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Abstract
In this work, we demonstrate the current advancements assimilated in the earlier
developed continuous Kannada automatic speech recognition (ASR) spoken query
system (SQS) under uncontrolled environment. The SQS comprises interactive voice
response system and ASRmodels which are developed using Kaldi. A variety of back-
ground noises were added to the continuous Kannada speech data while training the
ASR system, as it was gathered under a corrupted environment. In the earlier SQS, the
background and other types of noises have reduced the accuracy of speech recognition.
This can be overcome by developing a robust noise reduction algorithm for degraded
speech enhancement. In the enhanced SQS, a background noise reduction module is
introduced before the speech feature extraction step. The proposed noise cancellation
algorithm is represented by the degraded spectrum of speech in a complex plane which
is an amalgamation of clean speech spectrum and noise model vectors. The conducted
investigational results reveal that the proposed noise suppression algorithm outper-
forms the traditional spectral subtraction algorithms and magnitude squared spectrum
(MSS) estimators. The outputs of the proposed approach show that there is no audibil-
ity of musical noise and other types of noises in enhanced NOIZEUS speech corpora
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and continuous Kannada speech data. Therefore, the noise suppression algorithm is
applied to the degraded continuous Kannada speech data for its enhancement. Using
noise suppression algorithm and time delay neural network ASR modelling technique
in SQS, there is an improvement of 1.87% in terms of word error rate in comparison
with the earlier developed deep neural network - hiddenMarkovmodel (DNN-HMM)-
based SQS. The online testing of enhanced continuous Kannada SQS is done by the
500 speakers/users of the Karnataka state under a corrupted environment. The source
code of algorithms and ASR models used in this work is made publicly available
https://sites.google.com/view/thimmarajayadavag/downloads.

Keywords Automatic speech recognition (ASR) · Interactive voice response system
(IVRS) · Spoken query system (SQS) · Continuous Kannada speech data

1 Introduction

The speech data gathered under corrupted conditions need to be preprocessed to
achieve better advancements in any automatic speech recognition (ASR) systems or
spoken query systems (SQS) [25]As presented in [17], the continuousKannada speech
data were used for system training and decoding. The trained data with Kaldi con-
stituted a high level of background noises that minimized the accuracy of speech
recognition. To solve this problem, in this work, we have introduced a noise suppres-
sion algorithm at the front step of SQS. The proposed noise elimination algorithm is a
spatial procedure (SP) to spectral subtraction (SS) algorithms that have significantly
reduced various types of noises in the collected continuous Kannada degraded speech
data and has improved the performance of current SQS compared to earlier SQS.
The SS technique is one of the most important types of techniques used traditionally
for speech enhancement [3, 16, 29]. The SS algorithm involves the approximation
of enhanced/processed speech signal spectrum computed by subtracting the approx-
imation of noise spectrum from the spectrum of corrupted speech data. The noise
spectrum is computed based on the speech absence, and it is updated for every fre-
quency bin. The process of SS is to be done aptly because too much subtraction leads
to loss of speech components and less subtraction may reflect much presence of noise
in enhanced speech data [21, 22, 33].

The work in [7] described a noise suppression algorithm using spectral subtrac-
tion. The technique utilizes a noise and speech-dependent gain for every frequency
section. Further, to reduce the variance of the gain function, spectrum-dependent adap-
tive averaging was presented. Experimental results showed 10 dB background noise
reduction for different SNR conditions (–6 dB to 16 dB). Also in comparison with the
SSmethod, the proposed method achieved improved speech quality and reduced noise
artefacts. Overestimation of a spectrum of noise, flooring of the spectrum, dividing
the spectrum into few bands of frequency and subjecting to nonlinear methods for
each band were presented in [2, 13, 19]. The work in [28] gives some psycho-acoustic
rules to adjust the extreme subtraction specifications to render the residue inaudible.
Though the SS algorithm reduces noise significantly, it has a major drawback that the
subtracted output might have contained some negative values or negative merits due to

https://sites.google.com/view/thimmarajayadavag/downloads
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errors in approximating the spectrum of noise. The simpler approach to this problem
is to set all negative information values to zero and obtain the non-negative spectrum.

Sometimes the musical noise will be having more impact than other types of noises
on the listeners. The assumption made in the derivation of the SS algorithm is that the
cross-values of the phase differences amongst the noise and clean speech signals are
zero. This assumption is considered strong because the clean speech data are not cor-
related with the introduced noise. The end equations obtained from the SS algorithm
are not perfect, but they are approximations. Some of the efforts were made in [6,
14, 35] on how to compensate the cross-terms in the SS algorithm. The performance
of compressive sensing (CS)-based method for speech enhancement was studied in
[15]. Further, the performances of greedy algorithms, viz., orthogonal matching pur-
suit, matching pursuit, compressive samplingmatching pursuit, stage-wise orthogonal
matching pursuit and generalized orthogonal matching pursuit, were compared for
speech enhancement. The results were analysed using composite objective measures,
and simulation time showed the CS-based technique using generalized orthogonal
matching pursuit algorithm achieved better performance than the other recovery algo-
rithms.

The advancements in the Kannada ASR system by background noise elimination
and acoustic modelling techniques were described in [32]. The authors have pro-
posed an algorithm, which is a combination of SS–voice activity detection (VAD)
and minimum mean square error (MMSE)-spectrum power estimator based on zero-
crossing. The experimental results showed that there were significant advancements in
terms of speech recognition accuracy for enhanced speech data compared to degraded
speech data. Agricultural commodity prices and weather information access based
on end-to-end speech recognition system for Kannada dialect were described in [30].
The developed ASR system used noisy Kannada speech data for system training and
decoding using Kaldi. The implemented system was designed using an interactive
voice response system (IVRS) call flow. The experimental results showed that the
word error rate (WER) of online and offline exactly matched with each other. A robust
speaker recognition method based on the amalgamation of time-delay neural network
(TDNN) and long short-term memory with recurrent project layer (LSTMP) model
was described in [18]. The experiments were investigated on four speech corpora. The
results showed that the combination of TDNN and LSTMP outperforms the baseline
system (i-vector).

The work in [27] developed an online Assamese spoken query system for accessing
the price of agricultural commodities. Training data, as well as query speech data,
includes lots of background noise as the speech data are collected using real farmers.
To mitigate the ill effects of the background noise, a zero frequency filtering-based
foreground speech separation front-end noise removal scheme was introduced into
the ASR system. It was observed an absolute reduction of 6.24%WER is achieved in
comparison with the previously reported spoken query system performance [26]. In
this work, based on the spatial principles of speech signals, we build a new procedure
for the SS algorithm called spatial procedure (SP). The proposed algorithm is based
on spatial mathematical procedural steps; henceforth, we will refer to it as the SP
technique to the SS algorithm. The proposed algorithm overcomes two drawbacks of
the SS algorithm [1]. They are musical noise suppression and false assumptions on
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cross-terms are being zero. The proposed SP algorithm is represented by the degraded
spectrum of speech in the complex plane is the amalgamation of clean speech data
and noise model vectors. The remainder of the paper is organized as follows: Section
2 gives the implementation of the proposed noise elimination technique in detail. The
development of a robust enhanced continuous Kannada ASR system is presented in
Sect. 3. Section 4 gives the conclusions.

2 Background Noise Suppression by SP Technique

2.1 Background and Error Analysis for SS

Consider the noisy speech data, i(n) is the summation of clean or original speech data,
j(n) and noise model, l(n). The Fourier transform (FT) of i(n) can be shown as:

I (wk) = J (wk) + L(wk) (1)

where wk = 2πk
N ; k = 0, 1, ...., N − 1 and N is considered as length of frame. To get

the short time power spectra, we have to take the product of I (wk) and its conjugate.
Therefore, Eq. 1 becomes

| I (wk) |2 =| J (wk) |2 + | L(wk) |2 +J (wk) · L∗(wk) + L(wk) · J ∗(wk)

=| J (wk) |2 + | L(wk) |2 +2 | J (wk) || L(wk) | cos(θJ (k) − θL(k))
(2)

The notations {| L(wk) |2 +J (wk) · L∗(wk) + L(wk)} and L(wk) · J ∗(wk) could
not be computed directly and those can be approximated as E{| L(wk) |2}, E{J (wk) ·
L∗(wk)} and E{L(wk) · J ∗(wk)}where the term E{·} is called as expectation operator.
Normally, the operator E{| L(wk) |2} is calculated during speech absence and it is
described as | ̂L(wk) |2. As per the fundamental assumption, the clean speech signal
and noisemodels are nowhere correlated. Therefore, E{J (wk)·L∗(wk)} and E{L(wk)·
J ∗(wk)} are completely equal to zero. Therefore, from the above assumption, the clean
speech spectrum estimate can be written as | ̂J (wk) |2 and it can be represented as
follows:

| ̂J (wk) |2=| I (wk) |2 − | ̂L(wk) |2 (3)

Equation 3 shows the traditional power SS technique. The values in | ̂J (wk) |2 might
be negative. Therefore, the negative values could be made to zero using half wave
rectification. The enhanced or processed speech signal can be obtained by taking
inverse FT of | ̂J (wk) | using phase or angle of the corrupted speech data. Equation 3
can also be represented as:

| ̂J (wk) |2= H2(wk)· | I (wk) |2 (4)
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and

H(wk) =
√

1 − | ̂L(wk) |2
| I (wk) |2 =

√

γ (k) − 1

γ (k)
(5)

is the function of gain and γ (k) �| I (wk) |2 / | ̂L(wk) |2. The range of H(wk) is
always 0 ≤ H(wk) ≤ 1. There is no compulsory rule for the cross-terms to be zero;
sometimes, they will be having large values related to | I (wk) |2. To evaluate the error
established from Eq. 3 when the cross-terms are left out, Eq. 2 can be rewritten as:

| I (wk) |2 =| J (wk) |2 + | L(wk) |2 +�I (wk)

=| ̂I (wk) |2 +�I (wk)
(6)

where the term , | ̂I (wk) |2=| J (wk) |2 + | L(wk) |2 and�I (wk) defines cross-terms.
By ignoring these cross-terms from the above equation, we can write the expression
for relative-error as follows:

ε(k) � | �I (wk) |
| I (wk)2 | (7)

The term ε(k) is normalized when we considered the spectrum power of degraded
speech. The assumption made in Eq. 7 that the spectrum of noise is known factor. The
normalized error of cross-terms can be shown in terms of SNR as follows:

ε(k) =
∣

∣

∣

∣

2
√

ξ(k) cos(θJ (k) − θL(k))

1 + ξ(k) + 2
√

ξ(k) cos(θJ (k) − θL(k))

∣

∣

∣

∣

(8)

where the term ξ(k) can be written as: ξ(k) �| J (wk) |2 / | L(wk) |2 represents exact
SNR in frequency bin k. If ξ(k) = 0, only when cos(θJ (k) − θL(k)) = 0, which is
equivalent with Eq. 2. From Eq. 8, we could draw some conclusions that, if ξ(k) → ∞
or ξ(k) → 0, then ε(k) → 0. Therefore, as the SNR → ±∞, we can easily make
an assumption that the cross-terms are ignorable. If the SNR values fall in between
the range, then the cross-terms could not be neglected. In summary, the error analysis
done in this section reveals that the assumption in Eq. 3, the values of cross-terms are
zero, is not applicable for spectral SNRs values which are nearly equal to 0 dB. In
fact, Eq. 3 can be used in greater errors estimation. Therefore, the error of cross-term
ε(k) is greatest for level of SNR nearly equal to 0 dB and it is consistent with the
predictions in [13]. In the next section, we describe a new approach that makes no
such assumptions on cross-terms being zero in Eq. 2.

2.2 A Spatial Procedure to SS

We propose an algorithm called SP to SS technique which suppresses significant
amount of different types of background noises and musical noise in degraded speech
data. Using Eq. 1, the degraded speech spectrum I (wk) at the frequency wk is the
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Fig. 1 The visual representation of degraded speech, noise and clean speech spectrum in complex plane

amalgamation of complex valued spectrum of J (wk) and L(wk). The complex repre-
sentation of degraded speech spectrum, noise model spectrum and clean speech signal
spectrum in complex plane is shown in Fig. 1. The gain function of SS algorithm is
obtained after the assumption that the cross-terms are equal to zero or the angle or
phase difference between (θJ (k) − θL(k)) is equal to ±π/2 from Eq. 5. In this paper,
we derive a formula of generic gain function for SS algorithm which does not depend
on any cross-terms and the derived formula will squash the presumptions about the
phase difference values between the clean speech signal and noise model. Equation 1
can be rewritten in polar form as follows:

aI e
jθI = aJ e

jθJ + aLe
jθL (9)

The terms, aI , aJ and aL are themagnitudes and phases are θI , θJ and θL for degraded
speech, clean or original speech data and noise model spectrum, respectively.

Figure 2 shows the triangle representation of the spatial relationship amidst the
angles of degraded speech signal, noise model and clean or original speech spectrum.
From Fig. 2, consider the right angle triangle ABC, AB ⊥ BC

AB = aI sin(θL − θI ) = aJ sin(θL − θJ )

⇒ a2I sin
2(θL − θI ) = a2J sin

2(θL − θJ )

⇒ a2I [1 − cos2(θL − θI )] = a2J [1 − cos2(θL − θJ )]
⇒ a2I (1 − C2

I L) = a2J (1 − C2
J L)

(10)

where CI L � cos(θI − θL) and CJL � cos(θJ − θL). From Eq. 10, we can obtain a
new gain function called HSP . It can be written as follows:

HSP = aJ
aI

=
√

1 − C2
I L

1 − C2
J L

(11)
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Fig. 2 The spatial relationship amidst the angles of corrupted speech, clean speech data and noise spectrum

The proposed gain function HSP is always+ve and real because the values ofCI L and
CJL are bounded by 1. The traditional power SS algorithm’s gain function in Eq. 5 is
also +ve but smaller than 1, but the proposed gain function can be greater than 1, if
the magnitude ofCI L less thanCJL . The suppression from the proposed gain function
minimizes to the suppression function of power SS algorithm (from Eq. 5), if CJL =
0, that is if the speech data vector and noise vector are perpendicular to each other.
Cardinally, the speech signal and the noise signal are perpendicular to each other and
are having zero mean, which shows that they are also not correlated with each other
[19]. To prove that, the above suppression gain function minimizes to that of Eq. 5
when CJL is equal to zero. From Fig. 1, we can observe that when the clean speech
signal and noise model are perpendicular to each other, then

CI L = aL
aI

(12)

Equating the above relation in Eq. 11, we get Eq. 5. Therefore, we can conclude
that the suppression mathematical model given in Eq. 11 is true and fact suppression
procedure for SS techniques if none of the assumptions were made on the relationship
amongst the clean speech signal and noise model. The suppression rule given in Eq. 5
is an approximation which works better over short intervals of time (20–30 ms) by
presuming that the original or clean speech and noise model vectors are perpendicular
to each other. The product of noisy speech spectrum with suppression function in
Eq. 5 could not give the clean speech magnitude spectra, though we have access to the
correct spectrum of noise model magnitude. In contrast, the product of noisy speech
spectrumwith the proposed gain function will exactly give the clean or original speech
signal magnitude spectrum shown in Eq. 11. The mentioned suppression gain function



4048 Circuits, Systems, and Signal Processing (2022) 41:4041–4067

majorly depends on the approximation of the phase or angle differences amongst
degraded (or clean) and noise signal models. However, it is a difficult activity and no
other techniques currently exist to calculate the values of these phases or angles exactly.
One possible solution is to implement and exploit the relationships amidst the angles
of noisy or corrupted speech data and noise signals using trigonometric functions.
Therefore, we can easily give the solution explicitly for CI L and CJL which gives
(proof from [28], Appendix B)

CI L = a2I + a2L − a2J
2aI aL

(13)

CJL = a2I − a2J − a2L
2aJ aL

(14)

The major drawback of the above-mentioned equations is that they completely depend
on clean or original speech signal amplitude which we have not considered or which
we don’t have. Therefore, we need to implement mathematical equations for CJL and
CI L by dividing both denominator and numerator of Eqs. 13 and 14 by the factor a2L .
We get

CI L = γ + 1 − ξ

2
√

γ
(15)

CJL = γ − 1 − ξ

2
√

ξ
(16)

where the term ξ and γ are defined as

ξ �
a2J
a2L

(17)

γ �
a2I
a2L

(18)

The symbols ξ and γ are the instantaneous varieties of a priori and posteriori SNRs,
respectively, which were used in traditional minimum mean square error (MMSE)
techniques [14, 35]. By equating Eqs. 15 and 16 in Eq. 11, we get the updated proposed
function of gain:

HSP (ξ, γ ) =

√

√

√

√

√

1 − (γ+1−ξ)2

4γ

1 − (γ−1−ξ)2

4ξ

(19)

The updated gain function in Eq. 19 is approximately equal to the gain functions of
MMSE algorithms, and it mainly depends on ξ and γ . The performance of the gain
function in Eq. 19 provides equal suppression with respect toMMSE algorithms under
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(γ − 1) < 5 dB. For values of (γ − 1) > 5 dB, the gain function suppression of the
SP algorithm becomes more reliable than the MMSE estimators gain functions [28].

In summary, two comparative differences are there with the proposed SP technique
and traditional MMSE algorithm. Firstly, the proposed SP algorithm is not random, is
deterministic and not implemented using any statistic models. In addition, none of the
assumptions were made on the statistical distributions of noisy or clean speech signal
and noise FT coefficients, as worked in the case of MMSE techniques. Secondly, the
parameters γ and ξ are instantaneous SNR values. In the next section, we implement
the equations for the parameters, γ and ξ . We evaluate and contrast the reliability of
the proposed SP technique using both the instantaneous and long-term frames mean
measurements of γ and ξ .

2.3 Implementation

The computation of gain function, HSP (ξ, γ ) mainly depends on the estimation of γ

and ξ . As per the definition in Eqs. 17 and 18, the terms, γ and ξ are the instantaneous
SNR values, not long-term and average statistical values [5, 20, 21, 34]. In [5], the
expectation operators were used for computing the values of γ and ξ yielded less
performance. Therefore, the methods used in [5] cannot be used to approximate the
parameters γ and ξ . Hence, we propose a new method to estimate the parameters by
considering the present and past spectral characteristics information. The expected
value of ξ is calculated by considering the magnitude spectrum of past frames as
shown below.

̂ξI (λ, k) = ̂a2J (λ − 1, k)/̂a2L(λ − 1, k) (20)

The term̂ξI (λ, k) is an estimation of ξ at the frameλ and frequency bin k, and I denotes
the instantaneous SNR measurement. The above estimate uses only the past spectral
characteristic information values. Therefore by amalgamating the two approximations
of ξ computed using present and past spectral characteristic information values, we
obtain

̂ξ(λ, k) = α · âJ (λ − 1, k)2

âL(λ − 1, k)2
+ (1 − α) · (

√

γ̂ (λ, k) − 1)
2

(21)

The smoothing parameter is denoted by α in the above equation, and âL(λ, k) is
noise magnitude spectrum estimate. Equation 21 is the weighted mean of present and
past SNR values, and α manages the weight assigned on present and past spectral
characteristics information. Equation 21 gives the weighted mean of present and past
SNR values, and this approach is approximately equal to decision directed approach
used in [5]. If the value of smoothing parameter is equal to 1, then Eq. 21 becomes
the estimate of instantaneous values ξ given in Eq. 20. Similarly, the value of γ̂I (λ, k)
can be shown as follows:

γ̂I (λ, k) =
(

aI (λ, k)

âL(λ, k)

)2

(22)
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The term âL(λ, k) is noise spectrum estimate obtained using estimation of noise tech-
nique. The smoothing factor related to γ̂I (λ, k) is shown in Eq. 23:

γ̂SP (λ, k) = β · γ̂SP (λ − 1, k) + (1 − β) · min[γ̂I (λ, k), 30] (23)

The term γ̂SP (λ, k) is the approximate of smoothing of γ , β is the constant of smooth-
ing, and γ̂I (λ, k) is shown in Eq. 22. The min function is used to limiting the value of
γ̂I (λ, k) to the maximum of 15 dB. If β = 0, then the value of γ̂SP (λ, k) = γ̂I (λ, k).
The values of estimation of̂ξ(λ, k) and γ̂SP (λ, k) are exploited to estimate the gain
function in Eq. 19. The signal transfer function is given in Eq. 19 is based on the instan-
taneous or current values of γ and ξ . The γ and ξ values may vary from one frame to
another frame due to signal variation with respect to time. Under this condition, it is
very difficult to evaluate those values with high performance and quality. In addition
to this, we cannot calculate the value of ξ , since we do not have access directly to
the spectrum of clean or original speech signal. Therefore, we use the past values or
approximates of clean speech signal spectra to evaluate ξ . Given that the γ and ξ can
be approximated either using Eq. 22 or Eq. 23, we shall estimate using both possibili-
ties. If we consider both equations, then we will be having two transfer functions. First
one is ̂HSPI (

̂ξi , γ̂i ), which is mainly based on the instantaneous measurement values
of γ and ξ shown in Eqs. 22 and 20 respectively. The term ̂HSP (̂ξ, γ̂SP ) is the second
transfer function which is based on the long term mean measurement values of γ and
ξ shown in Eqs. 23 and 21, respectively. In summary, the proposed SP technique
comprised of the following procedural stages:

• At stage 1: The magnitude spectrum of corrupted speech signal aI (λ, k) is com-
puted using fast Fourier transform (FFT) at frame λ.

• At stage 2: In [34], the authors have used the optimal smoothing and minimum
statistics (OSMS) [20] technique for estimation of noise. This particular OSMS
technique updates the estimated value of noise based on tracking statistics of
local minimum of corrupted speech spectrum. Therefore, the time required for
the adaptation for estimation of noise is equal to adaptation time required for
the local minima. The method used (OSMS) in [34] is worked better for noise
conditions where the power of noise is slowly vary with respect to time, but for
sudden increment in noise levels, the OSMS technique requires more adaptation
time by 1.5 seconds. But the method which we employed in our work requires
only 0.52 seconds. Therefore, this noise approximation technique (computation
time required=0.52 seconds) is used for updating the noise signal power spectrum
[̂aL(λ, k)]2.

• At stage 3: Calculate γ̂SP (λ, k) as per Eqs. 22 and 23.
• At stage 4: Use γ̂SP (λ, k) to calculatêξSP (λ, k) as per Eq. 21. Flooring the value
of̂ξSP (λ, k) to ξmin for the values of̂ξSP (λ, k) lesser than ξmin.

• At stage 5: Approximate the gain function ̂HSP (̂ξ, γ̂SP ) using Eq. 19 and limit it
to one.

• At stage 6: Get the processed or enhanced signal magnitude spectra by: âJ (λ, k) =
̂HSP (̂ξ, γ̂SP ) · aI (λ, k)

• At stage 7: Calculate the inverse FFT of âJ (λ, k) · e jθI (λ,k), the term θI (λ, k) is
called the phase or angle of noisy speech signal to get the enhanced or processed
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speech data.
The technique uses the transfer function ̂HSP (̂ξ, γ̂SP ) is mainly based on instanta-
neous measurement values of γ and ξ can be developed by setting the parameters
β = 0 in Eq. 23 and α = 1 in Eq. 21. Therefore the instantaneous SP algorithm can
be denoted as SPI algorithm. The proposed SP technique is subjected to frames
of 20 ms duration, and Hanning window is used for windowing the frames. The
50 % of overlapping rate is considered, and overlap-and-add method is used for
reconstructing the processed speech signal. The constants for smoothing used in
Eqs. 21 and 23 are set at α = 0.98 and β = 0.6. These values are not fixed; based on
the experimental setup and performance measures, we change the values of α and
β. For the SPI technique, the values of α and β are kept to 1 and 0, respectively.

2.4 Performance Evaluation of Proposed and Existing Algorithms

The two types of performance measurement parameters are exploited in the present
work to assess the performances of existing and proposed methods. The mean square
error (MSE) is the first measure that we considered which is defined as the difference
amidst spectrum magnitude of enhanced and clean speech signals. The second mea-
sures are objectives measure, namely the log likelihood ratio (LLR) and the perceptual
evaluation of speech quality (PESQ).

2.4.1 Assessment Using MSE

The traditional formula for MSE is given by

MSE = 1

M · N
M−1
∑

λ=0

N−1
∑

K=0

(aJ (λ, k) − âJ (λ, k))2 (24)

The terms aJ (λ, k) and âJ (λ, k) are the magnitude spectrum of original or clean
speech data and enhanced processed speech data, respectively, at each frame λ and
frequency bin k. M and N are designated as total number of frames and bins in
a sentence. The MSE is calculated for proposed algorithm and compared with SS-
VAD. According to Eq. 23, we have conducted experiments by varying the value of
β from 0 to 1 and another smoothing constant α is set at 0.98. In addition to this, we
have considered the assessment of SPI technique by setting β = 0 and α= 1. For the
conduction and comparison of experiments with proposedmethod, we have developed
SS-VAD algorithm and we have introduced another spectral subtractive algorithm
called smoothed spectral subtraction (SSS) algorithm by replacing γ̂ (k) in Eq. 5 with
its smoothed variety given in Eq. 23. For the conduction and evaluation of experiments
for the proposed and existing algorithms, the NOIZEUS speech corpora [10] and
continuous Kannada speech sentences were used. The conducted experimental results
are shown in Tables 1 and 2 in terms of MSE for NOIZEUS and Kannada continuous
speech database, respectively. From both the tables, we observe that the proposed SP
technique has given lesser values of MSE compared to SSS and SS–VAD algorithms
at lower SNR levels (0 and 5 dB) at β = 0.98, which clearly shows that the smoothing
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Table 1 The MSE results obtained by SP, SPI , SS-VAD and SSS algorithms for NOIZEUS database

Method SNR (dB) β=0 β=0.15 β=0.35 β=0.55 β=0.75 β=0.98 SPI (α=1, β=0)

SP 0 2.73 2.67 2.69 2.68 2.39 1.95 4.50

SSS 0 4.23 4.13 4.11 3.98 3.77 3.75 4.30

SS-VAD 0 4.16 4.24 4.21 4.25 4.28 4.19 4.29

SP 5 1.49 1.50 1.49 1.53 1.34 1.01 2.77

SSS 5 1.22 1.30 1.26 1.25 1.20 1.33 1.30

SS-VAD 5 1.32 1.31 1.32 1.36 1.30 1.33 1.30

SP 10 0.79 0.85 0.86 0.87 0.78 0.60 1.59

SSS 10 0.42 0.40 0.41 0.38 0.39 0.48 0.40

SS-VAD 10 0.43 0.40 0.42 0.40 0.40 0.41 0.40

Table 2 The MSE results obtained by SP, SPI , SS-VAD and SSS algorithms for Kannada speech database

Method SNR (dB) β=0 β=0.15 β=0.35 β=0.55 β=0.75 β=0.98 SPI (α=1, β=0)

SP 0 2.70 2.61 2.63 2.61 2.39 1.94 4.49

SSS 0 4.22 4.12 4.12 3.99 3.79 3.79 4.33

SS-VAD 0 4.18 4.28 4.27 4.29 4.24 4.20 4.33

SP 5 1.45 1.50 1.48 1.53 1.35 0.99 2.70

SSS 5 1.21 1.32 1.27 1.26 1.21 1.29 1.31

SS-VAD 5 1.33 1.31 1.33 1.35 1.33 1.35 1.33

SP 10 0.76 0.82 0.85 0.82 0.79 0.61 1.60

SSS 10 0.43 0.44 0.44 0.39 0.39 0.42 0.42

SS-VAD 10 0.43 0.43 0.42 0.41 0.48 0.42 0.41

of γ̂ (λ, k) helped to minimize theMSE value. HigherMSE values were obtained from
the proposed algorithm when the parameter ξ and γ were not smoothed. This reveals
that the usage of present and past spectral characteristics information of signal could
be more efficient than using only instantaneous values. In summary, the gain function
derived in Eq. 19 remains very efficient at low SNR levels ranging from 0-5 dB, where
the function of gain of the SS algorithm becomes less accurate at low SNR (0 dB).

2.4.2 Evaluation of Speech Quality

The proposed SP algorithm is assessed using LLR [11] and PESQ measures [12]
to check the quality of speech. The NOIZEUS speech database [10] and continuous
Kannada speech database are considered for the conduction of experiments, which are
sampled at a sampling frequency of 8 kHz and degraded by street noise, babble noise,
car noise, train noise etc, taken from AURORA database [8] at different SNR (0, 5
and 10 dB). The objective measures PESQ and LLR got the correlation coefficient
values of ρ = 0.67 and ρ = 0.61, respectively, to evaluate the quality of speech [9,
11, 12]. Here also we try to compare the performance and reliability of proposed
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Table 3 The objective assessment (PESQ values) [12] and comparison of the proposed SP technique against
SS-VAD, SSS, MMSE-SP, MMSE-SPZC and MAP estimators for NOIZEUS database

Method Type of Noise SNR=0 dB SNR=5 dB SNR=10 dB

β = 0.6 β = 0.98 β = 0.6 β = 0.98 β = 0.6 β = 0.98

SP Car 1.85 1.80 2.20 2.15 2.58 2.57

SPI 1.66 1.75 2.09

SS-VAD 1.68 1.69 2.00 2.01 2.30 2.30

SSS 1.71 1.68 2.01 1.99 2.33 2.33

MMSE-SP 1.81 1.82 2.08 2.09 2.38 2.37

MMSE-SPZC 1.86 1.85 2.21 2.22 2.65 2.66

MAP 1.89 1.90 2.19 2.15 2.48 2.45

SP Babble 1.83 1.79 2.17 2.10 2.54 2.55

SPI 1.66 1.85 2.16

SS-VAD 1.72 1.73 2.03 2.02 2.36 2.37

SSS 1.77 1.77 2.07 2.07 2.38 2.37

MMSE-SP 1.72 1.73 2.09 2.10 2.36 2.37

MMSE-SPZC 1.75 1.75 2.12 2.11 2.56 2.55

MAP 1.79 1.80 2.05 2.11 2.40 2.43

SP Street 1.76 1.70 2.17 2.01 2.52 2.52

SPI 1.43 1.80 2.10

SS-VAD 1.69 1.70 2.01 2.02 2.35 2.35

SSS 1.71 1.69 2.01 1.99 2.37 2.27

MMSE-SP 1.69 1.70 2.08 1.99 2.35 2.31

MMSE-SPZC 1.80 1.80 2.19 2.20 2.56 2.56

MAP 1.74 1.77 2.12 2.09 2.39 2.40

technique against the traditional SS-VAD, SSS algorithms and magnitude squared
spectrum (MSS) estimators [31]. The MSS estimators which are implemented in [31]
areMMSE-spectrum power (MMSE-SP), MMSE-spectrum power estimator based on
zero crossing (MMSE-SPZC) and maximum a posteriori (MAP). The implemented
MSS estimators were modelled using Gaussian statistical model, and these algorithms
cannot be directly compared with the proposed SP algorithm, because as it depends
on various assumptions and principles. All approaches or methods were tested using
two different values of β (0.6 and 0.98) and at α= 0.98. Tables 3, 4, 5 and 6 show the
objective measures in terms of PESQ and LLR for NOIZEUS (Table 3 and 5 ) and
continuous Kannada speech database (Tables 4 and 6 ) for proposed technique against
SS–VAD, SSS, MMSE-SP, MMSE-SPZC and MAP estimators, respectively.

The better performance assessment in terms of PESQ is represented by higher val-
ues and the lower values indicate that the high performance in case of LLR measure.
The reliability of MMSE-SPZC and sometimes MAP algorithms was significantly
better than that of the SP technique in most degraded situations, except in the case
of babble at 0 and 5 dB SNR (shown in Tables 3 and 4). The process of smoothing
of γ in MMSE-SP algorithm gives lesser values in terms of PESQ under all condi-
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Table 4 The objective assessment (PESQ values) [12] and comparison of the proposed SP technique against
SS-VAD, SSS, MMSE-SP, MMSE-SPZC and MAP estimators for Kannada speech database

Method Type of Noise SNR=0 dB SNR=5 dB SNR=10 dB

β = 0.6 β = 0.98 β = 0.6 β = 0.98 β = 0.6 β = 0.98

SP White 1.96 1.86 2.26 2.21 2.57 2.52

SPI 1.45 1.74 2.12

SS-VAD 1.61 1.65 1.93 1.95 2.29 2.27

SSS 1.66 1.66 1.94 1.92 2.33 2.30

MMSE-SP 1.76 1.76 2.01 2.09 2.30 2.31

MMSE-SPZC 1.99 2.00 2.32 2.35 2.69 2.70

MAP 1.85 1.85 2.36 2.37 2.45 2.45

SP Car 1.84 1.81 2.22 2.20 2.60 2.56

SPI 1.65 1.77 2.09

SS-VAD 1.67 1.67 1.99 2.00 2.29 2.28

SSS 1.69 1.67 2.00 1.98 2.32 2.31

MMSE-SP 1.80 1.81 2.01 2.08 2.32 2.34

MMSE-SPZC 1.87 1.86 2.25 2.20 2.68 2.69

MAP 1.86 1.89 2.18 2.16 2.50 2.49

SP Babble 1.89 1.87 2.19 2.20 2.59 2.56

SPI 1.66 1.84 2.17

SS-VAD 1.70 1.72 2.01 2.05 2.35 2.36

SSS 1.76 1.76 2.08 2.09 2.36 2.35

MMSE-SP 1.70 1.72 2.10 2.11 2.29 2.34

MMSE-SPZC 1.76 1.74 2.11 2.11 2.54 2.54

MAP 1.78 1.80 2.04 2.10 2.38 2.40

SP Street 1.76 1.70 2.18 2.14 2.53 2.51

SPI 1.42 1.79 2.11

SS-VAD 1.70 1.71 2.00 2.07 2.36 2.37

SSS 1.72 1.71 2.07 2.00 2.39 2.27

MMSE-SP 1.68 1.69 2.07 2.00 2.36 2.33

MMSE-SPZC 1.87 1.87 2.20 2.28 2.60 2.60

MAP 1.78 1.79 2.15 2.10 2.40 2.44

tions. The SP algorithm has an advantage compared to MSS estimators, because of
its low complexity computation, less memory and time for execution as it needs a
fewmultiplication and addition operations (Eq. 19). TheMSS estimators, on the other
hand, need an implementation of Bessel functions. The proposed SP technique imple-
mented at β = 0.6 worked well and constantly better than the SS-VAD and SSS under
all degraded environments. The SP technique has given unsatisfactory results when it
is implemented with β = 0.98, specifically at the lower SNR levels. This implies that
the SP technique is much sensitive to β value used for approximating and updating the
parameter γ̂ (λ, k). The β value is equal to 0.6 gives approximately equal weight to the
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Table 5 The objective assessment (LLR values) [12] and comparison of the proposed SP technique against
SS-VAD, SSS, MMSE-SP, MMSE-SPZC and MAP estimators for NOIZEUS database

Method Type of Noise SNR=0 dB SNR=5 dB SNR=10 dB

β = 0.6 β = 0.98 β = 0.6 β = 0.98 β = 0.6 β = 0.98

SP White 1.55 1.60 1.27 1.30 1.07 1.08

SPI 1.72 1.43 1.19

SS-VAD 1.73 1.73 1.48 1.48 1.22 1.22

SSS 1.72 1.69 1.44 1.40 1.19 1.18

MMSE-SP 1.71 1.70 1.45 1.41 1.20 1.19

MMSE-SPZC 1.56 1.57 1.26 1.30 1.05 1.08

MAP 1.84 1.86 1.49 1.50 1.33 1.28

SP Car 0.97 1.01 0.79 0.82 0.65 0.64

SPI 1.23 1.06 0.88

SS-VAD 1.01 1.01 0.78 0.78 0.59 0.58

SSS 0.99 0.99 0.77 0.76 0.57 0.57

MMSE-SP 1.08 1.08 0.78 0.79 0.59 0.60

MMSE-SPZC 1.01 1.01 0.78 0.78 0.62 0.62

MAP 1.11 1.10 0.93 0.88 0.77 0.78

SP Babble 0.92 0.99 0.69 0.81 0.68 0.69

SPI 1.17 1.02 0.82

SS-VAD 0.95 0.95 0.76 0.77 0.55 0.55

SSS 0.93 0.94 0.74 0.73 0.53 0.53

MMSE-SP 0.93 0.95 0.75 0.77 0.55 0.56

MMSE-SPZC 1.15 1.14 0.90 0.90 0.67 0.67

MAP 1.23 1.24 1.01 0.99 0.84 0.84

SP Street 1.03 1.11 0.83 0.87 0.69 0.70

SPI 1.23 1.05 0.84

SS-VAD 1.01 1.01 0.81 0.80 0.63 0.63

SSS 1.00 0.99 0.78 0.80 0.59 0.61

MMSE-SP 1.11 1.11 0.80 0.81 0.67 0.67

MMSE-SPZC 1.00 1.01 0.87 0.88 0.68 0.67

MAP 1.19 1.14 1.05 0.99 0.80 0.90

exploitation of past and spectral characteristic informationwhen evaluating γ̂ (λ, k). In
comparison, the performance of the SS-VAD technique was not much affected when
γ̂ (λ, k) parameter was nicely smoothed. The SPI technique based on the instanta-
neous spectral characteristics measurements of γ and ξ , given unsatisfactory values
under all degraded conditions. Of course it is true because, the instantaneous values of
γ and ξ may change dramatically from one frame to another frame which causes high
level of musical noise [4] resulting from sudden variations of the function of gain. This
reveals that the smoothing parameters of γ and ξ aremuch indeed to get high quality of
speech free of musical noise or musical tones. This reliability was much similar when
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Table 6 The objective assessment (LLR values) [12] and comparison of the proposed SP technique against
SS-VAD, SSS, MMSE-SP, MMSE-SPZC and MAP estimators for Kannada speech database

Method Type of Noise SNR=0 dB SNR=5 dB SNR=10 dB

β = 0.6 β = 0.98 β = 0.6 β = 0.98 β = 0.6 β = 0.98

SP White 1.54 1.59 1.26 1.31 1.08 1.08

SPI 1.73 1.43 1.19

SS-VAD 1.74 1.73 1.49 1.50 1.23 1.24

SSS 1.73 1.70 1.43 1.43 1.20 1.20

MMSE-SP 1.72 1.72 1.48 1.43 1.23 1.20

MMSE-SPZC 1.52 1.55 1.25 1.30 1.0 1.09

MAP 1.83 1.85 1.50 1.49 1.32 1.28

SP Car 0.95 1.00 0.75 0.83 0.66 0.68

SPI 1.21 1.05 0.89

SS-VAD 1.02 1.03 0.80 0.81 0.60 0.59

SSS 1.00 1.01 0.80 0.81 0.59 0.58

MMSE-SP 1.09 1.08 0.79 0.80 0.60 0.62

MMSE-SPZC 1.00 1.00 0.80 0.80 0.63 0.63

MAP 1.10 1.09 0.93 0.88 0.77 0.79

SP Babble 0.89 1.09 0.71 0.92 0.65 0.68

SPI 0.99 0.99 0.83

SS-VAD 0.98 1.01 1.02 1.01 1.03 1.05

SSS 1.01 1.01 1.03 1.10 1.12 1.11

MMSE-SP 0.93 0.95 0.75 0.77 0.55 0.56

MMSE-SPZC 1.14 1.11 0.90 0.90 0.67 0.67

MAP 1.22 1.21 0.99 0.99 0.84 0.83

SP Street 1.01 1.09 0.83 0.84 0.70 0.71

SPI 1.22 1.06 0.89

SS-VAD 1.02 1.01 0.83 0.81 0.65 0.69

SSS 1.01 1.01 0.85 0.80 0.64 0.62

MMSE-SP 1.12 1.12 0.82 0.81 0.68 0.68

MMSE-SPZC 1.01 1.02 0.86 0.87 0.69 0.69

MAP 1.20 1.13 1.06 1.00 0.81 0.93

the proposed and existing techniques were assessed using the LLR measure shown in
Tables 5 and 6 for NOIZEUS and continuous Kannada speech corpora, respectively.

In summary, it is well clear that the proposed SP technique has given lesser resid-
ual noise compared to spectral subtractive techniques. Informal-listening-tests were
also conducted for the experimental purpose (to keep simplicity, those tests are not
mentioned in the paper) which reveals that the enhanced speech data obtained from
the proposed SP technique comprised of a smoother background with no audibility
of various types of background noises and musical noise at different SNR levels. As
per the implementation of proposed algorithm, we trust that the SP technique does
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Table 7 Numerical complexity comparison of algorithms used in this work for the speech data degraded
by babble noise at different SNR levels.

Computation Parameters Algorithms SNR = 0 dB SNR = 5 dB SNR = 10 dB

Memory consumption in bytes SS-VAD 758625 742568 712548

SSS 745895 739945 711224

MMSE-SP 669344 712704 701288

MMSE-SPZC 655360 624288 623440

MAP 655360 647168 635216

SPI 633245 632147 623546

SP 601234 592146 587946

Elapsed time in seconds SS-VAD 0.3513 0.3412 0.3262

SSS 0.3555 0.3411 0.3125

MMSE-SP 0.0379 0.0301 0.0630

MMSE-SPZC 0.0475 0.0486 0.0316

MAP 0.0486 0.0923 0.0680

SPI 0.0345 0.0300 0.0301

SP 0.0301 0.0297 0.0291

Bold values indicate the best performance

not have audibility of background and musical noises because it takes some charac-
teristics of MSS estimators. In contrast to this, SS algorithms have given poor results
in suppression of musical noise. From the conducted and investigated experimental
results, it can be inferred that the proposed SP technique has reduced various types
of background noises in degraded speech data (NOIZEUS and continuous Kannada
speech databases) at different SNR levels. Therefore, the proposed noise reduction
technique could be introduced at the front end of continuous Kannada ASR system.

2.4.3 Numerical Complexity Comparison

In this work, memory consumption and average execution time are used as numer-
ical complexity comparison metrics for existing and proposed speech enhancement
techniques. The considered algorithm(s) is executed around ten times and noted the
memory consumption values in bytes. The mean of the ten values is taken into con-
sideration for the calculation of final memory consumption. Similarly, the time in
seconds required to execute the algorithm is computed. From Table 7, it is observed
that the SP speech enhancement technique consumes less memory and execution time
as compared to the other methods.

3 Robust Continuous Kannada ASR System by Proposed Noise
Elimination Algorithm

For the paper completeness, the earlier end-to-end continuous Kannada speech recog-
nition system [17] modules are explained in this section briefly. For the creation of
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Fig. 3 The structure of call flow
for the speech data collection

robust ASR system, the speech data collection plays an important role. Each contin-
uous speech sentence will be having various pronunciations. Keeping this in context,
the authors have collected the continuous Kannada speech data from 2400 speak-
ers/farmers under noisy conditions. The interactive voice response system (IVRS)
structure of call flow is implemented for the collection of speech data. The decision
making processes are considered by the call flow shown in Fig. 3. The farmers/speaker
need to dial the toll free number to have connect to the server. In the process of call
getting connected to the server, the server will play-out the pre-recorded prompt that,
“Welcome to continuous Kannada speech data collection centre, please tell the names
of continuous Kannada speech sentences after the beep sound”. The server will prompt
a total of 40 continuous speech sentences in each session for 2.5 minutes. Followed by
the beep sound from the server, the speaker/farmer needs to repeat the sentences. Once
all 40 sentences are completed in the call flow, the server will instruct the speaker to
repeat the process. If the speaker is not satisfied with his/her speech recordings, then
he/she can repeat the process by saying “Yes”. If he/she says “Yes”, then it will go to
first step; otherwise the call will hang up. The continuous Kannada speech sentences
used for speech database collection are shown in Table 8.

Nowadays, Kaldi [24] is the most widely used toolkit for the creation of ASRmod-
els. It has various features and recent modelling techniques compared to other speech
recognition toolkits. The block diagram of Kaldi is shown in Fig. 4. It consists of three
important modules, namely: the front end, the linguistic and the decoder. The front
end receives the transcribed and validated speech data to extract the speech features
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Table 8 Continuous speech sentences used for data collection
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Fig. 4 Block diagram of Kaldi

usingMel frequency cepstral coefficient (MFCC) technique. The linguistic consists of
acoustic features and language resources such as lexicon, phoneme set, silence phones
and non-silence phones. The decoder mainly uses the acoustic features of speech, and
testing is done in this module. To get the transcriptions of each continuous speech
sentence, we need a particular language phoneme set and lexicon. The lexicon will be
consisting of two parts, word-level transcription (left-part) and phoneme-level tran-
scription (right-part). The left part of the dictionary/lexicon is obtained using symbols
of IT3:UTF-8 transliteration tool. The right part of the lexicon is built using the Indian
language speech sound label (ILSL12) set shown in Table 9.

Using these phoneme sets, we can easily create the lexicon for continuous Kannada
speech data shown in Table 10. Some of the tags are used for the representation of
background noises which are added in the speech data since it is collected under
an uncontrolled environment. The different tags and their meanings are described
in Table 11. The content of the speech file needs to be converted to its equivalent
text format, and that process is called transcription. Transcriptions of some of the
continuous Kannada speech sentences are shown in Fig. 5. All transcriptions are done
using a transcribing tool which is also shown in Fig. 5. The continuous speech features
are extracted using the acoustic MFCC technique. The following are the parameters
are used for the extraction of speech features:

– 39-dimensional feature vector.
– Sampling frequency of 8 kHz.
– Hanning window for windowing procedure.
– The FFT for transforming the speech signal from time to frequency domain.
– Mel filter bank for linear to logarithmic.
– Discrete cosine transform for transforming the speech signal from frequency to
time domain.

The 67,200 and 16,800 of transcribed degraded speech sentences were used for
Kaldi system training and decoding, respectively [17]. The following are the parame-
ters were used for the creation of language models (LMs) and acoustic models (AMs):
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Table 9 The symbols used from transliteration tool and ISL12 to create lexicon

Table 10 Lexicon for some of the continuous Kannada speech sentences

Label set using IT3: UTF-8 Label set using ILSL12

veida sul:l:l:aadaru gaade sul:l:l:aagadu w ee d a_s u llx a d r u_g aa d e_s u l lx aa g d u

ad:ikege hooda maana aane kot:t:aruu
baaradu

a dx i k e g e_h oo d a_maa n a_aa n e_k o t tx a r u_b aa r a
d u

kai kesaraadare baayi mosaru k ai_k e s a r aa d a r e_b aa y i_m o s a r u

maatu bel:l:i mauna ban:gaara m aa t u_b e l lx i_m a u n a_b a ng g aa r a

ad:d:a good:eya meile diipa it:t:a haage a d dx a_g oo dx e y a_m ei l e_d ii p a_i t tx a_h aa g e

akki meile aase nen:t:ara meile priiti a k k i_m ei l e_aa s e_n e n tx a r a_m e i l e_p r ii t i

Table 11 The different tags and their explanation

Tag Description

<s> Starting of the speech sentence

</s> Ending of the speech sentence

<pau> Pauses in amidst of speech utterances

<aah> Sound generated when the mouth is opened

<hmm> Sound generated when the mouth is closed

<hm> Its just like saying “yes”

<hm-hm> Its just like saying “no”

<laugh> When the speaker laughs in amidst sentence

<horn> Vehicle sound added in the speech sentences

<babble> When multi speakers speech is added to intended speaker’s speech

<bn> Noise produced in background

<n> Vocal noise
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Fig. 5 Transcribing tool and some of the continuous speech sentences transcription

• Lexicon: It can also be called as dictionary which acts as base for the speech recog-
nition accuracy. It consists of both word level and phoneme level transcriptions of
degraded speech data.

• Phones for silence: The words SIL and sil could be considered as silence phones.
• <s> and </s>: These indicates that the starting and ending of the speech sen-
tences.

• Non silence phones or speech phonemes: Totally 168 speech sounds/phonemes
were exploited for the creation of lexicon and transcription.

• Triphone 1 leaves: 500.
• Triphone 1 Gaussian mixtures: 2000.
• Maximum likelihood linear transform (MLLT) leaves: 500.
• MLLT Gaussian mixtures: 2000.
• Speaker adaptation technique (SAT) leaves: 500.
• SAT Gaussian leaves: 2000.
• Universal background model (UBM) Gaussian mixtures: 200.
• Subspace Gaussian mixture model (SGMM) leaves: 3000.
• SGMM Gaussian mixtures: 3000.
• Training and testing jobs: 3.
• Deep neural network (DNN) hidden layers: 2.

The continuous Kannada speech ASRmodels for Kannada language were obtained
at following phoneme levels:

• Training and decoding at single phone level.
• Triphone 1: Delta+Delta-Delta training and decoding.
• Triphone 2: linear discriminant analysis (LDA) + MLLT training and testing.
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Table 12 The least WERs obtained using Kaldi for continuous Kannada speech corpora of previous work
[17] and present work

Phoneme levels WER as in [17] WER of present work

Mono phone 7.66 7.06

Triphone1-600-2400 6.29 5.01

Triphone1-600-4800 5.63 5.04

Triphone1-600-9600 5.09 5.05

Triphone2-600-2400 7.00 5.68

Triphone2-600-4800 5.96 5.67

Triphone2-600-9600 5.80 5.66

Triphone3-600-2400 6.18 5.05

Triphone3-600-4800 5.69 5.02

Triphone3-600-9600 5.03 4.99

SGMM 4.65 4.45

Combined SGMM and MMI with Iteration1 4.60 4.44

Combined SGMM and MMI with Iteration2 4.70 4.48

Combined SGMM and MMI with Iteration3 4.60 4.40

Combined SGMM and MMI with Iteration4 4.65 4.41

Combined DNN and HMM 4.10 2.91

Combined DNN and SGMM with Iteration1 4.21 3.01

Combined DNN and SGMM with Iteration2 4.21 2.96

Combined DNN and SGMM with Iteration3 4.27 2.99

Combined DNN and SGMM with Iteration4 4.27 2.98

TDNN – 2.46

Proposed speech enhancement algorithm + TDNN – 2.23

Bold values indicate the best performance

• Triphone 3: LDA + MLLT + SAT training and testing.
• SGMM training and testing.
• Hybrid training and testing using DNN (DNN+HMM).
• DNN + SGMM with various iterations.
• SGMM + maximum mutual information (MMI) with various iterations.
• TDNN

Table 12 shows theWER obtained for various modelling techniques for continuous
Kannada noisy and enhanced speech data. From Table, it can be observed that the
combination of DNN and HMM has given the least WER of 4.10% which outper-
forms all other modelling techniques in our earlier work. Though the WER was less
for the degraded continuous Kannada speech data, we believed that we can further
minimize the WER by applying the proposed noise reduction algorithm and recent
modelling technique called TDNNon corrupted continuous Kannada speech database.
Upon experiments, the combination of DNN and HMM has given the least WER of
2.91% compared to other modelling techniques for enhanced speech data. Further the
combination of proposed speech enhancement technique and TDNN has reduced the
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WER to 2.23%. Therefore, it can be inferred that, the amalgamation of TDNN and
speech enhancement technique has given significant improvement in WER of 1.87%
compared to earlier DNN-HMM-based continuous Kannada SQS ASR models.

The block diagram of newly developed SQS is depicted in Fig. 6. It consists of
three important modules, namely, asterisk server, IVRS call flow and ASR models.

Fig. 6 Block diagram of newly developed SQS system

Fig. 7 Call flow structure of
newly developed continuous
Kannada SQS
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Table 13 Online assessment of developed SQS system by users

Total continuous Kannada speech sentences used for speech data collection 40

Total number of users tested the system 500

Earlier Kannada continuous speech SQS

Recognitions at first time 430

Recognitions at second time 34

Recognitions at third time 15

Total speech recognitions 479

Accuracy of speech recognition in percentage 95.80%

Current Kannada continuous speech SQS

Recognitions at first time 455

Recognitions at second time 26

Recognitions at third time 07

Total speech recognitions 488

Accuracy of speech recognition in percentage 97.60%

The asterisk server is used to connect the mobile calls to the server, and IVRS call flow
structure gives the entire structure and decisionmaking process of SQS. Finally, the last
module gives the least WER continuous Kannada ASR models for enhanced speech
data built by proposed noise elimination technique and Kaldi. The call flow structure
of SQS is shown in Fig. 7. The user/farmer needs to dial the toll free number. Once the
call gets connected to the server, it will play out the welcome prompt that “Welcome
to continuous Kannada speech recognition system”. Followed by, the server will ask
the user to speak the continuous Kannada speech sentence. Once the user speaks
out the sentence, the spoken sentence will be recorded in the server and preprocessed
(enhanced) using proposed noise elimination algorithm.Then, the server automatically
checks the enhanced speech sentence text format in least WER ASR models. If the
model exists for that particular enhanced speech sentence, then it will be recognized;
otherwise, the server will ask the user to speak the speech sentence again (2nd time).
If the speech sentence is recognized, then the server will ask the user that “Do you
want to check the system with other continuous speech sentence?”. If the user says
“yes”, then it will go to first stage and repeats the procedure, else it will be hanged
up. If none of the speech sentences are recognized, then the server says “Sorry!! Try
after sometime!!” at 3rd time is depicted in Fig. 7. The developed continuous Kannada
SQS is tested by 500 speakers/users. Table 13 shows the online assessment of newly
developed SQS by users under field conditions.

4 Conclusion

The design and implementation of a robust continuous Kannada ASR system by noise
reduction technique have been described in this work. The various types of noises
added in the collected continuous Kannada speech data have an adverse effect on
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the entire ASR system performance in the earlier SQS. Therefore, we have devel-
oped a robust noise reduction technique for corrupted continuous Kannada speech
data enhancement. The implementation procedural step of the proposed noise reduc-
tion algorithm was explained in detail. The proposed technique was applied to both
training and testing speech dataset. For completeness of the current work, previously
reported continuous Kannada SQS has been briefly depicted with its experimental
results and analysis. In an end-to-end SQS, the proposed noise elimination algorithm
was introduced before the speech feature extraction part. Once the test data are received
from the speaker in SQS, the noise reduction algorithm has reduced various types of
noises and recognized the continuous Kannada speech sentences. With the benefits
of the proposed speech enhancement technique, Kannada language resources and
Kaldi recipe, the obtained WER for enhanced continuous Kannada speech data was
2.23% by the combination of the proposed enhancement technique and TDNN. A
better improvement is observed in minimizing the WER of 1.87% compared to earlier
developed SQS for degraded continuous Kannada speech data. The online testing of
developed current SQS (for enhanced speech data) is also done from 500 speakers,
which revealed that there is an approximate match with online and offline accuracies
of speech recognition.
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