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Abstract
Sparse principal component analysis (SPCA) has achieved great success in improving
interpretable ability of the derived results and has become a powerful technique for
modern data analysis. It presents that principal component can be modified to produce
sparse loadings by imposing sparsity-induced penalty, which is often l1-regularized
constraint. In order to analyze the l1-regularized sparsity-induced model, in this paper,
we propose a general null space property of a matrix A relative to a index set S
and give a necessary and sufficient condition for the exact or approximate sparse
principal components.Meanwhile, the conclusionswith respect to the stable and robust
situations are given in the case of exact or approximate sparse principal components,
respectively.

Keywords Principal component analysis (PCA) · Sparse principal component
analysis (SPCA) · General null space property (GNSP)

B Jigen Peng
jgpengxjtu@126.com

Xuanli Han
hanxuanli@xust.edu.cn

Angang Cui
cuiangang@163.com

Fujun Zhao
fjzhao1991@163.com

Kexue Li
kxli@mail.xjtu.edu.cn

1 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

2 College of Sciences, Xi’an University of Science and Technology, Xi’an 710054, China

3 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006,
China

4 School of Mathematics and Statistics, Yulin University, Yulin 719000, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-022-01991-y&domain=pdf
http://orcid.org/0000-0002-7207-3183


Circuits, Systems, and Signal Processing (2022) 41:4570–4580 4571

1 Introduction

Principal component analysis (PCA) [1] has been widely used in data analysis and
dimension reduction, especially in the contemporary era of big data. Standard PCA
extracts principal components (PCs), which are orthogonal to each other, of sample
data matrix by computing leading eigenvectors of sample covariance matrix. PCs cap-
ture most sample information in the first few principal components and guarantee least
information loss in the sample variance sense. However, principal components (PCs)
are linear combination of all original sample variables, which are often numerous in
most modern applications, and this makes PCs difficult to interpret which variables
influence the sample information further. In order to solve this problem, in the past
dozen years, several alternative sparse approaches have been proposed, that is, modi-
fied PCs, which are the linear combination of a small subset of sample variables. The
modified PCs can still explain most information of all original sample variables. That
is the sparse principal component analysis (SPCA). SPCA is one of the most widely
used techniques formachine learning,modern data analysis, finance, statistics, process
fault detection [2] and many other fields [3, 4].

One main method to get SPCA, which was first proposed by Jolliffe et al. [5], is
l1-regularized PCA. The technique is successful in improving the sparsity of loadings
of principal component analysis (PCA) by imposing l1-regularization penalty on the
loadings of PCA. This earlier stage research on SPCA leads to rapidly growing inves-
tigations into sparsity promoting methods due to the success of SPCA’s more obtained
interpretable ability. D’Aspremont et al. [6] translated the SPCA problem into a semi-
definite programming-based relaxation formulation, and Shen et al. [7] proposed a
method to obtain SPCA via regularized singular value decomposition. Subsequently,
Journée et al. [8] developed two single-unit and two block optimization formulations
of the SPCA problem, and also D’Aspremont et al. [3] formulated the SPCA problem
as a new semi-definite relaxation and derived a greedy algorithm to compute a full set
of good solutions for all target numbers of nonzero coefficients. Other related works
including the problem of finding the dominant eigenvector of the sample covariance
matrix under additional constraints on the vector proposed by Sigg et al. [9] and the
generation of modified PCA with sparse loadings by using of the lasso and a new
regularization and variable selection method, that is, the elastic net proposed by Zou
et al. [10, 11].

One of the fundamental method to obtain the SPCA is to reformulate the PCA as
a regression-type optimization problem and then to impose the l1 constraint on the
regression coefficients [11]. It turns out that this problem can be transformed into a
lasso-type optimization problem which has the form

min
z∈RN

‖y − Az‖22 + λ‖z‖1, (1.1)

where A ∈ R
m×N is a matrix and λ is a nonnegative parameter [10]. According to

[12], the solution of problem (1.1) has close relation to the solution of problem (1.2)
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min
z∈RN

‖z‖1 subject to ‖Az − y‖2 ≤ η. (1.2)

But, in practice, it is inconceivable to measure a target vector z ∈ R
N exactly, a

practicable method is to search z consistent with the measured vector y. Meanwhile,
as measurements are often perturbed by noise, this means that the measurement data
vector y ∈ R

m is only an approximation of the vectorAz ∈ R
m , that is, ‖Az−y‖ ≤ η

for some η ≥ 0 and norm ‖ · ‖ on Rm , usually the norm ‖ · ‖2.
Especially, when η = 0, the problem (1.2) has the form

min
z∈RN

‖z‖1 subject to Az = y. (1.3)

In fact, problem (1.3) is the case considering linear measurements of a sparse data
vector z ∈ R

N from its measurement vector y = Az ∈ R
m , where A ∈ R

m×N is a
known matrix. Problem (1.3), known as basis pursuit (BP) [13], is usually regarded
as the convex relaxation of the original problem

min
z∈RN

‖z‖0 subject to Az = y, (1.4)

which is to reconstruct the sparse data vector z by solving the l0-minimization problem,
where ‖z‖0 denotes the number of nonzero entries of the vector z. Problem (1.3) is a
tractable strategy convex relaxation of problem (1.4), which is a non-convex problem
and is generally NP-hard indeed. This convex relaxation is meaningful because under
certain conditions with respect to the matrixA, the model (1.3) can exactly or approx-
imately reconstruct the original sparse data vector z of problem (1.4). One of these
conditions is the theorem with respect to the concept of null space property, which
involves the known data matrix A that ensures exact or approximate reconstruction of
the data vector z. The theorem declares that given a matrix A ∈ R

m×N , every vector
x ∈ R

N supported on a index set S ⊂ [N ] is the unique solution of (1.3) with y = Ax
if and only if matrix A satisfies the null space property relative to S [12].

Due to the key role of l1-regularization of (1.1) as a sparse reconstruction technique
in compressive sensing literatures, this paper extends the results with respect to the
(stable, robust) null space property, which can be used to recover (exactly or approx-
imately) data vector, to reconstruction (exact or approximate) of sparse information
matrix, and gives the corresponding results regarding the (stable, robust) general null
space property.

This work develops theoretical condition for reconstruction (exact or approximate)
of sparse principal components based on the definition of (stable, robust) general
null space property and gives a theoretical analysis approach for sparse principal
component analysis (SPCA).

The rest of this paper is organized as follows. The definitions of (stable, robust)
general null space property are given, and the results respect to these concepts are
proved, respectively, in Sects. 2, 3 and 4. In Sect. 5, the conclusion of this paper is
presented.
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Notation In the paper, card(S) denotes the cardinality of a set S, and symbol ‖X‖[0],
where X is a matrix, denotes the number of nonzero entries of the matrix X. The
sum of absolute value of entries of matrix X is denoted as ‖X‖[1], and σs(X)[1] =
inf‖Z‖[0]≤s ‖X−Z‖[1] denotes the error of best s-term approximation to the matrix X.
For a m × n matrixM, the set � = {(1, 1), (1, 2), . . . , (1, n), . . . , (m, n)} denotes all
the subscripts of the elements of matrix M, and for index set S ⊂ �, MS denotes a
m×n matrix that coincides withM on the indices in S and is extended to zero outside
S. Moreover, the set S denotes the complement of a set S with respect to set �, that
is, S = � \ S. ‖ · ‖F presents the Frobenius norm of a matrix ·, and O denotes a null
matrix.

2 General Null Space Property

In this paper, we focus on the problem

min
Z∈RN×l

‖Z‖[1] subject to AZ = Y, (P1)

where A is matrix in Rm×N .
First, we give three definitions, which are needed in the following presentation,

with respect to the general null space property.

Definition 1 Given a matrix A ∈ R
m×N , the sum of all absolute values of the entries

of matrix A is denoted as ‖A‖[1]. At the same time, ‖A‖[0] denotes the number of
nonzero entries in the matrix A.

Definition 2 Given a matrix A ∈ R
m×N , the set {V ∈ R

N×l |AV = O,A ∈ R
m×N } is

called the general null space of matrix A of order N × l, denoted as Gker(A).

As stated by Definition 2, we have Gker(A) = {V ∈ R
N×l |AV = O,A ∈ R

m×N }.
Definition 3 A matrix A ∈ R

m×N is said to satisfy the general null space property
relative to a index set S ⊂ �, if

‖VS‖[1] < ‖VS‖[1] f or all V ∈ Gker(A)\ {O} . (2.1)

A matrix A ∈ R
m×N is said to satisfy the general null space property of order s

if it satisfies the general null space property relative to any index set S ⊂ � with
card(S)≤ s.

Remark 1 In the definition 3, � = {(1, 1), (1, 2), . . . , (1, l), . . . , (N , l)} and O is a
null matrix in RN×l .

Remark 2 According to Definition 3, it can be observed that, for a given V ∈
Gker(A)\ {O}, the condition ‖VS‖[1] < ‖VS‖[1] holds for any set S ⊂ � with
card(S) ≤ s as soon as it holds for an index set of s largest entries of V in absolute
values.
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Remark 3 There are other reformulations of the Definition 3. One of them is obtained
by adding ‖VS‖[1] to both sides of the inequality ‖VS‖[1] < ‖VS‖[1]. Thus, the general
null space property relative to index set S ⊂ � is

2‖VS‖[1] < ‖V‖[1] f or all V ∈ Gker(A)\ {O} .

The second one is obtained by choosing index set S ⊂ � as an set of s largest in
absolute value entries of VS and by adding ‖VS‖[1] to both sides of the inequality
‖VS‖[1] < ‖VS‖[1]. Then, the general null space property of order s is

‖V‖[1] < 2σs(V)[1] f or all V ∈ Gker(A)\ {O} ,

where

σs(X)[1] = inf‖Z‖[0]≤s
‖X − Z‖[1].

Based on the definitions above, we have the following Theorem 1 which indicates
the link between the general null space property and the recovery of sparse matrix via
(P1).

Theorem 1 Given a matrix A ∈ R
m×N , every matrix X ∈ R

N×l supported on a index
set S is the unique solution of (P1) with Y = AX if and only if A satisfies the general
null space property relative to S.

Proof Given a fixed index set S, let us first assume that every matrix X ∈ R
N×l

supported on S is the unique minimizer of ‖Z‖[1] subject to AZ = AX. Thus, for
any V ∈ Gker(A)\ {O}, the matrix VS is the unique minimizer of ‖Z‖[1] subject to
AZ = AVS . At the same time, we have A(−VS) = AVS and −VS �= VS , because
A(VS + VS) = AV = O and V �= O. We conclude that ‖VS‖[1] < ‖VS‖[1]. This
established the general null space property relative to S.

On the other hand, suppose the general null space property relative to index set
S holds. Then, given a matrix X ∈ R

N×l supported on S and a matrix Z ∈ R
N×l ,

Z �= X, satisfying AZ = AX. We consider the matrix V := X − Z ∈ Gker(A)\ {O}.
According to the general null space property, we get

‖X‖[1] ≤ ‖X − ZS‖[1] + ‖ZS‖[1]
= ‖VS‖[1] + ‖ZS‖[1]
< ‖VS‖[1] + ‖ZS‖[1]
= ‖−ZS‖[1] + ‖ZS‖[1]
= ‖Z‖[1].

The required minimality of ‖X‖[1] is obtained. �

We immediately get the following Theorem 2 as a consequence of Theorem 1 by
varying the index set S.
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Theorem 2 Given a matrixA ∈ R
m×N , every s-sparse matrixX ∈ R

N×l is the unique
solution of (P1) withY = AX if and only ifA satisfies the general null space property
of order s.

3 Stable General Null Space Property

The matrices we intend to recover via P1 are sparse only in idealized situations. In
more realistic circumstances, we can only claim that they approximate to the sparse
matrices. In such cases, we would like to recover a matrix X ∈ R

N×l with an error
controlled by its distance to the sparse matrices. This property is often referred to as
the stability of the reconstruction scheme with respect to sparsity defect. First of all,
we give the following definition.

Definition 4 A matrix A ∈ R
m×N is said to satisfy the stable general null space

property with constant 0 < ρ < 1 relative to a index set S ⊂ �, if

‖VS‖[1] ≤ ρ‖VS‖[1] f or all V ∈ Gker(A).

It is said to satisfy the stable general null space property of order s with constant
0 < ρ < 1 if it satisfies the stable general null space property with constant 0 < ρ < 1
relative to any index set S ⊂ � with card(S) ≤ s, where � is the same as in the
Definition 3.

The stability resultwith respect to the stable general null space property is the following
theorem.

Theorem 3 Suppose that a matrix A ∈ R
m×N satisfies the stable general null space

property of order s with constant 0 < ρ < 1. Then, for any X ∈ R
N×l , a solution X�

of (P1) with Y = AX approximates the matrix X with ‖ · ‖[1] error

‖X − X�‖[1] ≤ 2
1 + ρ

1 − ρ
σs(X)[1]. (3.1)

Wewould like to prove a stronger theorem in the following. The result is a statement
valid for any index set S in which the matrix X� ∈ R

N×l is replaced by any matrix
Z ∈ R

N×l satisfying AZ = AX. Apart from improving Theorem 3 above, the result
declares that, under the stable general null space property relative to index set S, the
distance between amatrixX ∈ R

N×l supported on S and amatrixZ ∈ R
N×l satisfying

AZ = AX is controlled by the difference between their ‖ · ‖[1] norms.

Theorem 4 The matrix A ∈ R
m×N satisfies the stable general null space property

with constant 0 < ρ < 1 relative to index set S if and only if

‖Z − X‖[1] ≤ 1 + ρ

1 − ρ
(‖Z‖[1] − ‖X‖[1] + 2‖XS‖[1]) (3.2)

for all matrices X,Z ∈ R
N×l with AZ = AX.
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The error bound in (3.1) can be derived from Theorem 4 as follows: Take S to be a
index set of s largest absolute elements of matrix X, so that ‖XS‖[1] = σs(X)[1]. If X�

is a minimizer of (P1), then ‖X�‖[1] ≤ ‖X‖[1] and AX� = AX. The right hand side of
inequality (3.2) with Z = X� can therefore be estimated by the right hand of (3.1).

Before proving Theorem 4, we first identify the following Lemma, which will be
needed in the following proof later.

Lemma 1 Given a index set S ⊂ � and matrices X,Z ∈ R
N×l , it follows that

‖(X − Z)S‖[1] ≤ ‖Z‖[1] − ‖X‖[1] + ‖(X − Z)S‖[1] + 2‖XS‖[1].

Proof The result can be obtained from

‖X‖[1] = ‖XS‖[1] + ‖XS‖[1]
≤ ‖XS‖[1] + ‖(X − Z)S‖[1] + ‖ZS‖[1],

‖(X − Z)S‖[1] ≤ ‖XS‖[1] + ‖ZS‖[1].

Summing these two inequalities, we get

‖X‖[1] + ‖(X − Z)S‖[1] ≤ 2‖XS‖[1] + ‖(X − Z)S‖[1] + ‖Z‖[1].

The proof is completed. �
Having the above lemma 1, we can prove Theorem 4.
Proof of Theorem 4. First, we assume the matrix A satisfies (3.2) for all matrices

X,Z ∈ R
N×l with AZ = AX. Given a matrix V ∈ Gker(A), since AVS = A(−VS),

we can apply (3.2) with X = −VS and Z = VS . Then, we have

‖V‖[1] ≤ 1 + ρ

1 − ρ
(‖VS‖[1] − ‖VS‖[1]).

That is

(1 − ρ)(‖VS‖[1] + ‖VS‖[1]) ≤ (1 + ρ)(‖VS‖[1] − ‖VS‖[1]).

By rearranging the above inequality’s terms, we get

‖VS‖[1] ≤ ρ‖VS‖[1],

and the stable general null space property with constant 0 < ρ < 1 with respect to
index set S is obtained.

On the other hand, suppose the matrix A satisfies the stable general null space
property with constant 0 < ρ < 1 with respect to index set S. For X,Z ∈ R

N×l with
AZ = AX, letV := Z−X, thenV ∈ Gker(A), the stable general null space property
declares

‖VS‖[1] ≤ ρ‖VS‖[1]. (3.3)
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At the same time, Lemma 1 gives

‖VS‖[1] ≤ ‖Z‖[1] − ‖X‖[1] + ‖VS‖[1] + 2‖XS‖[1]. (3.4)

Substituting (3.3) into (3.4), we have

‖VS‖[1] ≤ ‖Z‖[1] − ‖X‖[1] + ρ‖VS‖[1] + 2‖XS‖[1].

Owing to ρ < 1, the above inequality can be transformed into

‖VS‖[1] ≤ 1

1 − ρ
(‖Z‖[1] − ‖X‖[1] + 2‖XS‖[1]).

By reusing (3.3), we get

‖V‖[1] = ‖VS‖[1] + ‖VS‖[1]
≤ (1 + ρ)‖VS‖[1]

≤ 1 + ρ

1 − ρ
(‖Z‖[1] − ‖X‖[1] + 2‖XS‖[1]),

which is the desired result. �

4 Robust General Null Space Property

In practice, it is impossible to measure a data matrixZ ∈ R
N×l precisely. This implies

that the measurable matrix Y ∈ R
m×l is only an approximation of the matrix AZ ∈

R
m×l , with

‖AZ − Y‖F ≤ η

for some η ≥ 0. In this case, the recovery strategy should be required to produce
a data matrix Z∗ ∈ R

N×l whose distance to the original data matrix Z ∈ R
N×l is

controlled by the measurement error η ≥ 0. This property is called the robustness
of the recovery strategy in respect of the measurement error. We will investigate the
following problem in this section

min
Z∈RN×l

‖Z‖[1] subject to ‖AZ − Y‖F ≤ η. (4.1)

Before investigating the problem (4.1), we first give a more demanding definition of
the general null space property, which guarantees the robustness of the reconstruction
scheme.
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Definition 5 The matrix A ∈ R
m×N is said to satisfy the robust general null space

property with constants 0 < ρ < 1 and τ > 0 relative to a index set S if

‖VS‖[1] ≤ ρ‖VS‖[1] + τ‖AV‖F f or all V ∈ R
N×l . (4.2)

It is said to satisfy the robust general null space property of order s with constants
0 < ρ < 1 and τ > 0 if it satisfies the robust general null space property with
constants ρ, τ relative to any index matrix S with card(S) ≤ s.

Notice that the definition above does not require that V is contained in Gker(A).
Especially, when V ∈ Gker(A), the term ‖AV‖F in (4.2) disappears, and that is the
case of stable general null space property in Definition 4.

Based on the Definition 5, we have the result that the following Theorem 5 affirms.

Theorem 5 The matrix A ∈ R
m×N satisfies the robust general null space property

with constant 0 < ρ < 1 and τ > 0 relative to index set S if and only if

‖Z − X‖[1] ≤ 1 + ρ

1 − ρ
(‖Z‖[1] − ‖X‖[1] + 2‖XS‖[1]) + 2τ

1 − ρ
‖A(Z − X)‖F (4.3)

for all matrices X,Z ∈ R
N×l .

Proof Firstly, let the matrix A satisfy (4.3) for all matrices X,Z ∈ R
N×l . Then, for

V ∈ R
N×l , taking X = −VS and Z = VS , we have

‖V‖[1] ≤ 1 + ρ

1 − ρ
(‖VS‖[1] − ‖VS‖[1]) + 2τ

1 − ρ
‖AV‖F .

After rearranging the terms, we have

(1 − ρ)(‖VS‖[1] + ‖VS‖[1]) ≤ (1 + ρ)(‖VS‖[1] − ‖VS‖[1]) + 2τ‖AV‖F ,

that is

‖VS‖[1] ≤ ρ‖VS‖[1] + τ‖AV‖F .

This is the robust general null space property with constants 0 < ρ < 1 and τ > 0
relative to index set S.

Reversely, suppose the matrix A satisfy the robust general null space property with
constants 0 < ρ < 1 and τ > 0 relative to index set S. For X,Z ∈ R

N×l , letting
V := Z − X, according to the robust general null space property and lemma 1, we
have

‖VS‖[1] ≤ ρ‖VS‖[1] + τ‖AV‖F ,

‖VS‖[1] ≤ ‖Z‖[1] − ‖X‖[1] + ‖VS‖[1] + 2‖XS‖[1].
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From these two inequalities, we can get

‖VS‖[1] ≤ 1

1 − ρ
(‖Z‖[1] − ‖X‖[1] + 2‖XS‖[1] + τ‖AV‖F ).

According to the robust general null space property once again, we can obtain

‖V‖[1] = ‖VS‖[1] + ‖VS‖[1]
≤ (1 + ρ)‖VS‖[1] + τ‖AV‖F
≤ 1 + ρ

1 − ρ
(‖Z‖[1] − ‖X‖[1] + 2‖XS‖[1]) + 2τ

1 − ρ
‖AV‖F ,

which is the desired result. �

5 Conclusions

In this paper, the null space property has been extended to the general null space
property, and the corresponding results with respect to the general null space property
have been proved including the stable and the robust cases. The extended concepts
can be used to analysis sparse principal components theoretically. In addition to these,
several possible avenues of further research work still remain to be done. Such as how
to combine these theoretical analysis with practice effectively.
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