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Abstract
Thiswork proposes a newartificial bandwidth extension (ABE) framework for enhanc-
ing the quality of narrowband speech signals. This enhancement process recovers
missing high-frequency components of the signal. In this regard, a new bandwidth
extension process based on H∞ sampled-data control theory and machine learning
models is proposed. In addition, a little non-ideality (aliasing) is allowed in the nar-
rowband signal to get better reconstruction for the missing higher frequencies. The
H∞ sampled-data control theory works on a signal model, representing the already
available wideband signal. Direct use of this theory is not possible in the bandwidth
extension process as the signal models may not be the same for different phonemes of
speech signals, even if uttered by the same speaker due to their non-stationary behav-
ior. Hence, machine learning models are necessary. We have performed experiments
with four types of narrowband features and two types of machine learning models
approaches. The proposed method improves most of the measures when compared to
the existing techniques, such as 12% minimum improvement in log spectral distance
(LSD).

Keywords H∞-norm · Codebook · Speech production filter · Lifting

A portion of this paper is published in Interspeech 2019 held in Graz, Austria, with title “Artificial
Bandwidth Extension using H∞ Optimization”.

B Deepika Gupta
deepika.gupta@iitg.ac.in

Hanumant Singh Shekhawat
h.s.shekhawat@iitg.ac.in

Rohit Sinha
rsinha@iitg.ac.in

1 Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati,
Guwahati 781039, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-021-01925-0&domain=pdf
http://orcid.org/0000-0001-9771-8892


Circuits, Systems, and Signal Processing (2022) 41:2898–2922 2899

List of symbols
Z The set of integers
LDTI Linear discrete time invariant
R The set of real numbers
R
n n-Dimensional vector space over R

l2(Z,R) Square summable sequences in Rn

||.||2 l2-norm of a discrete sequence
↑ N Upsampler with an upsampling factor N , i.e., inserting the N-1 zero-

valued samples between two consecutive original samples for increasing
the sampling rate

↓ N Downsampler with a downsampling factor N , i.e., keeping every N th
sample and deleting the remaining samples

1 Introduction

High-fidelity voice communications preserve the quality of message signals. In the
Global System for Mobile communications (GSM), message signals are typically
sampled at the rate of 8000 samples/sec [1]. According to the Nyquist criterion, the
transmission bandwidth in the GSM happens to be narrow, i.e., limited to 0–4kHz.
Hence, frequencies in the human speech signals above the transmission bandwidth get
suppressed. As a result, the naturalness, clarity, and pleasantness of the received sig-
nals deteriorate. Therefore, digital signal processing techniques are developed, which
improve the quality of signal by extending bandwidth.More specifically, a narrowband
(NB) telephone signal sampled at 8kHz is processed to recover the frequency compo-
nents higher than 4kHz present in the original wideband (WB) signal sampled at 16
kHz. For this, the high-band (HB) information present in 4–8kHz range is extracted
from the wideband (0–8kHz) signal. The extracted high-band information is further
used in the bandwidth extension of the narrowband signal at the receiver end. This
process is called artificial bandwidth extension (ABE) for a stationary narrowband
signal. A general ABE process is shown in Fig. 1 in the case of a stationary signal.

Figure 1 consists of the transmitter setup and receiver setup. The transmitter setup
generates the narrowband signal sampled at 8kHz. Conventional transmitter setup
has a low pass filter (LPF) followed by a downsampler with a downsampling fac-

Fig. 1 Abasic block diagramdepicting the process to produce the narrowband signal and artificial bandwidth
extension of a stationary narrowband signal
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tor (↓ 2). The narrowband signal SN B[n] sampled at 8kHz is the output signal of the
transmitter-set. The receiver setup synthesizes the wideband signal. The receiver setup
consists of four processes: narrowband information extraction, high-band information
estimation, resampling process, and bandwidth extension process. In Fig. 1, ↑ 2 rep-
resents an upsampler with an upsampling factor 2, S′

N B[n′] denotes the narrowband
signal sampled at 16kHz, and S′

HB[n′] denotes the estimated high-band signal sam-
pled at 16kHz. A bandwidth extension process is applied to the received narrowband
signal SN B[n] for estimating the missing high-band signal at the receiver side. The
bandwidth extension process uses high-band information, which is estimated using
a machine learning model for given narrowband information/features. The machine
learning model is trained offline. The narrowband features are extracted from the nar-
rowband signal. In the resampling process, the resampled narrowband signal SN B[n′]
is obtained by passing the narrowband signal SN B[n] through the upsampler (↑ 2) fol-
lowed by the low pass filter. The wideband signal is estimated by adding the estimated
high-band signal S

′
HB[n′] and narrowband signal SN B[n′].

Many approaches are proposed for ABE based upon the source-filter model. In this
model, the speech signal is segregated into two parts: speech production filter (SPF) as
a vocal tract filter and excitation signal as a residue signal [52]. The excitation signal
is passed through the speech production filter to produce the speech signal. The exci-
tation signal can be either a white noise for the unvoiced speech or a quasi-periodic
impulse train for the voiced speech. The magnitude spectrum of the excitation signal
is flat in both cases: white noise and quasi-periodic impulse train. Thus, the vocal
tract filter shapes the spectral envelope of the speech signal. The spectral envelope
can be accurately modeled using a signal model containing the poles (resonances)
as well as the zeros (anti-resonances) [38]. The spectral envelope and excitation of
the high-band signal are estimated using an extrapolation process applied on the nar-
rowband signal and some extra information [17,18,32,46,47]. In existing methods for
ABE, spectral envelopes of the high-band signal and narrowband signal can be rep-
resented by linear prediction coefficients (LPC) [6], line spectral frequencies (LSF)
[35], linear frequency cepstral coefficients (Cepstrum) [2], and Mel frequency cep-
stral coefficients (MFCC) [44,53] features. These features capture poles (formants)
information present in the speech spectrum. Further, the high-band excitation can be
estimated using many different ways, i.e., bandpass-envelope modulated Gaussian
noise (BP-MGN) [47], harmonic noise model (HNM) [56], spectrum folding [17,37],
pitch adaptive modulation [28], full-wave rectification [18], and spectral translation
[18,28,37]. Another method has been proposed, which is based on the temporal enve-
lope model [30]. It uses the temporal envelope and fine structure of the sub-bands for
synthesizing the high-band speech signal. Some approaches are developed without
using any modeling, and such approaches use the magnitude spectrum to synthesize
the high-band information. A joint dictionary training model is proposed, which uti-
lizes the sparsity of the spectrogram [50]. Log spectra of thewideband signal is directly
used to represent narrowband and high-band information for ABE [11,34]. In [3], the
Cepstrum feature is used to represent the high-band information for ABE. In [8], CQT
(constant-Q transform) feature is used for ABE, but the dimension of this feature has
been taken high.
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According to [38], speech production filter can be accurately represented by a pole–
zeromodel. Many existingmethods use an all-pole model, whichmay not be sufficient
to represent the spectral envelope of speech portions like fricatives, nasals, laterals,
and the burst interval of stop consonants due to the presence of valleys in the frequency
response of the SPF [38]. In our work, the pole–zero model (we call it the signal model
also) is used to represent the spectral envelope of the wideband signal [38]. Moreover,
existing methods focus on the estimation of the high-band (HB) signal only as the
narrowband signal SN B is available at the receiver side. At the transmitter side, the
original wideband signal is passed through a near-ideal low pass filter (LPF) prior to
the downsampler to produce the narrowband signal. The decomposition of narrowband
and high-band information at the transmitter is a common technique used inmanyABE
works (see [2,35,58]), including our work reported in [21]. On account of the decom-
position of narrowband and high-band information at the transmitter, two challenges
arise for the effective ABE of the narrowband speech signal: (i) weaker conditional
dependence between narrowband and wideband specifically for the unvoiced frames
of speech and (ii) the need for the adjustment of energy levels between the estimated
high-band and the retained narrowband speech signals [44,58]. In different unvoiced
frames of speech, narrowband information is almost the same, while high-band infor-
mation varies. Therefore, it is difficult to estimate respective high-band information
for given narrowband information of the unvoiced frame. To tackle these challenges,
a new ABE framework is proposed in this work. The proposed work differs from the
existing works in two aspects. First, the narrowband signal generated at the transmitter
is no longer perfect. It can be stated that the transmitted aliased narrowband signals
may have less intelligibility, but these are hypothesized to establish the better condi-
tional dependence between narrowband and wideband information. The narrowband
signal includes aliasing distortion due to dropping the low pass filter prior to downsam-
pler (a similar approach has been used in [20] also), which helps in the estimation of
high-band information of the unvoiced speech. Because the high-band information is
reflected in the narrowband region after downsampling, which yields more variations
among the narrowband features for the unvoiced speech. This results in a better con-
ditional dependency between narrowband features and proposed wideband features
for the unvoiced speech. Second, the interpolation filter for the speech signal is esti-
mated by using the H∞ optimization/filtering, which is recommended in the literature
(especially in control) to handle variations in system models (in our case, the pole–
zero model or signal model) [51]. This has been used in [7,60] for the reconstruction
of the orchestral music signal by using a single pole–zero model. However, a single
model is not sufficient for a non-stationary signal (orchestral music and speech signal
[36,41]). Due to the non-stationary nature of speech signals, a frame-based approach
(short-time processing) is applied to speech signals, which increases the necessity of
storage for additional information about interpolation filters with their correspond-
ing narrowband details. For this, machine learning models are designed and used to
estimate the wideband information [2,9,10,17,27,28,32,35,58,59]. In this work, this
problem is solved by using two machine learning models, Gaussian mixtures model
[15] and feed-forward DNN [24].
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Fig. 2 Block diagram consists of training of a machine learning model and extension of the narrowband
signal

Fig. 3 Generation of the narrowband signal and reconstruction of the stationary wideband speech frame

2 A Proposed Setup for Artificial Bandwidth Extension of Speech
Signals

This section discusses the proposed artificial bandwidth extension framework for the
narrowband signal sampled at 8kHz. Figure 2 shows an outline of the proposed ABE
framework. It includes the windowing and framing processes, setups used at the trans-
mitter side and receiver side (explained in Sect. 2.1), processes to obtain the wideband
feature and narrowband feature for bandwidth extension (explained in Sect. 2.2), esti-
mation of wideband feature (explained in Sect. 2.3), and synthesis of the wideband
signal (explained in Sect. 2.4). The windowing and framing processes are performed
to get stationary frames/signals from non-stationary speech signals [36]. It is done by
using the Hamming window of 25 ms duration with 50% overlapping between adjoin-
ing frames. Each subblock of Fig. 2 is further explained in forthcoming subsections.

2.1 Setups Used at the Transmitter Side and Receiver Side

This section discusses the transmitter and receiver setups. These setups are combined
and drawn in Fig. 3.

The transmitter (Tx) produces the narrowband signal at the output. A wideband
speech frame is downsampled by a factor of 2 at the transmitter side. This leads to
an output narrowband speech frame yd , which is drawn in Fig. 3. This narrowband
generation process introduces distortion (aliasing) in the narrowband speech frame.
Hence, our work is focused on estimating the full wideband (0–8kHz) signal at the
receiver side. The receiver setup has three processes: narrowband information extrac-
tion, wideband information extraction, and bandwidth extension process (see Fig. 3).
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Fig. 4 Bandwidth extension process for a stationary speech frame

Fig. 5 Error system setup for the reconstruction of a stationary speech frame

Fig. 6 Proposed architecture of error system for reconstructing a stationary speech frame

These processes are used at the receiver side for estimatingwideband speech frames. A
bandwidth extension process is applied to the narrowband speech frame at the receiver
side, as shown in Fig. 4. In Fig. 4, yd is upsampled by a factor of 2 and subsequently
passed through an interpolation filter K . This leads to an estimated wideband speech
frame ŷ. The interpolation filter (K ) contains the wideband information of a signal.

Designing the filter K is the core of this work. For designing the filter K , an error
system is made by combining the wideband speech frame, narrowband generation
process, and bandwidth extension process, as shown in Fig. 5.

The synthesis filter K is designed by minimizing the reconstruction error using a
suitable norm.

In Fig. 5, e = y − ŷ. y and ŷ denote the original/true wideband speech frame and
estimated wideband speech frame, respectively.

Every discrete-time stationary speech signal can be represented by a linear dis-
crete time-invariant (LDTI) system driven by a white noise for unvoiced speech or
an impulse train for voiced speech [38]. Hence, pole–zero information about the
original wideband speech frame y is extracted in the form of a signal model F as
the speech production filter, which reflects the signal properties. In other words,
the signal model F represents the spectral envelope information of the wideband
speech frame. A modified error system containing the signal model F is given in
Fig. 6.

In Fig. 6, y is the output of system F driven by an input wd with known features.
The transfer function of F is represented by F(z). It is further assumed that F(z)
is a stable and strictly proper rational transfer function. F can be represented in the
z-domain as
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F(z) = C(zI − A)−1B,

whereA,B,C are constant real matrices of appropriate dimensions. The signal model
F(z) is computed by the standard Prony’s method-based function available in MAT-
LAB [39,40]. The obtainedmodel is causal and but may be unstable. Tomake it stable,
those poles of the model, lying outside of the unit circle, are emulated inside by recip-
rocating their magnitudes without altering the phase [38]. Note that the magnitude
spectrum of F(z) remains the same, however, the phase spectrum changes. This sta-
bilizing process does not affect too much the perception of a speech signal because
the human auditory system is less sensitive to phase information [38].

2.1.1 Performance Index

The H∞ system norm is used to minimize the reconstruction error. Because this
norm handles small modeling errors [51]. The H∞-norm of a system G with input
X ∈ l2(Z,Rn) and output Y ∈ l2(Z,Rm) is defined as (see, e.g., [13,51,60])

||G||∞ := sup
X �=0

||Y||2
||X ||2 . (1)

2.1.2 Problem Formulation

To design optimal K (z), the following optimization problem is solved.

Problem 1 Given a stable and causal F(z), design a stable and causal interpolation
filter Kopt defined as

Kopt := argminK (||T||∞), (2)

where T := F − K (↑ 2)(↓ 2)F . T maps wd to e (see Fig. 6).

As mentioned earlier, the non-stationary behavior of speech signals introduces some
uncertainty in the estimation of the signal model F(z). In such a case, H∞-norm
optimization provides a robust solution against small modeling error in F(z) [51].
Solution of Problem 1 is explained in “Appendix A.1.” It computes the optimal IIR
filter Kopt. Henceforth, Kopt is denoted by K .

2.2 Speech-SpecificWideband and Narrowband Features

The strategy explained in Sect. 2.1 is used for extending the bandwidth of the narrow-
band speech frame. Further, interpolation filters are obtained for all speech frames.
The interpolation filter K has an infinite impulse response (IIR). Practically, the IIR
filter K cannot be modeled directly by machine learning techniques. Therefore, this
filter is converted into an approximate finite impulse response (FIR) interpolation filter
by truncating its Taylor series at the origin. The number of terms in FIR interpolation
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filter is chosen 21 empirically, which is explained in Sect. 3.1. This FIR filter response
is taken as the wideband feature YK in this work.

Only narrowband information is available on the receiver side. The interpolation
filter is needed in the bandwidth extension process. For estimating the interpolation
filter, a pre-trained model is trained using the interpolation filter information and
corresponding narrowband information (narrowband feature). The pre-trained model
is further used to estimate the filter information for a given narrowband feature (see
Sect. 2.3). The narrowband information (narrowband feature) is taken in four different
ways, i.e., linear prediction coefficients (LPC) [5], line spectral frequencies (LSF)
[25], linear frequency cepstral coefficients (Cepstrum) [2], andMel frequency cepstral
coefficients (MFCC) [44,53]. These parameters are computed from the narrowband
speech frame. The dimension of the narrowband feature is fixed to 10.

2.3 Modeling andMapping

This section has details of the machine learning models used in this paper. Machine
learning models are used to estimate the FIR interpolation filter using the narrowband
feature. For this purpose, a pre-trained model is trained using the narrowband and
wideband features. In our work, machine learning models such as GMM and DNN
are used, which are explained in “Appendixes A.2 and A.3,” respectively.

2.4 Wideband Signal Estimation

The entire flow for the training of a machine learning model and extension of the
narrowband signal is shown in Fig. 2, which is used for ABE of speech signals. It can
be broadly divided into two principal blocks: training and extension. In the training
block, windowing of the wideband signal is performed first. Two parallel processes are
then performed on the windowedwideband signal. The one process is the computation
of signal model and subsequent extraction of wideband feature YK (see Sects. 2.1
and 2.2). The another one performs the downsampling of wideband speech frame
and subsequent extraction of narrowband feature X (see Sect. 2.2). Narrowband and
wideband features are modeled by GMM or DNN (see Sect. 2.3). In the extension
block, the first step is the windowing of narrowband signal and subsequent extraction
of narrowband feature X̃. Further, X̃ is mapped to the wideband feature ỸK by using
the pre-trained model. The windowed narrowband signal is upsampled by a factor
of 2 and then passed through the interpolation filter K (z). K (z) is obtained by the
estimated wideband feature ỸK . The resulting signal is multiplied by the reciprocal of
the Hamming window to estimate the wideband speech frame. Further, the overlapped
portion of two adjacent frames is estimated by averaging the overlapped parts of the
estimated wideband speech frames. In other words, the weighted overlap-add method
(WOLA) is applied [16,57].
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3 Experimental Analysis and Results

This section has a description of the speech signals, which are taken from the TIMIT
database [61] and RSR15 database [33]. Both the datasets contain the recorded speech
files at a sampling rate of 16kHz. TIMIT database consists of two different sets: test
set and training set. The training set is used for training the machine learning models,
and the test set is taken as a validation set. A new test set is made by some speech files
taken from the RSR15 dataset and used for testing the machine learning models. This
new test set has the speech files uttered by 4 female and 3 male speakers. The test set
from a different database leads to more generalized results.
Section 3.1 has the mathematical formulations of objective measures used for evaluat-
ing the proposedmethod. In Sect. 3.2, the objectivemeasures are analyzed for deciding
the dimension of thewideband feature. Further, the proposedmethod is evaluated using
the GMM model in Sect. 3.2.1 and DNN topology in Sect. 3.2.2. In Sect. 3.2.3, the
proposed method is compared with the existing methods. In Sect. 3.3, the subjective
measure is discussed.

3.1 Objective Measures

In this work, several standard objective speech quality measures such as MSE (mean
square error) [43], SDR (signal to distortion ratio) [23], LLR (log likelihood ratio)
[36,49], LSD (log spectral distance) [3], MOS-LQO (mean opinion score listening
quality objective) estimated from PESQ (perceptual evaluation of speech quality) [26,
49], and STOI (short-time objective intelligibility) [54] are computed for performance
analysis. Mathematical formulations of objective measures are written as follows

MSE =
∑L

i=1(s(i) − s̃(i))2

L
. (3)

L is the signal length, s is the original wideband signal, and s̃ is the reconstructed
wideband signal.

SDR(dB) = 10 log10

∑L
i=1(s(i)

2

∑L
i=1(s(i) − s̃(i))2

. (4)

Parameters in (4) are the same as defined in (3).

LLR =
∑M

i=1 log10
(

−→ai Tp Ric−→ai p−→ai Tc Ric−→ai c
)

M
, (5)

where M is the number of frames, −→ai c and −→ai p are the LPC vectors of the original
i th speech frame and reconstructed i th speech frame, respectively. Ric is the autocor-
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Table 1 Performance comparison of speech signals enhanced by applying an upsamplerwith an upsampling
factor 2 (without applying filter K ) and the oracle interpolation filter K in Fig. 4 on the speech files taken
from the validation set

Output subblock MSE (×10−5) SDR LLR MOS-LQO LSD STOI

Upsampler 81.1673 3.01 1.4254 3.5044 11.3135 0.9015

Interpolation filter K 4.8634 15.81 0.6547 3.8047 7.6220 0.9403

relation matrix of the original i th speech frame.

LSD =
∑M

i=1

√

(

∑N
j=1(20 log10 |X(i, j)|−20 log10 |X̃(i, j)|)2

N

)

M
, (6)

with |X(i, j)| and X̃(i, j) being the absolute values of FFT of i th frame and j th
frequency bin of the original and reconstructed speech frames, respectively. M and N
denote the number of frames and the number of frequency bins, respectively.

MOS-LQO = a + b

(1 + exp(c ∗ p + d))
(7)

with a = 0.999, b = 4.999 − a, c = −1.4945, d = 4.6607, and p is PESQ.
These measures are characterized into two major categories based on frequency and
time domain. MSE and SDR yield performance with respect to time. LLR and LSD
yield information about frequencies. MOS-LQO and STOI measures are suitable to
measure quality together in both the time and frequency domain. LLR, SDR, and
PESQ measures are computed with the help of a composite tool downloaded from the
website of the author. MOS-LQO is estimated from the PESQ [22,26].

3.2 Objective Analysis

Initially, the performance of enhanced speech signals is analyzed. The narrowband
speech signal is enhanced by applying the interpolation filter K on the upsampled nar-
rowband signal in the condition of using the oracle filter K directly in the architecture
shown in Fig. 4. The objective measures are listed in Table 1 for the wideband speech
signals estimated by the output of an upsampler with upsampling factor 2 (yd,u) and
output of the interpolation filter K (̂y).

In Table 1, the interpolation filter K improves all the objective measures signifi-
cantly.

Moreover, filter K has an infinite impulse response. It is transformed into an approx-
imate FIR filter by using the Taylor series truncation method. For deciding the length
of the truncated FIR filter, the objective measures are computed on some speech files
taken from the validation set with the varying length of the filter.
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Table 2 Performances evaluation on the speech files taken from the validation set in condition of direct
implanting FIR filter K (oracle K ) in Fig. 4 for ABE

Number of terms MSE (×10−5) SDR LLR MOS-LQO LSD STOI

11 8.9405 13.18 0.7925 3.7450 8.2260 0.9308

15 7.4762 13.74 0.7851 3.7521 8.1389 0.9319

21 6.0912 14.79 0.7233 3.7782 7.9339 0.9355

25 5.8136 15.06 0.7065 3.7810 7.8678 0.9367

31 5.6043 15.25 0.6937 3.7854 7.8078 0.9374

∞ 4.8634 15.81 0.6547 3.8047 7.6220 0.9403

In Table 2, the objective measures are improved with increasing the number of
terms present in the FIR filter, but gradually after the length 21. Hence, the filter
length is set to 21. Then, the pre-trained models GMM and DNN are obtained using
the training data information. Then, the performance of the test set is analyzed using
the pre-trained models, as described in the following subsections.
Moreover, the objective measures are analyzed for the voiced speech and unvoiced
speech of the test set separately. So, speech signals are segregated into two fundamental
parts: voiced speech and unvoiced speech by a glottal activity detection (GAD)method
[4,42]. It is a well-known fact that the narrowband region contains higher energy than
the high-band region for voiced speech and vice versa for unvoiced speech [36]. Our
proposed strategy considers the recovery of full wideband. This is because, infor-
mation present in the narrowband region is distorted because of aliasing; however,
information present in the high-band region is lost because the wideband signal is
converted into the narrowband signal. As a result, unvoiced speech and voiced speech
are affected in our transmitter setup. The main benefit of direct downsampling is the
better estimation of wideband feature for a given narrowband feature of the unvoiced
speech. Because the high-band information is reflected in the narrowband region after
downsampling, which yields more variations among the narrowband features for the
unvoiced speech. This results in the better conditional dependence between narrow-
band features and proposed wideband features for the unvoiced speech. Later, the
performance is analyzed for the voiced speech and unvoiced speech separately.

3.2.1 Performance Evaluation Using Gaussian Mixture Model

TheGMM-based regression technique is used to estimate the interpolation filter (wide-
band feature) for a given narrowband feature.GMMmodelwith 128mixtures is trained
using the narrowband features and proposed wideband features. Further, the perfor-
mance of the proposed approach using the GMM model is evaluated on the test set
for four types of narrowband features: LSF, LPC, Cepstrum, and MFCC, as done in
Table 3.

The objective measures are analyzed for these narrowband features. The LSF
narrowband feature leads to the best performance in comparison with the other nar-
rowband features.
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Table 3 Performance evaluation by using 128 GMMs on the test set

Features MSE (×10−4) SDR LLR MOS-LQO LSD STOI

LSF+ỸK 3.4667 11.17 0.6063 3.5653 7.9945 0.9028

LPC+ỸK 3.6206 10.73 0.6722 3.5629 8.4141 0.8994

Cepstrum+ỸK 3.4719 10.86 0.7192 3.5524 8.7476 0.8952

MFCC+ỸK 3.6033 10.90 0.6385 3.5642 8.2438 0.9002

FIR filter K (YK) used directly 1.7615 12.66 0.4980 3.8010 7.6397 0.9189

IIR filter K used directly 1.4563 13.52 0.4576 3.8310 7.4670 0.9231

Table 4 Performance evaluation by using 128 GMMs for voiced speech extracted from the speech signals
belonging to the test set

Features MSE (×10−4) SDR LLR MOS-LQO LSD

LSF+ỸK 4.6301 12.96 0.9279 4.1549 7.7356

LPC+ỸK 5.0784 12.13 0.9784 4.1480 7.9903

Cepstrum+ỸK 4.8338 11.93 0.9729 4.1465 8.0571

MFCC+ỸK 4.8117 12.56 0.8993 4.1562 7.7075

FIR filter K (YK) used directly 3.5890 13.30 0.9130 4.1840 7.9940

IIR filter K used directly 2.8542 14.26 0.8205 4.2055 7.6405

Table 5 Performance evaluation by using 128GMMs for unvoiced speech extracted from the speech signals
belonging to the test set

Features MSE (×10−4) SDR LLR MOS-LQO LSD

LSF+ỸK 5.0088 9.30 0.6104 3.8540 7.8360

LPC+ỸK 5.0451 8.40 0.6725 3.8504 8.2167

Cepstrum+ỸK 4.8122 7.72 0.7085 3.8380 8.5267

MFCC+ỸK 5.2222 8.58 0.6447 3.8481 8.0860

FIR filter K (YK) used directly 1.5410 10.84 0.4508 3.9947 7.2843

IIR filter K used directly 1.3833 11.27 0.4186 4.0105 7.1523

Furthermore, objective measures are tabulated in Table 4 for the voiced speech and
Table 5 for the unvoiced speech extracted from speech signals belonging to the test
set by considering the four types of narrowband feature representations.

MSE and SDRmeasures produced by using LSF narrowband feature aremore close
to their respective values obtained by using the oracle FIR filter K (YK) directly for
the voiced speech. The rest of the objective measures produced by using the MFCC
narrowband feature are leading to the lowest difference from their respective values
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Table 6 Performance evaluation on the validation set for different DNN topologies with varying the number
of hidden layers (NHL ) and the number of units (NU ), and ReLU activation function in hidden layers, linear
activation function in the output layers, LSF narrowband feature and AdaMax optimizer

Topology with ReLU activation functions Performance on the validation set

NHL NU MSE (×10−5) SDR LLR MOS-LQO LSD STOI

2 512 3.3349 15.19 0.7082 3.6948 7.7229 0.9328

2 1024 3.3347 15.20 0.7074 3.6964 7.7202 0.9329

3 128 3.3376 15.19 0.7053 3.6935 7.7166 0.9326

3 256 3.3386 15.20 0.7046 3.6966 7.7131 0.9327

3 512 3.3453 15.19 0.7055 3.6963 7.7162 0.9328

3 1024 3.3521 15.19 0.7064 3.6981 7.7207 0.9328

4 128 3.3292 15.21 0.7033 3.6908 7.7113 0.9328

4 256 3.3174 15.23 0.7023 3.6916 7.7084 0.9330

4 512 3.3247 15.22 0.7025 3.6928 7.7097 0.9330

4 1024 3.3411 15.20 0.7042 3.6924 7.7175 0.9329

FIR filter K (YK) Used directly 3.6892 14.85 0.7170 3.8086 7.9457 0.9346

IIR filter K Used directly 2.9609 15.86 0.6527 3.8252 7.6405 0.9398

obtained by usingYK directly for the voiced speech. TheCepstrumnarrowband feature
yields the lowest MSE, and the LSF narrowband feature produces the better remaining
objective measures for the unvoiced speech.

3.2.2 Performance Evaluation Using Deep Neural Network

DNN topology is used to estimate the interpolation filter coefficients. Some prelimi-
nary experiments are done to decide the parameter values forDNN topologywithfixing
the narrowband feature. An optimal DNN architecture is designed after optimizing its
parameters over the fixed LSF narrowband feature representation. AdaMax (adaptive
moment estimation based on the infinity norm) [31] optimizer is used to update the
weights of the network by applying L2 regularization empirically [24]. Experimentally
hyper-parameters such as mini-batch size, epoch, learning rate α, decay rates β1 for
the first-moment estimate and β2 for the second-moment estimate over a broad range
are set to 200, 50, 0.01, 0.9, and 0.999, respectively. Mean and variance normalization
(MVN) is applied to the features. Also, batch normalization before activation function
is applied to each hidden layer. The ReLU activation function is used in hidden layers,
and the linear activation function is used in the output layer. Performances of different
DNN topologies on the validation set are tabulated in Table 6.

The overall good performance on the validation set is acquired by four hidden layers
and 256 hidden units. Next, this architecture is trained by changing mini-batch size.
As a result, the mini-batch size is decided 50. These obtained parameters are selected
in designing the optimal DNN architecture.
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Table 7 Performance evaluation on the test set for the DNN models designed using different activation
functions such as ReLU, ELU, tanh, softplus used in hidden layers, and linear in the output layer; Number
of hidden layers (NHL ) = 4; Number of units (NU ) = 256 in each hidden layer

Features Activation functions MSE (×10−4) SDR LLR MOS-LQO LSD STOI

LSF+ỸK ReLU 3.2783 11.61 0.6350 3.5643 8.1894 0.9002

ELU 3.2978 11.61 0.6310 3.5639 8.1649 0.9021

tanh 3.2898 11.60 0.6351 3.5655 8.1652 0.9005

Softplus 3.3138 11.63 0.6321 3.5641 8.1645 0.9026

LPC+ỸK ReLU 3.2677 11.62 0.6487 3.5660 8.2687 0.9001

ELU 3.3318 11.59 0.6376 3.5661 8.2022 0.9020

tanh 3.2886 11.59 0.6392 3.5676 8.2105 0.9004

Softplus 3.3535 11.58 0.6350 3.5644 8.1882 0.9031

Cepstrum+ỸK ReLU 4.2454 9.75 0.9356 3.4481 9.6169 0.8626

ELU 4.3148 9.55 0.9193 3.4814 9.5817 0.8681

tanh 3.7744 10.06 0.9033 3.5018 9.5110 0.8708

Softplus 4.1992 9.71 0.8885 3.4949 9.4726 0.8722

MFCC+ỸK ReLU 3.5402 11.20 0.6525 3.5579 8.2966 0.8964

ELU 3.5798 11.21 0.6427 3.5586 8.2379 0.8980

tanh 3.5088 11.21 0.6442 3.5611 8.2430 0.8969

Softplus 3.5705 11.21 0.6429 3.5601 8.2372 0.8990

FIR filter K (YK) Used directly 1.7615 12.66 0.4980 3.8010 7.6397 0.9189

IIR filter K Used directly 1.4563 13.52 0.4576 3.8310 7.4670 0.9231

Moreover, different DNN models are trained with other activation functions in the
hidden layers such as ELU, tanh, and softplus. Performance on the test set is analyzed
for all the DNN architectures, as shown in Table 7.

It is analyzed that the LPC narrowband feature yields better MOS-LQO, MSE, and
STOI than the other narrowband features. On the other hand, the rest of the objective
measures in themajority of the cases are better for the LSFnarrowband feature.Among
all the activation functions, the softplus function yields the best performance in the
majority of the cases using the LSF narrowband feature. Furthermore, Tables 8 and
9 give the objective measures computed for the voiced speech and unvoiced speech
taken from the test set, respectively, with different activation functions and different
narrowband feature definitions.

The LSF narrowband feature, among all the narrowband features, yields the best
performance for voiced speech and unvoiced speech. The LSF narrowband feature
yields the best SDR, LLR, and LSD using the ELU, ReLU, and softplus activation
functions in the DNNmodel for the voiced speech, respectively. The LPC narrowband
feature yields the best MSE and MOS-LQO using the ReLU and tanh functions in
the DNN model for the voiced speech, respectively. For the unvoiced speech, the
LSF narrowband feature and ELU, tanh, and softplus functions used in designing
of the DNN model yield the closest SDR, LLR, and LSD to their respective values
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Table 8 Performance evaluation for voiced speech extracted from speech signals belonging to the test set
for the DNNmodels designed using different activation functions such as ReLU, ELU, tanh, softplus used in
hidden layers, and fixed linear activation function in the output layer; Number of hidden layers (NHL ) = 4;
Number of units (NU ) = 256 in each hidden layer

Features Activation functions MSE (×10−4) SDR LLR MOS-LQO LSD

LSF+ỸK ReLU 4.0418 13.63 0.8924 4.1548 7.6249

ELU 4.0361 13.66 0.8942 4.1550 7.6243

tanh 4.0595 13.62 0.8933 4.1558 7.6264

Softplus 4.0380 13.65 0.8941 4.1544 7.6215

LPC+ỸK ReLU 4.0240 13.53 0.8988 4.1556 7.6530

ELU 4.0643 13.57 0.8960 4.1563 7.6381

tanh 4.0613 13.53 0.8957 4.1569 7.6410

Softplus 4.0682 13.56 0.8954 4.1555 7.6314

Cepstrum+ỸK ReLU 7.4300 10.03 1.1916 4.0265 8.9441

ELU 8.0092 9.83 1.1966 4.0549 9.0048

tanh 6.4668 10.34 1.1516 4.0870 8.8377

Softplus 7.5313 9.94 1.1718 4.0668 8.9233

MFCC+ỸK ReLU 4.4334 12.98 0.9238 4.1508 7.7619

ELU 4.4389 13.04 0.9191 4.1519 7.7386

tanh 4.4283 13.00 0.9197 4.1533 7.7441

Softplus 4.4286 13.04 0.9183 4.1523 7.7307

FIR filter K (YK) Used directly 3.5890 13.30 0.9130 4.1840 7.9940

IIR filter K Used directly 2.8542 14.26 0.8205 4.2055 7.6405

obtained by using oracle YK directly, respectively. The DNN model designed using
the ELU activation function and Cepstrum narrowband feature yield the best MSE for
the unvoiced speech. The DNN model designed using the softplus activation function
and LPC narrowband feature yield the best MOS-LQO for the unvoiced speech.

3.2.3 Comparisons

Our proposed method is compared with the existing methods based on the conven-
tional source-filter model wherein the excitation signal is extended by two different
ways such as spectrum folding [17,37,58] and spectrum translation [37,44]. Experi-
mental conditions such as datasets, dimensions of narrowband and wideband features,
windowing, and DNN model are kept the same. The LSF features are used to repre-
sent the narrowband feature and wideband feature. Also, these methods require a gain
factor, which is calculated by following [58] for spectrum folding and [44] spectral
translation. The cepstral domain method is also compared in which the narrowband
feature is the narrowbandmagnitude spectrum and the wideband feature is represented
by cepstral coefficients [3].

Moreover, these techniques are implemented by using the low pass filter for gener-
ating the narrowband signal. Here, the low pass filter is a non-causal FIR filter defined
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Table 9 Performance evaluation for the unvoiced speech extracted from speech files belonging to the test
set for the DNN models with considering different activation functions such as ReLU, ELU, tanh, softplus
used in hidden layers, and fixed linear activation function in the output layer; Number of hidden layers
(NHL ) = 4; Number of units (NU ) = 256 in each hidden layer

Features Activation functions MSE (×10−4) SDR LLR MOS-LQO LSD

LSF+ỸK ReLU 5.0273 9.42 0.6365 3.8445 8.0101

ELU 5.0752 9.49 0.6339 3.8453 7.9882

tanh 5.0406 9.46 0.6332 3.8464 7.9888

Softplus 5.1033 9.44 0.6367 3.8457 7.9930

LPC+ỸK ReLU 5.0134 9.23 0.6473 3.8451 8.0846

ELU 5.1456 9.33 0.6406 3.8460 8.0306

tanh 5.0434 9.30 0.6395 3.8464 8.0314

Softplus 5.1937 9.29 0.6409 3.8477 8.0236

Cepstrum+ỸK ReLU 4.4418 6.02 0.9379 3.7447 9.3435

ELU 4.0677 6.11 0.9120 3.7735 9.2829

tanh 4.0885 6.24 0.8941 3.7837 9.2438

Softplus 4.2634 6.25 0.8805 3.7791 9.1869

MFCC+ỸK ReLU 5.3710 8.80 0.6604 3.8406 8.1386

ELU 5.4654 8.90 0.6535 3.8413 8.0874

tanh 5.2900 8.91 0.6510 3.8428 8.0861

Softplus 5.4495 8.89 0.6543 3.8419 8.0885

FIR filter K (YK) Used directly 1.5410 10.84 0.4508 3.9947 7.2843

IIR filter K Used directly 1.3833 11.27 0.4186 4.0105 7.1523

Table 10 Acomparison of the objectivemeasures computed on the test set speech files for differentmethods

Methods MSE (×10−4) SDR LLR MOS-LQO LSD STOI

Spectrum folding method 10.0877 4.95 0.8688 4.4135 9.3018 0.9192

Spectral translation 9.9643 5.00 0.7917 4.3487 9.4874 0.9291

Cepstral domain 9.8040 5.09 0.7136 4.4102 9.4502 0.9208

Proposed method 3.3138 11.61 0.6321 3.5641 8.1645 0.9026

in [1]. Cut off frequency of the LPF filter is 3660Hz. The length of this filter is 118.
Non-causality of this filter introduces a delay in transmission.

As seen in Table 10, the proposed method improves all the objective measures
except the MOS-LQO and STOI when compared with the existing methods. MOS-
LQO and STOI values are obtained better by the existing methods. It may be due to the
available original narrowband information. In the existing methods, the narrowband
signal is generated by using the low pass filter. Therefore, the narrowband information
does not alter.

Next, spectrograms of the estimated speech signals are shown in Fig. 7, which
are estimated by the proposed, spectrum folding, spectral translation, and cepstral



2914 Circuits, Systems, and Signal Processing (2022) 41:2898–2922

Fig. 7 Spectrogram of a original wideband signal, b, c, d, and e reconstructed wideband signal by proposed
method, spectrum folding, spectral translation (e) cepstral domain, respectively

domain methods using the same DNN model. As viewed in Fig. 7, the spectrogram
of the extended speech signal has more difference around 4kHz from the original
spectrogram for the existing methods than the proposed method. It has happened
because of the energy levels adjustment issue around 4 kHz in the existing methods. It
is observed around 0.9 s and 0.77 s in Fig. 7 that the estimated high-band information
is more close to the original high-band information by the proposed method than the
existing methods. However, the estimated high-band information around 7–8kHz and
0.40–0.55 s in Fig. 7 is observed more than the original information by the proposed
method when compared with the existing methods.

3.3 Subjective Listening Test

Subjective assessment is done according to the ITU-T P.800 [48, Annex E] for exam-
ining the speech quality. This task is done for the extended speech signals obtained
by the proposed method, spectrum folding method, spectrum translation method, and
cepstral domain method using the DNN model with the softplus activation function.
Extended wideband speech files by the proposed method are rated with respect to
extended wideband speech files by the existing methods. Ten pairs of extended speech
signals belonging to the test set are randomly chosen for these methods, i.e., 60 files
total. Then, twelve listeners were asked to give a mean opinion score (MOS) value
between -3 (much worse) to 3 (much better). The ages of these listeners are between
23 and 32 years. These listeners do not have any hearing impairment and understand
well English language. They were permitted to listen to the speech files more than
once. Further, 95% confidence interval (CI) and p values are computed for measur-
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Table 11 Subjective assessment on artificially extended speech files belonging to the test set by the proposed
method with respect to the existing methods

Conditions CMOS CI p

Spectrum folding versus proposed method 1.80 [1.5806 2.0194] < .001

Spectral translation versus proposed method 0.96 [0.7704 1.1546] < .001

Cepstral domain versus proposed method 1.59 [1.3589 1.8161 ] < .001

ing statistical significance. Then, the comparison mean opinion score (CMOS), 95%
confidence interval (CI), and p values are listed in Table 11.

Our proposed method improves CMOS significantly by 1.80, 0.96, and 1.59 points
in comparison with the spectrum folding, spectral translation, and cepstral domain,
respectively. Unvoiced phonemes are perceived better in the extended speech files
using the proposed method than the existing methods. For reference, the speech files
are provided for all the conditions that can be accessed using the link.1

4 Conclusion

A new framework (which capitalizes on artificially introduced non-ideality in the
narrowband signal) is proposed for the artificial bandwidth extension of speech signals.
In our proposed framework, the transmitter setup is different from the existing setup,
which helps mainly in identifying the high-frequency components for the unvoiced
speech. The discrete interpolation filter is obtained by using a signal model with
the help of H∞ optimization. The obtained rational stable and causal interpolation
filter is converted into an FIR filter empirically. This FIR filter is considered as the
wideband feature. Experiments are performedby considering four types of narrowband
features such as LSF, LPC, MFCC, and Cepstrum. Estimation of wideband feature
for a given narrowband feature is conducted by two different modeling techniques
such as GMM and DNN with several topologies. Performance is analyzed on the test
set speech files taken from the RSR15 database by computing the standard objective
measures: SDR,MSE,MOS-LQO, LLR, STOI, and LSD and subjective listening test.
Also, the objective measures are analyzed for the voiced speech and unvoiced speech
separately. The proposed method gives better results except for the MOS-LQO and
STOI objective measures in comparison with the existing methods using the DNN
model. In the listening test, CMOS is achieved higher by the proposed method than
the existing methods.

Data Availability Two datasets are used in this study. First is the TIMIT database, which can be accessed
on the link (https://deepai.org/dataset/timit). Second is the RSR15 database, which is available on the
link (https://projets-lium.univ-lemans.fr/sidekit/tutorial/RSR2015.html). However, restrictions are applied
to the availability of the RSR15 database. Therefore, it is not publicly available.

1 https://drive.google.com/file/d/1DFTuI98EUlWb2PJ4fHQzvck3k0Yai0Pd/view?usp=sharing.

https://deepai.org/dataset/timit
https://projets-lium.univ-lemans.fr/sidekit/tutorial/RSR2015.html
https://drive.google.com/file/d/1DFTuI98EUlWb2PJ4fHQzvck3k0Yai0Pd/view?usp=sharing
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A Appendix

A.1 Solution of Problem 1

Solution of Problem 1 is essentially from [12,60]. The error system T in Fig. 6 is
a multi-rate system because of the presence of the upsampler and downsampler. It
can be transformed into a single rate system T by using the lifting operation [12,13].
Discrete-time lifting operator L by a factor of N is defined by LN in the time domain
and it is defined as [13]

LN : l2(Z,R) → l2(Z,RN ), (8)

{

v[0], v[1], ., v[N − 1], v[N ], v[N + 1], ., v[2N − 1].. } →

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v[0] v[N ]
v[1] v[N + 1]
. . . . .

. .

v[N − 1] v[2N − 1]

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(9)

It is straight forward to see that LN is an invertible operator. The z-transform repre-
sentations of lifting and inverse lifting are [55,60]

LN = (↓ N )
[

1 z z2 ..... zN−1
]T

(10a)

L−1
N = [

1 z−1 z−2 ..... z−(N−1)
]

(↑ N ). (10b)

The following standard result shows effect of input and output lifting on the state space
representation of a system.

Proposition 1 Let transfer function G(z) be represented in state space as

G(z) :=
[

A B
C D

]

= D + C(zI − A)−1B, (11)

with A ∈ R
N×N ,B ∈ R

N×p,C ∈ R
m×N ,D ∈ R

m×p matrices, m and p being the
dimensions of output and input of G(z), respectively. Next, the lifted (by a factor of 2)
transfer function of G(z) in state space form is represented as

G(z) := L2G(z)L−1
2 =

⎡

⎣

A2 AB B
C
CA

D 0
CB D

⎤

⎦ (12)

where L2 and L−1
2 can be obtained by using (10).

Proof See [13, Theorem 8.2.1]. 
�
The following results are

K (z)(↑ 2) =L−1
2 K̃ (z),
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Fig. 8 Standard control unit
consists of an open-loop transfer
function, along with a feedback
system K̃ (z) imposed for
stability

K (z) = [

1 z−1
]

K̃ (z2), (13)

with K̃ (z) := K (z)
[

1 0
]T
1×2 and K (z) := L2K (z)L−1

2 . In z-domain, the error system
T can be written as

T(z) = F(z) − L−1
2 K̃ (z)(↓ 2)F(z). (14)

Thus, F(z) and K̃ (z) are transfer functions at different sampling rates. Hence, lifting
the input and output of T by a factor of 2 gives the lifted transfer function of T.
Therefore,

T(z) = L2T(z)L−1
2

= F(z) − K̃ (z)SF(z), (15)

with S = [

1 0
]

and F(z) := L2F(z)L−1
2 . The lifting converts T into a single rate

system T. Note that the norm is not altered after introducing the lifting, i.e., ||T||∞ =
||T||∞ [13]. It implies that minimizing the H∞-norm of system T will automatically
minimize the H∞-norm of system T. Further, the minimum H∞ gain of T is found
by designing the filter K̃ (z). Equation (15) can be written in the form of a standard
discrete control system as depicted in Fig. 8, which is an observer-based controller
design problem in the control literature [13].

In Fig. 8, I is an identitymatrix of 2×2, 0 is a vector of dimension 1×2, w̃d = L2wd ,
and ẽ = L2e. Now, an optimal causal and stable filter K̃opt(z) is obtained using the
robust control toolbox in MATLAB [14,19]. Finally, Kopt(z) is computed from the
filter K̃opt(z) by using (13).

Remark 1 For downsampling by a factor N, see [12,60].

A.2 GaussianMixture Model

A feature vector Z ∈ R
31 is formed by concatenating the narrowband feature X of

dimension R
10 and the corresponding wideband feature YK of dimension R

21. The
feature vector Z is modeled by the Gaussian mixture model (GMM) for obtaining the
joint probability distribution function (pdf) of the narrowband featureX and wideband
featureYK [15]. Thepdf ofZ ismodeledby the summationof theweightedmultivariate
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Gaussian distributions as written

p(Z|λ) =
M

∑

i=1

wi p(Z|µzi ,Σzzi ), (16)

with wi being the contribution of the i th Gaussian distribution out of M clusters and
p(Z|μzi ,Σzzi ) denotes the corresponding Gaussian pdf of Z . It is written as

p(Z|μzi ,Σzzi ) = 1

(2π)d/2|Σzzi |1/2
e− (Z−¯zi )

T Σ
−1
zzi

(Z−¯zi )
2 , (17)

with d dimension of feature vector Z, and μzi and Σzzi being the mean vector and
covariance matrix of Gaussian pdf, respectively, and they are defined as

μzi =
[

μxi
μyk i

]

, (18)

Σzzi =
[

Σxxi Σxyk i
Σykxi Σykyk i

]

, (19)

where μxi and μyk i are mean vectors of X and YK, respectively. Σxxi and Σykyk i are
covariance matrices of X and YK, respectively. Σxyk i and Σykxi are cross-covariance
matrices of X and YK, respectively. For estimating parameters of the GMM, the
expectation–maximization [15] algorithm is used that gives the maximum likelihood
solutions, i.e., maximize the probability of generating the feature vectors from the
model. This leads to a joint pdf of X and YK.

In testing phase, the wideband feature vector is estimated using the joint pdf for
a given narrowband feature vector X̃. For this, a mapping function f (X̃) is found by
considering the minimum mean squared error (MMSE) criteria [29]. Mean squared
error

εmse = E[||YK − f (X̃)||2], (20)

is computed, where YK and f (X̃) represent the original and corresponding estimated
wideband feature for a given narrowband feature vector X̃, respectively. To solve
(20), Bayesian estimation theory is used that gives a mapping function. This mapping
function is a conditional mean of ỸK given X̃ and defined as [45]

f (X̃) =E(ỸK |X̃), (21)

=
M

∑

i=1

αi (X̃)[μyk i + Σykxi Σ
−1
xxi (X̃ − μxi )], (22)
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where

αi (X̃) = wi p(X̃|μxi ,Σxxi )
∑M

l=1 wl p(X̃|μxl ,Σxxl )
. (23)

The weighting function αi (X̃) is a posterior probability of i th component in the
Gaussian mixture distribution from which, feature vector X̃ is generated. f (X̃) is
the mapping function, which maps the given narrowband feature vector X̃ to ỸK . E
denotes the expectation. p(X̃|μxi ,Σxxi ) denotes the Gaussian pdf of X̃ corresponding
to i th cluster. ỸK denotes the estimated wideband feature vector, which is used in the
artificial bandwidth extension of speech signal.

A.3 Deep Neural Network

Deep neural network (DNN) is used to estimate the wideband feature vector ỸK for
a given narrowband feature vector X̃ [24]. DNN model has a variety of different
parameters, such as activation functions, number of hidden layers, number of units in
each hidden layer, learning rate, regularizations, optimizers, loss functions, and mini-
batch size, which need to be checked empirically to design an optimal DNNmodel. A
DNN feed-forward topology architecture is made up of N number of layers, consisting
of N − 1 hidden layers and one output layer. The output of the i th layer for sample
index n is defined as

hin = fi (Wihi−1
n + bi), 1 ≤ i ≤ N , (24)

whereWi and bi signify the weight and bias parameters, respectively. fi (.) represents
the nonlinear activation function, and hin is the output of i th layer. An output (hNn ) of
the N th layer yields the estimated wideband feature vector and an input (h0n) to the
first layer is the narrowband feature vector. In (24), the weight and bias are unknown
parameters, which are initialized with some random value. Further, the mean squared
error is considered as a loss function (α), which is minimized to obtain the optimal
weight Wi

opt and bias biopt values of each layer as defined

α = 1

T

T
∑

n=1

||hNn − Yn
K||22, (25)

(Wi
opt,b

i
opt) = argminWi,bi(α), (26)

with T being themini-batch size, andYn
K denotes the original wideband feature vector.
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