2.2 Instantaneous Frequency-Based Pitch Detection

Using instantaneous frequency ( fi ) for pitch detection is an alternative way to get
around some problems of conventional methods, such as harmonic analysis and mul-
tiresolution analysis. In fact, fi pattern can be continuously analyzed along the whole
signal, which allows avoiding some constraints, such as short-time analysis, that is usu-
ally required to reduce the effect of non-stationarity of the speech signal, and wavelet
scale adjustment, which is necessary to enhance the time-frequency resolution [19].

Even though it is less frequent to use instantaneous analysis for pitch detection,
a few PDA’s based on fi analysis were proposed in the literature [1, 2, 18, 31] and
more recently in [22], with valuable performance. These fi -based methods extract f0
contour as a continuous function of time in voiced regions. For instance, Qiu et al. [31]
proceed as follows: First, the harmonics are attenuated using a band-pass filterbank;
secondly, the discrete instantaneous frequency (DIF) is estimated at different scales of
the band-pass filterbank; and finally, the V/UV decision is taken upon certain criteria
related to: (i) the DIF value (unvoiced if DIF ≤ 50 Hz or DIF ≥ 500 Hz), or (ii) to
the variation between neighboring DIF’s (unvoiced if Δ(DIF) ≥ 1.4 Hz), or (iii) to
the duration of sustained DIF (unvoiced it is less than 20 ms). However, using this
technique is likely to cause the problem of pitch halving/doubling, where the low
harmonics, i.e., the multiples of f0 that are less than 500 Hz, could be also taken for
f0 values. To cope with this issue, multiple scales of the filterbank are used, to retain
the smallest non-zero DIF as f0 value.

In [1], Abe et al. used fi pattern to extract f0 by tracking the harmonics. To achieve
this goal, the signal is decomposed into harmonic components by applying a filterbank
with a variable center frequency. Then, fi values of each component are considered
as the harmonic pattern. Finally, the lowest fi pattern, i.e., the lowest harmonic, is
retained as the f0 contour [1]. In continuation to this work, the same authors proposed
in [2] an IF-based method where IF is extracted from the spectrum of the short-time
Fourier transform (STFT) to enhance harmonics, by suppressing aperiodic compo-
nents. This method was reported to perform well in presence of noise, in comparison
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to its contemporaneous state of the art, such as the dynamic programming-based cep-
strum methods, proposed by [23].

In [18], the Hilbert-Huang transform (HHT) is applied for pitch detection from fi
pattern.Originally,HHT is a twofold process, that is performedfirst by applying empir-
ical mode decomposition (EMD), and then by decomposing the signal into intrinsic
mode functions (IMF) through a special process called sifting. Each resulting IMF is
characterized by its instantaneous frequency ( fi ) and its instantaneous amplitude (Ai ).
After extracting all IMF’s, f0 and V/UV decision are estimated, first by filtering all
IMF’s, where only fi values between 50 Hz and 600 Hz are kept, and where fi values
are set to zero if Δ f i ≥ 100 Hz in a 5 ms frame or when the instantaneous amplitude
Ai (t) ≤ max(Ai )

10 . At each instant, the fi value corresponding to the highest Ai value
in all IMF’s, is retained as f0 value. Finally, the extracted f0 contour is merged and
smoothed by post-filtering.

More recently, [22] leveraged aperiodicity bands and short-time Fourier transform
(STFT)-based channel-wise instantaneous frequency, defined as in (1)

fi (t, ω) = 1

2π

∂�(t, ω)

∂t
(1)

where�(t, ω) is the STFT phase spectrum, to estimate f0 for speech signal synthesis,
using a three-stage process. In the first stage, aperiodicity bands are detected using a
wavelet-based analysis filter with a highly selective temporal and spectral envelope.
In this stage, instantaneous frequency is filtered to yield the periodicity probability
map. The second stage generates a first estimate of f0 trajectory from the periodicity
probability map and signal power information. Finally, the third stage refines the
estimated f0 trajectory using the deviation measure of each harmonic component
and f0 time warping. It is worth noting that this PDA has been included to Google’s
vocoder named YANG (Yet ANother Generalized Vocoder) [3].

2.3 Interaction Between Fundamental Frequency and Instantaneous Frequency

Most of the aforementioned fi -based pitch extraction techniques have been success-
fully compared to the rest of state-of-the-art methods, yielding a very accurate V/UV
decision and f0 values, which proves that using fi is a good alternative to extract f0
without taking care of the non-stationarity of the speech signal. Nevertheless, these
methods are mostly based on empirical hypotheses, such as considering f0 as a filtered
discrete instantaneous frequency [31], or as the smallest harmonic [1], or as the instan-
taneous frequency matching to the greatest instantaneous amplitude of the intrinsic
mode functions (IMF), which are extracted from the signal by empirical mode decom-
position (EMD) [18]. Thus, none of these techniques is based on a direct or an explicit
relationship between fi and f0, even though in each case, f0 contour is extracted from
fi values.
Such a relationship could fill the gap between accurate empirical methods and the

lack of a theoretical link between both quantities, i.e., f0 and fi . It should be noted that
in [24], some interaction between Fourier transform and Hilbert transform is proposed
for harmonic signals. Actually, [24] relates from that Fourier transform (FT) weakly
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generates Hilbert transform (HT) for any well-defined function g(x), as follows:

FT(HT(g(x)) = iσ(x)FT(g(x)) (2)

where i is the imaginary number and σ(.) is the sign function. However, (2) is not
enough to generalize the relationship between f0 and fi for two major reasons: First,
speech signal is far from being strictly harmonic (notwithstanding the possibility
to model speech by a harmonic-plus-noise model (HNM) [36]); and secondly, f0
contour is not continuous over the speech signal due to binary voiced/unvoiced (V/UV)
decision.

Also, Shimauchi et al. [35] have recently established an explicit relationship
between the STFTmagnitude spectrum and the channel-wise instantaneous frequency,
defined by (1), such that:

fi (t, ω) = 1

2πσ 2

∂log(A(t, ω))

∂ω
+ ω

2π
. (3)

where �(t, ω and A(t, ω) are the STFT phase and magnitude, respectively; t and ω

are the time and the angular frequency in the Fourier domain, respectively. This rela-
tionship has been used for phase retrieval, i.e., phase estimation given the magnitude
spectrum only. Nevertheless, this result does not lead to a direct/explicit relation-
ship between the STFT-based channel-wise instantaneous frequency and the Hilbert
transform-based one.

3 Method

In this work, a direct relationship is proposed, albeit it is still empirical. This rela-
tionship relies on the same assumptions utilized in the aforementioned fi -based
techniques. Then, this relationship is used to implement an algorithm able to: (a)
determine the voiced/ unvoiced parts and (b) extract f0 contour from fi values in the
voiced regions.

3.1 Computation of Instantaneous Frequency

Instantaneous frequency ( fi ) is a theoretic concept defined as the time-derivative of
the phase of the analytic signal z(t). The latter is the complex signal given by:

z(t) = s(t) + jsH (t) = a(t)e jφ(t), (4)

where

sH (t) = HT(s(t)) = pv

(∫ +∞

−∞
s(t − τ)

πτ
dτ

)
. (5)

HT and pv denote the Hilbert transform and the Cauchy principal value, respectively,
whereas a(t) and φ(t) are the instantaneous amplitude and the instantaneous phase,
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respectively. As z(t) is unique for a given s(t) [13], then:

s(t) = a(t) cos(φ(t)), (6)

Since no restrictions are required concerning the stationarity or the linearity of the
system that generates s(t), (6) is valid for any natural signal. In [6], based on the
earlier works of [30, 43], the generalized instantaneous phase φ(t) can be written as:

φ(t) = 2π
∫ t

0
f (t) dt . (7)

It is obvious that φ(t) would have the classical formula φ(t) = 2π f t + φ0 in case
of a simple harmonic signal. Hence, the instantaneous frequency fi can be defined as
the time-derivative of the instantaneous phase φ as in (8), based on [6]:

fi (t) = 1

2π

dφ(t)

dt
= 1

2π

darg(z(t))

dt
. (8)

For discrete signals, fi is easily calculated by (9), where z(n) is the associated discrete
analytic signal and fs is the sampling frequency (for n ≥ 1):

fi (n) = fs
4π

(arg(z(n + 1)) − arg(z(n − 1))). (9)

3.2 Proposed Empirical Relationship Between Pitch and Instantaneous Frequency

In spite of the absence of a direct relationship between fi and f0, both types of
frequency share a common point, which is continuity over time, at least in the regions
where f0 contour is defined, such as the voiced parts of a speech signal. This suggests
that in such a region, the observed instantaneous frequency can be a relative integer
multiple of f0 with or without some residual frequency (note that in (9), fi can be
negative). Starting from this assumption, some working notations are defined in the
following, with the sole aim to describe the proposed method.

3.2.1 Instantaneous Pitch

It can be defined as the value of f0 at every discrete instant n inside the voiced regions
only ( f0 is undefined in unvoiced segments). This is different fromconventional PDA’s,
where pitch is usually obtained by one value at each frame and then f0 contour is
obtained by interpolation.

3.2.2 Instantaneous Pitch Multiples

They are defined at each instant n as the positive integer multiples of instantaneous
pitch f0(n) below | fi (n)|. The highest instantaneous multiple is defined as the closest
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one to | fi (n)|. Consequently, the maximum order of instantaneous pitch multiples,
denoted Hmax(n), is defined as:

Hmax(n) =
⌊ | fi (n)|

f0(n)

⌋
. (10)

We also highlight that in this particular case and for mathematical rigor, we avoided
using the term harmonics to refer to pitch multiples for the following reasons: (a) Har-
monics are related to Fourier transform, whereas fi is obtained by Hilbert transform;
(b) to the best of our knowledge, no explicit relationship has been proved so far between
f0 and fi , even though some interaction may exist in harmonic signals [24].

3.2.3 Instantaneous Residual Frequency

It is defined as the difference between | fi | and the instantaneous pitch multiple:

fir (n) = | fi (n)| − H(n) f0(k) ∀ H(n) ≤ Hmax(n), (11)

where 1 ≤ H(n) ≤ Hmax(n) are the orders of the instantaneous pitch multiples at
time n.

3.3 Estimation of Instantaneous Pitch from Residual Instantaneous Frequency

It is obvious that for the highest instantaneous pitch multiple order Hmax(n), the
residual instantaneous frequency fir is minimal and we have:

fir (n) ≤ f0(n).

In this particular case, we empirically notice that f0 contour can be obtained as the
upper bound of the envelope of the instantaneous residual frequency fir . This upper
bound is calculated on overlapping frames of small duration (less than 40 ms):

f0,est(nk) = max
nk− L

2 ≤l<nk+ L
2

fir (l), (12)

where nk and L are the center and the length of the kth frame, respectively.
Figure 1 shows the results for a speech signal, as follows:

– Figure 1 (top plot) shows the instantaneous frequency ( fi ) of a speech signal,
calculated by (9).

– Figure 1 (middle plot) illustrates the residual instantaneous frequency ( fir ) and its
envelope, calculated by (11) and (12), respectively.

– In Fig. 1 (bottomplot), the ground-truth f0 contour is superposedwith the envelope
of fir , to show a quasi-superposition between both patterns. This leads us to
consider the envelope of fir as an estimated value of the f0, as proposed in (12).
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Fig. 1 Example of the established relationship between ground-truth f0 and the instantaneous frequency
fi extracted using (4)–(9)

To validate the results given by (12), the ground-truth f0 values provided by
the standard pitch tracking database, PTDB-TUG [29], were utilized. Therefore, the
ground-truth f0 contour was first aligned to the instantaneous frequency fi ; then the
residual frequency fir and the estimated fundamental frequency f0est were calcu-
lated using (10)–(12) for different values of the order of instantaneous pitch multiples
(H(n)), to confirm that maximizing H(n), i.e., using Hmax(n), obtained by (10), in
(11), improves the superposition between the ground-truth f0 and f0,est given by (12),
as shown in Fig. 2.

To check further the validity of this empirical result, the root mean square error
(RMSE)weremeasured betweenboth contours, i.e., ground-truth f0 and f0,est contour,
for a large subset of signals from PTDB-TUG database [29]. In addition, the areas
covered by both contours are compared, to confirm their superposition (cf. Table 1).

The test signals correspond to randomly selected 400 speech signals, uttered by 10
male and 10 female speakers. The results mentioned in Table 1 show that increasing
the maximum order of instantaneous pitch multiples Hmax in (10)–(12) makes the
difference between the ground-truth f0 contour and the estimated contour f0,est, small
enough to consider themas superposed.However, since ground-truth f0 is already used
to calculate f0est (cf. (10)–(12)), it means that there is a recursive relationship between
both, so the problem is how to extract f0est directly from the instantaneous frequency
fi , such that it approximates the ground-truth f0.

3.4 Proposed Pitch Detection Algorithm

To1 extract f0 from instantaneous frequency fi using equations (10)–(12), the fol-
lowing algorithm is proposed. The algorithm is divided into three main steps: (a)

1 MATLAB code is available at [25].
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Fig. 2 Estimated f0 contour (dotted line) versus ground-truth f0 (continuous line) for different orders of
instantaneous pitch multiples (Hmax) using (10)–(12)

Table 1 Covered area error and root mean square error (RMSE) between the contours of ground-truth f0
and f0,est estimated using (10)–(12)

Maximum order
of instantaneous
pitch multiples

Mean area error Std area error Mean RMSE (Hz) Std RMSE (Hz)

5 70.9 23.6 5907.9 1255.5

10 66.1 23.2 5638.6 1221.4

20 58.3 22.2 5123.3 1157.7

50 40.2 19.1 3716.4 1008.7

100 19.5 13.9 1867.3 872.9

200 3.1 4.6 356.5 389.8

500 0.2 0.1 0.6 0.6

1000 0.2 0.1 0.6 0.6

preprocessing, where the instantaneous frequency is calculated using (4)–(9) and
V/UV decision is evaluated, (b) f0 extraction using (10)–(12), and (c) postprocessing,
where the obtained f0 contour is smoothed and segmented into voiced and unvoiced
parts. The pseudocode is detailed in Algorithms 1–3 whereas Table 2 lists the settings
of the parameters and thresholds used.

Step 1: Preprocessing

– Initialization

1. Extract fi from a digital speech signal using (4)–(9).
2. Set the range of minimum and maximum f0 values [ f0min, f0max ].
3. Set the sweeping step of f0 candidates ( f0cand ) within the range [ f0min, f0max ].
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– V/UV decision

4. At each time n, the differential instantaneous frequency defined as

Δ fi (n) = ( fi (n + 1) − fi (n − 1))/2,

is calculated. If Δ fi (n) ≥ Th1 then the point n is considered as unvoiced
(cf. Table 2), otherwise voiced.

5. If the ratio of points marked as voiced within a frame is higher than the thresh-
old Th2 (cf. Table 2), then the whole frame is marked as voiced, otherwise
unvoiced.

Step 2: f0 extraction
6. Fix a set of M ≥ 1 values of f0 candidates, equally spaced by f0,step and

ranging between f0min and f0max (cf. Table 2), fm = ( f0max − f0min)(m −
1)/(M − 1)) + f0min, m = 1, .., M .

7. Set the maximum order of instantaneous pitch multiples Hmax to be calculated
at each instant n.

8. For each instant n, calculate the vector of the orders of instantaneous pitch
multiples 1 ≤ (Hm)m=1,..,M ≤ Hmax corresponding to each f0 candidate
value ( f0cand (n,m)) such that

Hmax,m(n) = min

(
Hmax, � | fi (n)|

f0cand (n,m)
�
)

.

9. For each f0 candidate value f0cand(n,m) and each corresponding maximum
harmonic order Hmax,m(n), calculate the instantaneous residual frequency cor-
responding to each f0 candidate value ( fir (n,m))m=1,..,M , using (11).

10. Calculate the value of f0cand (n, m̂) at instant n such that

m̂ = arg min
m=1...M

(| fir (n,m) − f0cand (n,m)|).

11. If | fir (n, m̂) − f0cand (n, m̂)| ≤ Th3 (cf. Table 2) then f0cand (n, m̂) is kept as
a potential f0 value at point n.

12. For each set of potential f0 values kept at time n, i.e., { f0cand(n, m̂)}m̂=1,...,M̂ , if
a subset of values are multiples of other ones, then keep only the lowest value
within this subset, e.g., if {80 Hz, 160 Hz, 240 Hz} and {90 Hz, 180 Hz, 270
Hz} satisfy the conditions of passes (8–10) inStep 2, then the kept f0 candidates
are {80 Hz, 90 Hz}. Note that to bypass strict numerical inaccuracies, a kept
f0 candidate value ( f0,cand(n, m̂2) is considered as an integer multiple of a

smaller f0,cand(n, m̂1) if mod
(

f0,cand(n,m̂2)

f0,cand(n,m̂1)

)
< Th4 (cf. Table 2).

13. At the end of this process, if there are still (M̂ > 1) f0 candidate values
at point n that still satisfy the conditions above, then choose the f0 candidate
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value which highest multiple is the closest to | fi (n)|, i.e.,

f0(n) = arg min
m̂=1...M̂

(
mod

( | fi (n)|
f0cand (n, m̂)

))
.

Step 3: Postprocessing
14. Smoothing: Apply a smoothing filter, i.e., median or linear, to the extracted f0

values to smooth the obtained f0 contour.
15. V/UV segmentation: Apply element-wise multiplication of the smoothed f0

contour and the voiced/unvoiced vector obtained at Step 1, to set f0 to zero in
the unvoiced frames.

Result: VUV f rame:V/UV decision by frame
for n = 1 : length(s) − 1 do

Calculate the Hilbert transform: sH (n) = HT(s(n);
Calculate the analytic signal: z(n) = s(n) + jsH (n);

Calculate the instantaneous frequency: fi (n) = f s
4π (arg(z(n + 1)) − arg(z(n − 1)));

Calculate the differential fi : Δ fi (n) = (| fi (n + 1) − fi (n − 1)|)/2;
if Δ fi (n) ≥ Th1 then

VUV (n) = 0 (The point n is unvoiced);
else

VUV (n) = 1 (The point n is voiced);
end

end
for k = 1 : Number f rames do

if (
∑L f rame

i=1 VUV (i))/L f rame ≥ Th2 then
VUV f rame(k) = 1 (Frame k is voiced);

else
VUV f rame(k) = 0 (Frame k is unvoiced);

end
end

Algorithm 1: Preprocessing

4 Objective Evaluation

Before undertaking objective evaluation, an experimental protocol has been set in
order to meet the requirements of such an evaluation, following recent PDA reviews
[20, 37].

4.1 Evaluation Protocol

1. Select a random subset from the standard pitch tracking database, PTDB-TUG
[29], containing 400 signals equally divided between the 10 male and the 10
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Result: f0,est : Estimated f0 contour
for k = 1 : Number f rames do

for l = 1 : L f rame do
n ← (k − 1) ∗ LShi f t + l;
Initialize f0,cand,min vector as empty ;
for m = 1 : M do

Hmax,m (n) = min(Hmax, � | fi (n)|
f0,cand (n,m)

�);
fir (n,m) = | fi (n)| − Hmax,m (n) × f0,cand (n,m);
m̂ = arg min

m=1...M
(| fir (n,m) − f0,cand (n,m)|);

end
if | fir (n, m̂) − f0cand (n, m̂)| ≤ Th3;
then

Append f0cand,min vector with f0cand (n, m̂);

end
if f0,cand,min vector is empty then

f0,est(n) = 0;
else

for h = 1 : Length( f0cand,min vector) do
for l = h + 1 : Length( f0cand,min vector) do

if mod(
f0cand,min (l)

f0cand,min (h)
) ≤ Th4 then

Remove f0cand,min (l);

end
end

end

f0,est(n) = arg min
m̂=1...M̂

(mod(
| fi (n)|

f0cand (n,m̂)
));

end
end

end
Algorithm 2: f0 extraction

Result: Smoothed f0 contour with V/UV decision
Apply linear or median smoothing to f0 contour;
f0,smooth ← smoothing( f0);
for k = 1 : N f rames do

for l = 1 : L f rame do
n ← (k − 1) ∗ LShi f t + l;
f0(n) = f0,smooth(n) ∗ VUV f rame(k);

end
end

Algorithm 3: Postprocessing

female speakers of the database. In fact, this database provides also ground-truth
f0, extracted from the high-pass-filtered laryngograph (LAR) signals.

2. Mix the evaluation wave files, containing initially clean speech, with babble noise
and Gaussian white noise, at different SNR levels, ranging from 20 dB to 0 dB, to
obtain simulated noisy speech signals.

3. Extract the f0 contour from the input signals using state-of-the-art PDA’s, namely
PRAAT [7], RAPT [41], SWIPE [8], YIN [10], SHR [38], YANG [22], and finally
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Table 2 Specific parameters and thresholds of the proposed algorithm

Parameter Description Value

Lframe Frame length (in number of
samples)

Corresponding to the range of
10–40 ms

Lshift Frame shift length (hop size) from 25 to 50 % of frame
length

[ f0,min, f0,max] Range of search of f0 [80 Hz, 270 Hz] for male,
[120 Hz, 400 Hz] for
female voices

f0,step Step of choosing f0
candidates by sweeping the
search range
[ f0,min, f0,max]

from 0.1 to 2 Hz (for
reasonable computational
load)

Hmax Maximum order of
instantaneous pitch
multiples

From 50 to 1000
(upper-bounded by the
result of (10))

Th1 Threshold for instantaneous
VUV decision: If
Δ fi (n) ≥ Th1 then the
point n is considered as
unvoiced, otherwise the
point n is voiced

For clean speech, from 1 KHz
for male to 1.5 KHz for
female voices, whereas for
noisy speech, use a dynamic
threshold (e.g., mean of
Δ fi within the frame)

Th2 Threshold for the VUV
decision for each frame: If
(
∑Lframe

i=1 VUV (i))/Lframe ≥
Th2 then Frame k is
voiced; otherwise Frame k
is unvoiced

0.8 ≤ Th2 ≤ 0.95

Th3 Tolerance to keep an f0
candidate as a potential f0
value: If | fir (n, m̂) −
f0cand (n, m̂)| ≤ Th3 then
f0cand (n, m̂) is kept as a
potential f0 value at point n

0 Hz ≤ Th3 ≤ 1 Hz

Th4 Tolerance to remove a
multiple of an f0 candidate
at each point: If
mod ( f0,cand(n, m̂2)/ f0,cand(n, m̂1)) ≤ Th4
then f0,cand(n, m̂2) is
considered as an integer
multiple of f0,cand(n, m̂1)

0 ≤ Th4 ≤ 10

the proposed algorithm (Prop.) [25]. More details about the aforementioned PDA’s
are in Table 3.We note that these PDA’s have been selected for benchmarking based
on their high performance for clean and noisy speech in a recent review [20].

4. For each pair of ground-truth and extracted f0 contours calculate the standard
metrics used in pitch detection evaluation, i.e., V/UV decision error (VDE (%)),
gross pitch error (GPE (%)), f0 frame error (FFE (%)) and fine pitch error (FPE
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Table 3 Description of the PDA’s used for benchmarking

PDA Description Version and implementation

PRAAT [7] A toolbox of speech analysis,
including pitch and
formants detection. Pitch is
detected using the
autocorrelation-based
method (AC) [32]

PRAAT version provided in
[7]

RAPT [41] A robust PDA that estimates
the overall periodicity of
the analysis frame using the
normalized
cross-correlation function
(NCCF). RAPT has also
been proved to provide a
good estimate of
instantaneous pitch [4]

RAPT version provided in
SPTK toolkit [15]

SWIPE [8] A sawtooth-inspired PDA. It
estimates f0 as that of a
sawtooth waveform whose
spectrum approximates best
that of the input signal

SWIPE version provided in
SPTK toolkit [15]

YIN [10] A popular PDA using a
combination of
modification of the AC
function in order to prevent
errors, as described by [12]

MATLAB implementation
provided by the respective
authors [11]

SHR [38] A spectral method, based on
calculating the
subharmonic-to-harmonic
ratio and its comparison to
a threshold to select the
candidate f0

MATLAB implementation
provided by the respective
authors [39]

YANG [22] A PDA based on
channel-wise instantaneous
frequency. The
instantaneous frequency is
not obtained by Hilbert
transform, but as time
derivative of the STFT
phase spectrum (cf. (1).
Note that YANG is used by
Google’s open source
vocoder [3]

MATLAB implementation
provided by the respective
authors [3]

Prop. [27] The proposed algorithm
(cf. Algorithms 1–3)

MATLAB code of the
proposed algorithm is
available at [25]
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(cents)) [9, 12]. These standard measures are usually used to assess pitch detection
quality. They are calculated as follows [9]:

– V/UV decision error (VDE(%)): The rate of misclassified V/UV decisions, i.e.,
V → U(%) and U → V(%), respectively, the rate of voiced frames detected
as unvoiced (false negatives) and of unvoiced frames detected as voiced (false
positives).

VDE(%) = V → U(%) + U → V(%), (13)

where

V → U(%) = NV→U

N
× 100, (14)

and

U → V(%) = NU→V

N
× 100. (15)

NV→U, NU→V and N are the number of false negatives, false positives and total
frames, respectively.

– Gross pitch error (GPE(%)): The rate of voiced frames that are detected as voiced,
where in addition the relative error between ground-truth f0 and f0,est is higher
than 20%, among the total true positives NV→V:

GPE(%) = NGPE

NV→V
× 100. (16)

– f0 frame error (FFE(%)): The rate of frames concerned by either a VDE error,
i.e., (NV→U + NU→V) or by a GPE error, i.e., NGPE, among all frames:

FFE(%) = VDE(%) + NV→V

N
× GPE(%). (17)

– Fine pitch error (FPE(cents)): The standard deviation of the relative error (in cents)
of pitch values in the voiced frames where there is no gross pitch error:

FPE(cents) =
√∑NFPE

i=1 (εi − ε)2

NFPE
× 100 (18)

NFPE is the number of true positives for which there is no gross pitch error, ε is
the absolute error between ground-truth f0 and f0,est for such a frame and ε is the
mean of this error over all concerned frames.

4.2 Evaluation Results

For coherence of error measures, the same values of frame and shift duration used for
extraction of ground-truth f0 were set for all the evaluated algorithms, i.e., 32 ms and
10 ms, respectively. Also, the same f0 boundaries were set, i.e., [80 Hz, 270 Hz] for
male speakers and [120 Hz, 400 Hz] for female ones. Evaluation has been made by
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measuring VDE, GPE, FFE and FPE rates for clean and noisy speech calculated using
(13)–(18) in a systematic way, as follows:

1. Performance for clean vs. noisy speech for all benchmarking PDA’s is reported in
Tables 4 and 5, respectively.

2. The results are analyzed in different qualitative aspects for all benchmarking PDA’s,
i.e., by type of noise (cf. Fig. 3) and by gender of speaker, (cf. Fig. 4).

3. The performance of the proposed algorithm is evaluated in respect to its intrinsic
parameters, i.e., by the preset maximum order of instantaneous pitch multiples
(Hmax) (cf. Fig. 6) and by the sweeping step of f0 candidates ( f0,step) (cf. Fig. 7).

4.2.1 Performance for Clean Versus Noisy Speech

Performance for clean speech: The analysis of Table 4 shows that the proposed algo-
rithm is as good as the state-of-the-art algorithms YIN [10] and SWIPE [8] in V/UV
decision detection, i.e., VDE(%), especially thanks to its low rate of false negatives,
i.e., (V → U(%)). However, its rate of false positives, i.e., U → V(%), is slightly
higher. Also, it should be noted that the low performance of SHR algorithm[38] is
due to the unified frame length and shift imposed to all algorithms during evaluation.
Actually, SHR should give better results for shorter frames.

A finer analysis shows the performance of (Prop.) slows downwhen looking to FFE
rate. This should be due to its higher GPE rate, as FFE is a weighted mean of VDE
and GPE, cf. (17). Nevertheless, the proposed PDA (Prop.) provides the best FPE in
clean speech. This confirms the effect of good voicing detection, since FPE concerns
only the true positives where there is no gross pitch error cf. (18). This means also
that for a region detected as voiced, if the gross pitch error is less than 20%, then f0
contour estimated by (Prop.) is closer to the ground truth than all other PDA’s.

Performance for noisy speech: Table 5 shows the performance of the proposed
PDA (Prop.) in different noise conditions, namely babble and white noise, with SNR
ranging from 20 dB to 0 dB. Results show that for both types of noise, (Prop.) is
doing well only for low noise levels (SNR ≥ 15 dB) whereas for higher noise levels,
all rates are less satisfactory. In particular, VDE rate is as good as for clean speech,
which proves that the proposed methods succeeds to (a) detect the presence of speech
activity, particularly in white noise, and (b) make a distinction between the right voice
and other voices in babble noise. Figure 3 shows the measured rates for all PDA’s in
both babble and white noise. The following remarks can be noticed:

– For SNR ≥ 15 dB, most PDA’s are performing as well as in clean speech, i.e.,
PRAAT and RAPT, and in a lesser degree SWIPE, YIN and (Prop.); whereas for
higher noise levels, all PDA’s performance gets worse.

– For higher noise levels, (Prop.) succeeds to keep an intermediate position, espe-
cially for babble noise, whereas the top PDA’s like PRAAT and RAPT lose their
efficiency.

– For all tested PDA’s, FPE rate gets too low at SNR ≤ 5 dB (cf. Fig. 3g, h).

Comparison with fi -based PDA’s:YANG is a PDA that has recently been proposed
by [22] and utilized in Google’s vocoder for speech synthesis. The particularity of this
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PDA lies in the fact that is based on another type of instantaneous frequency, i.e.,
the channel-wise STFT instantaneous frequency (cf. (1)), which makes it interesting
to compare it to the proposed approach. For clean speech, Table 4 shows that YANG
outperforms the proposedPDA in allmetrics except FPE.However, themain difference
lies in GPE, which influences also FFE, whereas the difference between both PDA’s
in VDE is less sensitive.

For noisy speech, Fig. (3a–h) shows that even ifYANGdoes better than the proposed
PDA for low noise levels, i.e., SNR ≥ 15 dB, its performance decreases for higher
levels of both types of noise, i.e., babble andwhite, whereas the proposed PDA remains
more stable. This confirms the robustness of the proposed PDA to high noise levels.

4.2.2 Qualitative Performance Evaluation

Evaluation by type of noise: First, for babble noise (cf. Table 5 and Fig. 3a, c, e, g), the
proposed algorithm is among the top PDA’s at low noise levels, i.e., SNR ≥ 15 dB.
This means that it is capable to distinguish the pitch of the right speaker among other
voices. Also for high noise levels, i.e., SNR ≤ 10 dB , the proposed PDA is ranked
among the top ones, even though all benchmarking PDA’s are not so efficient.

Secondly, for white noise (cf. Table 5 and Fig. 3b, d, f, h), the proposed algorithm
is interestingly efficient for low noise levels, with error rates close to clean speech,
cf. Table 5. However, this trend is less maintained when dealing with high noise
levels, i.e., SNR ≤ 10 dB, where the proposed algorithm is less efficient than some
benchmarking PDA’s such as RAPT, SWIPE and YIN.

Finally, it is important to note that the low FPE value for SNR ≤ 15 dB for all
benchmarking PDA’s (cf. Fig. 3g, h) is rather caused by the poor V/UV estimation,
i.e., a high VDE (cf. Fig. 3a, b) than to a good pitch estimation. Actually, if most of
frames are detected as unvoiced, the overall FPE would be calculated only on a few
voiced frames, where there is no gross pitch error.

Evaluation by gender of speaker: Figure 4 shows that there is no substantial differ-
ence in the performance of all PDA’s between male and female speakers. In particular,
the proposed algorithm is registering similar levels for each type of error measure for
both genders. This means that the parameters are set correctly. In fact, the search range
[ f0,min, f0,max ] and the voicing threshold (Th1), both for clean and for noisy speech,
depend on the speaker’s gender (cf. Table 2).

4.2.3 Evaluation of the Proposed PDA in Respect to Its Intrinsic Parameters

Evaluation by the preset maximum order of instantaneous pitch multiples: Figure 6
illustrates the results of the proposed algorithm for different values of the maxi-
mum order of instantaneous pitch multiples (Hmax), for both babble and white-noised
speech, and at different SNR levels (from clean speech to a high noise level, i.e.,
SNR = 0 dB). It is also worth noting that voicing decision error VDE does not depend
on Hmax, since V/UV it is calculated using fi and its first derivativeΔ f i (cf. Algorithm
1), and therefore only GPE and FPE are mentioned in Fig. 6a–d.

The main observation is that both evaluation metrics, i.e., GPE and FPE, depend
more on the level of noise than on the maximum order of instantaneous pitch multiples
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Fig. 3 Performance of benchmarking PDA’s by type of noise for all speakers
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Fig. 4 Performance of benchmarking PDA’s by gender of speaker for all types of noise
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Fig. 5 Distribution of the effective number of pitch multiples Hmax,m (n) at each time (n) and for each
f0,cand candidate value (m)

Hmax, that is preset as a parameter using values as mentioned in Table 2. Figure 6a–d
shows that from Hmax = 50, the performance of the proposed PDA does not alter
remarkably, for any type or level of noise. This can be accounted as an advantage,
since setting a low Hmax as an upper bound for instantaneous pitch multiples reduces
the number of potential f0 candidates (cf. Algorithm 2), hence reducing significantly
the computational load.

Also, we checked out the effective number of pitch multiples used Hmax,m(n)

at each time n and for every f0,cand index m = 1, . . . , M by setting Hmax to the
maximum value, i.e., 1000 (cf. Algorithm 2). The histograms shown in Fig. 5, indicate
the distribution of the effective Hmax,m(n) calculated for speech signals uttered by
male and female speakers. It is interesting to note that for both genders, the majority
of effective Hmax,m(n) are less than 50, and that for a few cases only, it reaches high
values, i.e., more than 100. In particular, for male voice, most values of Hmax,m(n) are
around 15, whereas for female voices, the most common value is 10. Following the
equation setting Hmax,m(n) = min(Hmax,

fi (n)
f0,cand (n,m)

) (cf. Algorithm 2), the obtained
histograms confirm that: a) the choice of Hmax is not critical if it is high enough, and
b) most of values of instantaneous frequency fi (n) fall in the range of 15× f0,cand for
male voices and 10× f0,cand for female ones, i.e., in a bandwidth bounded by nearly
4 KHz, if we set f0,max to 270 Hz for male and 400 Hz for female speakers, which is,
interestingly, the same bandwidth containing f0 and the three main formants.

Evaluation by sweeping step of f0 candidates: Another parameter that may influ-
ence the quality of the extracted f0 contour is the sweeping step ( f0,step). As explained
in Table 2, this parameter defines the precision of f0 candidate selection within the
interval of search [ f0,min, f0,max ]. For each f0 candidate value, the algorithm decides
whether it corresponds to the best fitting f0 value at each instant n. Therefore, it is
mentioned in Table 2 that such a step should be within the interval [0.1 Hz, 2 Hz], so
that the tradeoff between the computational load and the precision of the extracted f0
contour is preserved. Actually, precision standards of f0 detection would not require
less than 0.1 Hz, as pitch variation is not perceptible below 1 Hz. However, a precision
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Fig. 6 Performance of the proposed PDA by maximum order of instantaneous pitch multiples (Hmax) for
all speakers and each type of noise

higher than 2 Hz would be perceptible. Figure 7 confirms this trend, since for f0,step
within the interval [0.1 Hz,2 Hz], most of GPE and FPE measures are stable. For the
same reason as for the maximum order of pitch multiples, only GPE and FPE are
mentioned in Fig. 7a–d.

The analysis of these figures shows that a small sweeping step, i.e., f0,step ≤ 1 Hz,
the pitch errors, whether gross, GPE or fine, FPE are smaller for any level of noise.
For a bigger step, i.e., f0,step > 1 Hz, both pitch errors are decreasing. Nevertheless,
this is not due to a better estimation of f0, but rather to a high rate of GPE, since
FPE is calculated only for frames where there is no gross pitch error. An exception is
registered for GPE of babble noise (cf. Fig. 7a) which decreases when f0,step increases
for 20 dB ≥ SNR ≥ 5 dB. This is due to the high VDE for noisy speech, which makes
many voiced frames classified as unvoiced. Finally, the very low value of FPE for
high noise (cf. Fig. 7c, d) cannot be accounted as a positive result since it, as already
explained, comes from the high VDE at that noise level (cf. Table 5).

4.3 Discussion

The main advantages and shortcomings of the proposed PDA can be opposed face-to-
face as follows, with some proposed solutions.
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Fig. 7 Performance of the proposed PDA by f0 candidate selection step ( f0,step) for all speakers and each
type of noise

V/UV decision: It is satisfactory for both clean and noisy speech, at least for low
noise levels (SNR ≥ 15 dB). This confirms the role of instantaneous frequency to
detect periodicity in speech signal. On the other hand, it is not clearly outperforming
the top state-of-the-art methods. In particular, it is less efficient in high noise levels
(SNR ≤ 10 dB), even though this is a common notice for all benchmarking PDA’s.

The parametric structure of the proposed algorithm: It allows improving its per-
formance through combining the values of different parameters and thresholds using
a grid search. In particular, a small step of f0 candidates ( f0,step) and a high order of
instantaneous pitch multiples (Hmax) should improve the overall performance. Nev-
ertheless, this may lead to increasing the computational load, which makes it difficult
to run online for some real-time application such as on-the-fly pitch tracking. To cope
with such a shortcoming, some solutions can be suggested to reduce the computational
load, e.g., by setting the optimal parameters corresponding to type and level of noise,
gender of speaker, etc. into a look-up table, or by implementing an adaptive parameter
adjustment solution.

The instantaneous frequency: It is computed for each sample along thewhole signal,
hence there is no need for short-time analysis of the signal, which avoids assuming
local stationarity. However, such a sample-wise procedure is computationally heavy,
especially for a high sampling rate. An intermediate solution, to keep the tradeoff
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between temporal and frequency resolution could be subsampling the signal before
computing the instantaneous and the fundamental frequencies.

Shortcomings and proposals:Themethod, as proposed,may be considered as rather
heuristic than rigorously theoretic. In fact, while studying this problem, we reviewed
the past works/elements that help finding a mathematical proof; however, all what we
found were some results in limited cases, as mentioned in Sect. 2.3. Therefore, we
believe that, in spite of this limitation, this method may be useful for the following
reasons: a) It shows that natural signals, such as speech may have some properties that
are still to investigate, to provide more accurate models to represent either the signal
itself or its parameters, such as f0; b) The results obtained by this method, at least
during the validation of the proposed relationship (cf. Subsection 3.3.) may hopefully
spark the curiosity of the signal processing community in general, and speech/audio
processing in particular, to study this problem and to precise if it holds for any type
of signals and at which conditions, or if it is just a propriety of a particular class
of signals; c) Finally, and in case no explicit mathematical proof could be sorted
out for the proposed relationship between f0 and fi , machine learning could be an
alternative to set a model to create a mapping between both, taking into consideration
the particularities of every type of signals.

5 Conclusion

In this paper, a novel pitch detection algorithm was presented. The key idea relies on
proposing an empirical relationship between fundamental frequency f0 and instanta-
neous frequency fi . This relationship stipulates that f0 contour could be approximated
as the smoothed envelope of the residual fi , which is calculated as the rest of the
division of the absolute value of fi by the highest pitch multiples at each instant.
The superposition of the so-estimated f0 and the ground-truth values was verified.
Then, an algorithm was implemented based on this relationship, in order to detect
voiced/unvoiced regions and then to extract f0 contour from fi values in the voiced
parts. In comparison to somewell-rated state-of-the-art PDA’s, the proposed algorithm
has been highly successful in taking accurate V/UV decision, and quite satisfactory in
approximating f0 values in voiced parts, either in clean or in simulated noisy speech
at low SNR levels.

The proposed algorithm has two major advantages: (a) It does not rely on short-
time signal analysis and thus is able to perform instantaneous pitch detection, (b) its
parametric structure, which allows its adaption for several considerations, such as type
and level of noise, gender of speakers, etc., through fine-tuning its specific parameters,
such as Hmax and f0,step, in addition to its thresholds. Further improvement can be
achieved through investigating more in depth the proposed empirical relationship
between f0 and fi , in order to make it more explainable and interpretative. Finally, the
proposed method can be useful for audio and speech signal analysis, reconstruction
and synthesis, using an fi -based vocoder, like in [22]. Besides, it can be extended to
other audio and speech applications such as compressive sensing, where only a few
amount of data is required to reconstruct the signal.
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