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Abstract
Classification of genuine and spoofed utterance is the basis formost of the countermea-
sure detecting spoof attacks on automatic speaker verification system. The choice of
a good discriminating feature and a complementing classifier adds to the robustness
of the countermeasure. Cepstral coefficients of the linear sub-band energy analysis
have proved its worth in countering unknown attacks as witnessed by the literature.
The intention behind the proposed work is to assess the behaviour of a spoof detec-
tion countermeasure using linear frequency cepstral coefficients with both generative
and discriminative classifiers. The same are considered as baseline systems for further
analysis. Parallelly, the paper proposesmodifications to the traditional weighting func-
tion used in the retrieval of energy sub-bands on linear scale in order to leverage its full
potential in spoof detection. The weighting function used is Gaussian, and hence, the
modified feature is referred as GaussFCC. The aforementioned analysis is carried out
on non-pre-emphasised utterances. The classifiers used are Gaussian mixture model
(generative) and bidirectional long short-termmemory (discriminative) classifiers. The
empirical results show that the generative classifier has performed significantly in the
detection of spoof attacks under logical access condition and discriminative classifier
has shown drastic improvement in spoof detection under physical access condition
over the generative model. Tandem detection cost function for logical access scenario
(LA) using GMM classifier is 0.000 for development data and 0.113 for evaluation
data, and in physical access scenario using BiLSTM classifier, it is 0.030 for devel-
opment data and 0.044 for evaluation data. A detailed comparative analysis of the
performance of the countermeasure is carried out based on different types of attacks,
features, classifiers and utterances from female and male speakers.
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1 Introduction

The literature in spoof detection on automatic speaker verification system has proof
of vulnerability of the system to different spoof attacks [7] and the development
of countermeasures [31] for the same. The researchers have explored the possibil-
ity of improving the robustness of the countermeasure through feature enhancement
approaches [4,16,35] and varying the choice of the classifier [37][15].

With the advent of the biometric systems [8], the area of identification and ver-
ification of the biometric traits [23] has gained momentum. The concern is about
the reliability of the system, as most of these applications are used for authentica-
tion purposes. One of the biometric traits used is the voice print [21]. An automatic
speaker verification system, on the authentication front, should prevent any fraudulent
entry. All kinds of biometric systems are vulnerable to spoof attacks including auto-
matic speaker verification (ASV) system [7]. The detection of spoof attacks on the
speaker verification system [12] is and will be an open research with the emergence of
high quality techniques imitating the naturalness of human voice [17,25] posing high
threat to the system. The research community has contributed towards this end with
feature re-engineering [22] and classification of these features with various classifiers
[9,18,37].

Linear frequency cepstral coefficient (LFCC) features-based countermeasure has
performed significantly in the detection of unknown attacks as analysed in the litera-
ture. Many researchers have chosen LFCC as the optimal candidate to fuse with other
features to improvise the performance of a countermeasure system in spoof detection.
This has been the contributing feature under both LA and PA scenario catering to
the generalised countermeasure countering different kinds of spoof attacks on ASV
system. This has motivated the authors of the paper to leverage the potential of LFCC
through fine tuning the weighting factors in the linear sub-band aiming to boost up the
discriminating characteristic of cepstrum and suppress noise as well. The feature is
tested on traditional generative classifier GMM and the discriminative classifier BiL-
STM, known for its learning capability of long-term dependencies between sequence
data which proved to be a complementary classifier for GaussFCC.

In their previous work [16], the authors have focused on capturing most of the
significant energy variations into few cepstral coefficients by obtaining the energy
variation pattern forming the basis for FBCC (filter-based cepstral coefficient) feature
extraction. This showed a significant improvement of countermeasure under both LA
and PA condition. In the current paper, the authors have chosen BiLSTM as a classifier
to classify the genuine and spoofed utterances using GaussFCC features. Here the cep-
stral coefficients capture the variations at feature level and theBiLSTMclassifier learns
bidirectional long-term dependencies between sequence cepstral coefficients for clas-
sification. Through this, a significant performance improvement of the countermeasure
could be achieved under physical access condition and comparatively good perfor-
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mance under logical access condition. Both the works indicate that a complementing
feature-classifier combination would do better spoof detection bywell-capturing time-
varying information within the sequence adding to the discrimination of spoof from
genuine utterance.

Organisation of the rest of the paper is as follows: Sect. 2 discusses about LFCC in
unknown spoof detection on ASV systems. Section 3 discusses about the corpus and
classifiers used. Section 4 explains the proposed feature for spoof detection. Section 5
discusses the performance analysis of the countermeasure using the proposed feature
with GMM and BiLSTM classifiers. This is followed by Sect. 6 for conclusion and
Sect. 7 for acknowledgement.

2 Performance of LFCC in Unknown Spoof Detection on ASV Systems

Enhancement of the discriminating nature of feature involved in speech detection is
indispensable with the increasing naturalness of the synthetic speech and replayed
speech. A feature required for classification problem needs to meticulously capture
the inter-class discrimination or intra-class affinity among the data under classification.
Challenge related to the selection of such features varies based on the application at
hand. The research community is confronted with the task of spoof detection on the
speaker verification system. This task demands a robust feature which could capture
the traces of a spoof attack on the utterance presented to the system. Research works
have led us to countermeasures with the robust features in detecting such attacks. The
countermeasure either differs in feature used in the front-end processing or classifier
used in back-end classification with good performance.

The feature re-engineering has witnessed the modified versions of the filterbank to
emphasis the frequency component of interest [27,36]. The traditionally used features
those that fall in this category are linear frequency cepstral coefficients (LFCCs), mel
frequency cepstral coefficients (MFCCs) and inverted mel frequency cepstral coeffi-
cients (IMFCCs) [33].Most of these features differ in the sub-band analysis depending
on the application under consideration. For example, LFCC, MFCC and IMFCC are
based on linear scaled, mel-scaled and inverted mel-scaled sub-band analysis, respec-
tively.

Previous research [24] has dealt with a detailed comparative analysis of features
which proved to enhance the performance of countermeasure in detecting spoof attacks
onASVsystemunderLAcondition. The performance analysis of countermeasurewith
these features is experimented with ASV spoof 2015 dataset [32]. ASV spoof 2015
dataset deals with spoofed utterances generated from ten different algorithms (S1–
S10), and the evaluation set contains both known (S1–S5) and unknown (S6–S10)
attacks. The features analysed under short-term power spectrum are filterbank-based
cepstral features, namely RFCC, LFCC,MFCC and IMFCC, all-polemodelling-based
cepstral features, namely linear prediction cepstral coefficients (LPCC), and per-
ceptual linear prediction cepstral coefficients (PLPCC), spectral flux-based feature,
namely sub-band spectral flux coefficient (SSFC), sub-band spectral centroid-based
features, namely sub-band centroid frequency coefficients (SCFC), and spectral cen-
troidmagnitude coefficients (SCMC) and under short-term phase features aremodified
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group delay function (MGDF), all-pole group delay function (APGDF), cosine-phase
function (CosPhase) and relative phase shift (RPS) and under spectral features with
long-term processing are modulation spectrum (ModSpec), shifted delta coefficients
(SDCs), frequency domain linear prediction (FDLP) andmeanHilbert envelope coeffi-
cients (MHECs). These 17 features are experimented with GMMand SVM classifiers.
The �� value of LFCC proved to be significant for unknown attacks with an aver-
age equal error rate (EER%) of 1.67 using GMM classifier outperforming the other
features.

In [33], the authors have presented a comparison of LFCC, MFCC, IMFCC and
CQCC features under PA condition. The experiments were conducted on two datasets,
namely ASVspoof 2017 and BTAS 2016. The EER% of LFCC for ASVspoof 2017
dataset was 3.31 and 2.04 for unknown attacks.

In [28], the performance of LFCC for unknown attacks is listedwith EER%of 1.670
on ASVspoof 2015 dataset. It is shown to outperform cepstral coefficients and change
in the instantaneous frequency (CFCC-IF) feature, system with i-vectors based on
MFCCs, mel frequency principal coefficients and cosine-phase principal coefficients
feature and magnitude- and phase-based feature.

In [11], with score-level fusion of LFCC and TECC (Teager energy cepstral coeffi-
cients) on ASVspoof 2017 dataset, the countermeasure outperformed fusion of TECC
with MFCC and CQCC as well.

Hence, the LFCC feature set has proved to be consistently good for detection of
a spoof attack on ASV systems as a stand-alone and as a good candidate feature for
fusion as well.

3 Database and Classifiers

3.1 Speech Corpus with Spoof and Bonafide Utterances

Speech Corpus used for the proposed work is ASVspoof 2019 corpus [29] detailed in
Table 1. The dataset is categorised into logical access (LA) and physical access (PA)
scenarios. LA access condition consists of speech synthesised and voice converted
utterances. PA access condition consists of recorded and replayed utterances. Each
of LA and PA consists of bonafide and spoofed utterances for training, development
and evaluation. The number of speakers are 8 male and 12 female. The duration of
utterances in the dataset is in the range of 1–11 s.

The training and development sets contain known attacks, and evaluation set con-
tains 2 known and 11 unknown spoofing attacks. There are six known attacks, of
which two are voice conversion (VC) systems and four from text-to-speech synthesis
(TTS) system. TTS systems use either waveform concatenation or neural network-
based speech synthesis using a conventional source-filter vocoder or aWaveNet-based
vocoder. Among 11 unknown systems, there are two VC, six TTS and three hybrid
TTS-VC systems. These are implemented with various waveform generation meth-
ods including classical vocoding, Griffin-Lim, generative adversarial networks, neural
waveform models, waveform concatenation, waveform filtering, spectral filtering and
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Table 1 ASVspoof 2019 speech corpus

Subset #utterances

Logical access (LA) Physical access (PA)

Bonafide Spoof Bonafide Spoof

Training 2580 22,800 5400 48,600

Development 2548 22,296 5400 24,300

Evaluation 7355 63,882 18,090 11,6640

their combination. The references related to the known and unknown attacks and their
implementation details are mentioned in [29].

3.2 Generative and Discriminative Classifiers

The spoof detection usingGaussFCC is explored onGMMandBiLSTM. Though both
the systems have shown significant improvement over the LFCC-based baseline sys-
temunder bothLAandPAconditions, the onewithGMMclassifier has performedwell
under LA condition and the latter has performed well under PA condition compara-
tively. In [1], the authors present a detailed discussion on generative and discriminative
models.

3.2.1 GMM Classifier

Gaussian mixture model is a generative approach where the joint distribution is con-
sidered in the model. Traditional Gaussian mixture model (GMM) [6] is used here.
Two such models are generated, one for GaussFCC features from spoofed utterances
and a second one for GaussFCC features from bonafide utterances.

The GaussFCC features from the test utterance are extracted and are presented to
the spoofed and bonafide GMM. The log likelihood scores Sb and Ssf are computed
for the bonafide and spoofed model, respectively. The log likelihood difference is
computed as λ = Sb − Ssf . Here, λ is the final score of each of the test utterance. The
positive value of λ would classify the utterance as bonafide and spoofed otherwise.
The GMM classifier used is shown in Fig. 1.

3.2.2 BiLSTM Classifier

The problem of limited long memory capability of RNN is addressed by LSTM units
with the concept of an additional hidden state to h(t), the cell state C(t). Gates remove
or add information to C(t) based on the input value x(t) and the hidden value h(t-
1). Gates are implemented using sigmoidal layer. The feature that makes LSTMmore
appealing in the field of speech processing is its “long-termdependencies” [10].Hence,
the bidirectional LSTM has the property of “long-term dependencies”.
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Fig. 1 Spoof detection in ASV
systems using GMM classifier

Fig. 2 Spoof detection in ASV systems using BiLSTM

BiLSTM is a bidirectional LSTM, in which the signal propagates in both backward
and forward direction in time. The simple architecture of the BiLSTM classifier used
here is shown in Fig. 2.

The number of frames generated for each utterance would differ based on the
duration of the speech. But for each frame, the number of cepstral coefficients retrieved
would remain the same as 120 including dynamic coefficients, namely delta and delta–
delta coefficients. The padding could be reduced by sorting the training and testing
data by sequence length, and choosing a mini-batch size so that sequences in a mini-
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Fig. 3 GaussFCC filterbank

batch have almost similar length. This is an added advantage when the application
deals with speech utterances [14].

4 Proposed Feature: GaussFCC

In our current research work, we propose to modify the weighting function of the
linearly scaled LFCC feature to enhance its capability in spoof detection on ASV
systems.Owing to the usage ofGaussianweighting energy sub-band for the retrieval of
cepstral coefficients, the proposed feature is referred as GaussFCC. TheGaussian filter
is formulated using the Gaussianmembership function represented as Gaussian(x:c,s),
where c, s represent the mean and standard deviation, respectively. The filterbank is
shown in Fig. 3.

The number of filters used for the experiments are 40. The idea is to obtain 40
cepstral coefficients. The finer spectral details are captured by the higher-order cep-
stral coefficients [19], and hence, all the 40 cepstral coefficients are retained without
discarding any. The experiments are conducted with energy sub-bands of GaussFCC
closely resembling that of LFCC. This is to experiment with GaussFCC performance
when sub-bands closely resemble that of LFCC. There are two sets of experiment
investigated in this paper based on the methods used to compute the standard devi-
ation (σ ). In the first set of experiment, the σ is approximated to a value tuned
using α-factor. The performance of countermeasure is found to be good under LA
condition when σ is computed with α set to 3 and to 2 under PA condition in the given
equation,

σ = ( fi+2 − fi )

2 ∗ α
(1)
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Fig. 4 GaussFCC filter with different σ values along with triangular filter (refer Eq. 1)

Fig. 5 GaussFCC computation flow

where fi and fi+2 are the lower and higher values of bandwidth (BW) and BW is
( fi+2− fi )

2 . The second set of experiments is tested with a constant value σ=128 at
the neighbourhood of full width half maximum region yielding good results. There
is a folded Gaussian filter set at the minimum and maximum frequency in this case.
The results of the aforementioned two sets of experiments are discussed under result
analysis section. A filter showing the placement and bandwidth of the Gaussian filter
used for the experiments is shown in Fig. 4 along with the triangular filter at the same
position for comparison, when the number of filters is 40 over a frequency ranging
from 0 to 8000Hz.

The GaussFCC feature extraction stages are shown in Fig. 5. The pre-emphasis of
the speech utterance is not performed throughout the experiments.

The additional information captured by GaussFCC as compared to the one used in
LFCC is shown in Fig. 6. The filtered energy captured for a spoofed utterance that is
detected by GaussFCC feature and missed by LFCC feature is depicted in Fig. 6. In
Fig. 7, first, second, third, fourth, twentieth and fortieth cepstral coefficients obtained
from a randomly selected sequence of frames are shown. A positive value of cepstral
coefficient indicates that spectral energy is more concentrated in the low frequency
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Fig. 6 Visualisation of the energy captured by GaussFCC (left) and LFCC (right) features (the energy
captured is of spoofed utterance detected by GaussFCC and missed by LFCC)

region and a negative value indicates thatmost of the spectral energy is concentrated on
the high frequency region [5]. The highlighted values in the figure show the significant
variation that has taken place with the change in weighting function while process-
ing the same utterance. As mentioned earlier, the idea of suggesting the change in
weighting function is to use the linearly scaled sub-band analysis to its full potential
following its success as witnessed in the literature. The statistical significance of the
GaussFCC approach is studied through the entropy computation of the probability
distribution obtained from the histograms of utterances after the application of trian-
gular and Gaussian filters. The entropy equation used is E = −∑n

i=1[Pilogb(Pi )]
and is the one introduced by Shannon [26]. The entropy of the probability distribu-
tion obtained from the triangular(Etri ) and Gaussian(Egauss) weighted filtered energy
under LA condition is 0.3571 (Etri ) and 0.2930 (Egauss) and under PA condition is
0.4026 (Etri ) and 0.3353 (Egauss). The entropy values indicate that Gaussian weight-
ing tends to elicit information more than the triangular weighting function [3]. The
robustness of the feature is further evident through the empirical results obtained when
experiment is conducted with ASVspoof 2019 corpus which is discussed under the
result analysis section. As far as linear filters are concerned, the energy analysis bands
are linearly scaled. The outcome justifies the intuitive idea that the linear filter captures
sufficient information required to detect traces of spoof attack.

4.1 Pre-emphasis or No Pre-emphasis in Spoof Detection

The paper analyses the performance of the countermeasure over feature extracted
from non-pre-emphasised utterance. Figure 8 shows the spectrum of an utterance
before and after pre-emphasis. In Fig. 8, utterance U1 is identified as spoof even after
pre-emphasis, but utterance U2 is not identified as a spoof after pre-emphasis. The
spectrum shows the energy suppressed due to pre-emphasis in Fig. 8c and d. There is
difference observed in a pre-emphasised signal from the original one, when the sound
is played. The pre-emphasis filter used for analysis is H(z) = 1 − 0.97z. U1 and U2
are the utterances captured under PA scenario. The noise could be a trace of the attack
from the record and replay devices or the ambience.
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Fig. 7 Cepstral coefficients obtained in LFCC (A) and GaussFCC (B) features (significant variations are
highlighted using circles)

5 Performance Analysis

5.1 Experimental Setup

The details of the corpus are shown inSect. 3. Themetric used for performance analysis
is a minimum tandem detection cost function (min t-DCF) [13]. The utterance is not
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(a) (b)

(d)(c)

Fig. 8 Spectrum analysis of speech utterance from ASVspoof 2019 dataset before and after pre-emphasis.
a, b are non-pre-emphasised speech utterance; c, d are pre-emphasised speech utterance

pre-emphasised. Framing is performed on the signal with a frame length of 20 ms
with an overlap of 10 ms. Windowing function used is Hanning window. 40 Gaussian
filters are used for sub-band analysis of energy. 40 cepstral coefficients are retrieved.
Considering the static and dynamic values, the feature set consists of 120 coefficients.
For the GMM classifier, the number of mixture components considered for LA is 512
and for PA is 256. Experiments were performed on development and evaluation data
under both LA and PA scenarios for 100 iterations each. BiLSTM classifier used for
classification consists of hidden layer of 64 nodes. The input sequence size is 120.
Finally a fully connected layer of two nodes, one for each bonafide and spoof class.
The minibatch size is set to be 100. The experiment was repeated for 100 epochs.
The gradient threshold is set to 1. In conventional backpropagation algorithms, error
flowing backward tends to explode or vanish depending on the weights and this in turn
hampers the learning of long time lags by the network. Gradient threshold is set to a
constant to overcome this problem which is 1 here.

5.2 Analysis I (GaussFCC1): GaussFCC with� Controlled Using˛-factor

The performance of the countermeasure is studied with the filter bandwidth set using
Eq. 1. The performance of the countermeasure was found to be significant using α = 3
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Table 2 Performance of two versions of GaussFCC using GMM classifier and BiLSTM classifier with no
pre-emphasis

Classifier (feature) Development data Evaluation data
EER% min t-DCF EER% min t-DCF

LA condition

GMM (Baseline) 0.008970 0.000179 4.475076 0.116253

GMM (GaussFCC1) 0.000000 0.000000 4.608803 0.113991

GMM (GaussFCC2) 0.000000 0.000000 4.622646 0.112665

BiLSTM (Baseline) 0.112691 0.002967 7.081146 0.145365

BiLSTM (GaussFCC1) 0.112691 0.002021 9.296747 0.169124

BiLSTM (GaussFCC2) 0.002243 0.000045 6.665340 0.098200

PA condition

GMM (Baseline) 10.705761 0.227850 12.531754 0.295905

GMM (GaussFCC1) 8.111111 0.179483 9.674032 0.232519

GMM (GaussFCC2) 9.278807 0.200293 11.298964 0.276820

BiLSTM (Baseline) 1.422840 0.042208 2.034369 0.059586

BiLSTM (GaussFCC1) 1.089506 0.030206 1.476146 0.043980

BiLSTM (GaussFCC2) 1.074074 0.030361 1.713737 0.0508

The highlighted values are the minimum of min t-DCF value compared to the baseline and the boxed values
are that of the baseline

for attacks under the logical access condition. The performance improved for attacks
under physical access condition when the α value was set to 2 in Eq. 1.

5.3 Analysis II (GaussFCC2): GaussFCC with� Set to a Constant

The constant value for σ was chosen experimentally to be 128 while analysing the
bandwidth at the neighbourhood of the full width half maximum region. Hence, the
experiments and results analysis substantiatewell the robustness of the countermeasure
to counter the attacks under LA and PA scenario with our proposed feature GaussFCC.
The performance of the countermeasure with two versions of the proposed feature
GaussFCC1 and GaussFCC2 as discussed above is shown in Table 2 for attacks under
LA scenario and under PA scenario, respectively. The experimental result shows the
performance of the countermeasure using GMM and BiLSTM classifier as well.

5.4 Analysis III: Performance Analysis of Countermeasure on Individual Attacks
Under LA and PA Conditions Using Generative and Discriminative Classifiers
for GaussFCC1 and GaussFCC2 Features

In Table 3, the spoof detection rate of the countermeasure for the individual attacks
under logical access condition is shown. The highlighted values are that of the best
results within the classifier level as compared to its baseline system, albeit GMM
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Table 4 Information on attack types under PA condition

A B C

Attacker-to-talker distance (AtoT) 10–50 50–100 > 100

Replay device quality (RdQ) Perfect High Low

Table 5 Performance of countermeasure in min t-DCF on varying both, the attacker-to-talker distance and
the quality of device

AtoT/ RdQ Development data (min t-DCF) Evaluation data (min t-DCF)

Perfect High Low Perfect High Low

GMM classifier (Baseline)

10–50 0.632662 0.100499 0.047410 0.672573 0.262827 0.118619

50–100 0.406737 0.067983 0.043795 0.496077 0.174977 0.087037

> 100 0.344977 0.057432 0.026021 0.429901 0.145975 0.082706

GMM classifier (GaussFCC1)

10–50 0.505180 0.067145 0.030873 0.538532 0.171540 0.0804054

50–100 0.322573 0.042196 0.028988 0.387406 0.128287 0.060159

> 100 0.275352 0.038956 0.021354 0.348011 0.107747 0.061419

GMM classifier (GaussFCC2)

10–50 0.587551 0.095098 0.043811 0.640236 0.234680 0.111382

50–100 0.359282 0.062935 0.042188 0.438416 0.164727 0.080514

> 100 0.290874 0.057599 0.029060 0.384840 0.137871 0.078276

BiLSTM classifier (Baseline)

10–50 0.069284 0.023194 0.014317 0.081791 0.031554 0.047080

50–100 0.054593 0.021083 0.021317 0.078274 0.035401 0.054572

> 100 0.056967 0.025675 0.021767 0.074529 0.047159 0.051098

BiLSTM classifier (GaussFCC1)

10–50 0.052888 0.020775 0.014957 0.057537 0.031206 0.033949

50–100 0.037016 0.016408 0.015064 0.053410 0.032787 0.037089

> 100 0.041217 0.024436 0.019065 0.052918 0.045190 0.037518

BiLSTM classifier (GaussFCC2)

10–50 0.044809 0.019936 0.017617 0.059490 0.045699 0.037038

50–100 0.033685 0.016970 0.016620 0.051594 0.047391 0.040982

> 100 0.036634 0.022550 0.017973 0.048330 0.060624 0.047402

Comparatively good performance obtained by BiLSTM between GaussFCC1 and GaussFCC2 features

classifier shows good spoof detection over BiLSTM classifier when the values are
compared between the classifiers for each of the features. Hence, the generative clas-
sifier performs better than the discriminative classifier for spoof detection under LA
condition.
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Table 6 Number of male and female utterances in development and evaluation dataset of ASVspoof2019
corpus

Subset #utterances

Logical access (LA) Physical access (PA)

Bonafide Spoof Bonafide Spoof

Female Male Female Male Female Male Female Male

Development 1680 868 14,904 7392 3240 2160 14,580 9720

Evaluation 5072 2283 44,226 19,656 9990 8100 65,610 51,030

In Table 4, the information on the attacker-to-talker distance [34] and three cate-
gories of quality of the replay device used to record and replay the utterances as in
ASVspoof 2019 corpus [2,20,30] is shown.

Based on the above information, the performance of the countermeasure is cap-
tured for the individual attack type under PA condition and is depicted in Table 5.
The results show that discriminative (BiLSTM) classifier is good at detecting spoof
under PA condition compared to the generative classifier. The comparison of values of
GaussFCC1 and GaussFCC2 using BiLSTM classifier depicts that both the features
are complementary and could be the optimal candidates for fusion at score level.

Table 5 shows that when the quality of the device is perfect and the attacker-to-talker
distance is varied, GaussFCC2 captures the details of the attack better compared to
other features. It also shows that when the device quality is low and the attacker-to-
talker distance is varied, GaussFCC1 captures the details of the attack better compared
to other features. Figure 4 shows that the analysis energy band for GaussFCC1 is
comparatively narrower than the one for GaussFCC2.

5.5 Analysis IV: Performance Analysis of Countermeasure on Female andMale
Speaker Utterances

Table 6 is used to show the available male and female utterances in the development
and evaluation set of ASVspoof2019 dataset. This information is used for further
analysis.

The spoof detection for male and female utterances categorised based on features
with both generative and discriminative classifiers is shown in Table 7. In paper [38],
for speaker recognition task LFCC is suggested to be the good option especially for
female trials. The results as shown in Table 7 in the case of spoof detection task, LFCC
and its modified versions GaussFCC1 and GaussFCC2 remain unbiased. The least
improvement in female trials could be attributed to the number of female utterances
being more than male utterances from Table 6.

5.6 Analysis V: Score-Level Fusion of GaussFCC1 and GaussFCC2

Tables 3, 5 and 7 show that GaussFCC1 and GaussFCC2 features are complementary
fromGMMclassifier under LA condition and fromBiLSTMunder PA condition. This
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Fig. 9 Performance comparison of baseline and proposed features using generative (GMM) and discrimi-
native (BiLSTM) classifiers

was tested with further analysis using score-level fusion of GaussFCC1 and Gauss-
FCC2 from both the classifiers and hence proves the above observation. The result of
the fusion is shown in Table 8. The highlighted values show that the performance is
comparatively good. The observations in the paper empirically prove that under LA
condition the spoof detection is good using GMM classifier with the proposed feature
(in isolation and in combination as well) and under PA condition the spoof detection
is good using BiLSTM classifier. In all the experimental outcome, both the proposed
features, namelyGaussFCC1 andGaussFCC2, have outperformed the baseline feature
traditional LFCC.

In a nutshell, the comparative analysis of the countermeasure with GaussFCC fea-
tures using both GMM and BiLSTM classifiers is depicted in Fig. 9.

The comparison shows the countermeasure performance well in countering attacks
under LA scenario when used with GMM classifier and under PA scenario with BiL-
STM classifier. To get the best out from these generative and discriminative classifiers
as suggested by the authors of [1], the research could be taken forward with classifier-
level fusion.

Based on the observations of the empirical outcome, the countermeasure has shown
robustness in spoof detection on a speaker verification system using a complementary
combination of features and classifiers as discussed. The result shows consistency of
performance by the countermeasure at all stages of analysis, namely between features,
classifiers and gender-based utterances.Hence leading to the choice of optimal features
for score-level fusion and appropriate selection of classifiers for spoof detection in an
automatic speaker verification system by experimenting on ASVspoof2019 datasets.

6 Conclusions

The literature bears the witness of good spoof detection in ASV systemwith the use of
linear frequency cepstral coefficients, in isolation and in fusion with other features as
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discussed in the paper. The authors intend to explore the possibility to bring enhance-
ment to the linear frequency-based feature so as to use the feature to its full potential
in spoof detection. This could be achieved through the modification to the weight-
ing function from triangular to Gaussian. The change in cepstral coefficients obtained
showed significant variations. Subsequently the computation of entropy over the prob-
ability distribution of Gaussian filtered energy spectrum proved that the changes in
cepstral coefficients are due to the information gain achieved using Gaussian filters.
Two variations of modified features are GaussFCC1 and GaussFCC2 as discussed.
Both these features were used with two different classifiers to detect spoof attack
under LA and PA conditions. The two classifiers used are generative (GMM) and
discriminative (BiLSTM) classifiers. The paper presents an elaborate analysis of the
empirical results with the possible combinations of features and classifiers. A study
of these combinations was carried out for female and male speaker’s utterances as
well. Throughout the analysis, the performance of the countermeasure showed con-
sistent improvement and hence empirically proved that GaussFCC1 and GaussFCC2
are optimal candidates for score-level fusion. The behaviour of generative classifier
was found to be good under LA condition and discriminative classifier under PA con-
dition. The utterances considered for the experiments were not pre-emphasised in the
time domain as per the reasons discussed in the paper. The pre-processing of speech
signals might cause loss/modification of information at each level of processing which
could be averted, and from this perspective, the paper investigates the performance of
countermeasure to spoof attack with non-pre-emphasised utterance. Further investiga-
tion could be carried out by increasing the cepstral coefficients and study the influence
of discrete cosine transform on the logarithm of Gaussian filtered energy spectrum
and subsequent impact on cepstrum.

Acknowledgements Weextend our thanks to SSNCollege ofEngineering for providing uswith the required
infrastructure to carry out our research work.
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