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Abstract

This paper introduces a new filter based on a Takagi—Sugeno (T-S) fuzzy augmented
ensemble unscented Kalman filter (FAEnUKEF) for a class of nonlinear stochastic sys-
tems with multiplicative fault and noise. Multiplying a nonlinear term on the fault
signal generates a non-Gaussian noise which cannot be optimally estimated by the
Kalman filter. One way to resolve this problem is to transform the nonlinear system to
several T-S fuzzy systems with Gaussian noise. Using the sector nonlinearity model,
the nonlinear term can be derived as constant matrices for each fuzzy rule. Thus,
fuzzy augmented UKFs (AUKFs) are designed for state and fault estimation. Using
Lyapunov’s stability theory, the convergence conditions of the developed filter algo-
rithm are presented as a theorem. In addition, the boundedness of the error covariance
matrix of the proposed algorithm is discussed theoretically. Finally, selected illustrative
examples to evaluate the effectiveness of the FAEnUKF are presented. Comparisons
between the FAEnUKF and the augmented extended Kalman filter (AEKF) and the
AUKF are made in a numerical example. The simulation results showed the robustness
of the fuzzy ensemble UKF for modeling the non-Gaussian noise. Despite the increase
in the number of calculations in this method, the root-mean-square error (RMSE) is
less than other filters.

Keywords State and fault estimation - Nonlinear stochastic systems - Non-Gaussian
noise - Multiplicative fault - T-S fuzzy model - Augmented unscented Kalman filter

1 Introduction

Studies and developments, which have been made over the last few decades in the
area of fault diagnosis, aim to improve the performance and reliability of industrial
systems, and meet the environmental and safety requirements [6, 22, 54]. The fault is
modeled as a signal or a function of system dynamics due to its effect on the system’s
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physics. If the fault is added to the system equations, it is called an additive fault [54,
55]. A multiplicative fault, which is usually a signal, is defined as a fault multiplied
by a function of system dynamics [4, 22, 33, 57]. Fault estimation, which is used
in the design of fault-tolerant control (FTC) systems and the course of maintenance
for the equipment, is one of the crucial areas of studying the fault [22, 23, 25]. Fault
estimation represents the value of the fault signal [6]. The dynamic model of the
system, fault modeling, and system conditions have led to the introduction of various
design methods for fault estimators. The estimators, which are divided into observer
and filter, are designed in linear and nonlinear forms [9].

The most common observers for fault estimation include robust observers [15,
23, 54, 55], sliding mode observers (SMOs) [4, 25], adaptive observers [4, 23], and
unknown input observers (UIOs) [52, 54, 57]. Robust observers have been used for
systems with bounded parameters and functions where the optimization problem is
solved by linear matrix inequalities (LMI) [54, 55]. Metaheuristic methods inspired by
nature have been implemented as an auxiliary approach for optimizing and tuning the
estimation methods. Some examples of such methods include ant colony, genetic algo-
rithm (GA), bat algorithm, bee colony, levy flight, and whale optimization algorithm
(WOA) [3, 16, 20, 30, 34]. The model-based method has been used for fault diagnosis
in the electrohydraulic suspension system, which obtained the optimal point by the
bat algorithm in the global system for the observer design [20]. The optimal Sugeno
fuzzy controllers for wind turbine system with actuator fault using the WOA were
presented in [30]. Also, the system parameters including time response, overshoot,
and steady-state error were compared to those that have been achieved using the GA
and gray wolf optimizer (GWO). Furthermore, the GA and the bee colony algorithms
have also been employed to optimize the neural network coefficients in fault diagnosis
[3]. The sliding mode has been implemented for uncertainty factors such as model,
chaos, disturbance, and fault [4, 25, 44, 45]. SMO has been known as a robust observer
approach for fault estimation [4, 25]. A robust adaptive SMO, which was used for the
FTC of a single-link flexible joint robot system in [4], was presented based on the fuzzy
model of the system with multiplicative fault. SMO was evaluated for the uncertain
actuator and sensor faults in the active suspension systems for the design of the FTC
[25]. The existence of disturbances and control delays in the wing flutter system was
led to an adaptive observer for fault estimation and control design [23]. A UIO can
be designed with algebraic and differential approaches for the system dynamic model
[52, 54]. Unknown input can include disturbance, fault, or even noise. Also, a robust
observer was designed for a system with unknown disturbance and additive fault using
the Hyo performance [54]. In [57], a robust UIO was investigated in order to estimate
multiplicative fault in a nonlinear system with unknown uncertainty and disturbance.

Stochastic systems use filters for fault estimation due to noise signals. The Kalman
filter is a typical method in research and industrial applications [1, 5, 10, 17, 29]. The
Kalman filter, which is optimal in the linear system with Gaussian noise, has been
used for fault diagnosis [17]. A three-stage augmented Kalman filter was designed to
estimate state, fault, and disturbance [5]. A two-stage exogenous Kalman filter was
used to estimate the dynamics of an actuator time-varying fault in the attitude control
system (ACS) [10]. A robust Kalman filter has been used for fault estimation when
there is an uncertainty parameter in the stochastic system [29]. The EKF by Jacobian
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matrices estimates state variables of the nonlinear system where faults are modeled as
additive and multiplicative [41]. The most useful Kalman filter for nonlinear systems
is the UKF [11, 13, 31, 35, 48], and this filter and the EKF were compared to estimate
the short-circuit fault in the permanent magnet synchronous generator (PMSG) [13].
One of the cases in which the UKF has been used is fault estimation in the ACS of
satellite and spacecraft, which includes two-stage UKF [11] and adaptive UKF [31,
35, 48]. In [11], the two-stage UKF algorithm was presented to estimate the bias fault
of the reaction wheel actuator. The adaptive UKF approach was introduced in [31]
to improve the accuracy of the fault estimation performed on the reaction wheel. As
noted earlier, the covariance matrix can be adapted to improve the estimation [35].
The adaptive UKF with the multiple-model adaptive estimation was performed for
sensor fault estimation in a descriptor system [48]. The robust AUKF can be used
to estimate unknown disturbances and faults [49]. A method based on the UKF was
proposed to estimate the multiplicative fault in the nonlinear function of the system’s
input and output. Using the Gaussian mixture model (GMM), the non-Gaussian noise
was converted into several Gaussian noises [36].

The T-S fuzzy model has been used for fault estimation, developed based on fuzzy
IF-THEN rules [4, 57]. A T-S locally linear model can be used for approximating
nonlinear dynamics. A robust observer for the T-S systems has been introduced in
[8, 12, 26, 27, 40, 56]. Based on the sensor and actuator faults estimation, the Hy,
performance based on observer known as FTC has been designed [8, 12, 26, 40].
The design of the robust observer in the fuzzy dynamic system was performed due
to disturbance [26] and unknown input [8]. In the permanent magnet DC motor [8],
there is an uncertainty of the model and an unknown parameter in the system with
noise and actuator fault. Fuzzy UIOs have been designed for a nonlinear system with
an additive fault [27, 52, 56] and multiplicative fault [S7]. The fault was modeled by
the intermittent occurrence with the Bernoulli distribution in [37]. Since the norm of
the fault signal was limited, an SMO was used for estimation. An adaptive observer
was introduced to the design of the FTC, using the solution of Lyapunov inequality
in a continuously stirred reactor system [47]. The idea of using Kalman filters in
stochastic fuzzy systems for state and fault estimation was expressed in [38, 39, 42].
The T-S model described a nonlinear system using the Kalman filter for state and fault
estimation in [39]. A descriptor Kalman filter was designed to estimate sensor and
actuator multiplicative random faults for a nonlinear system with unknown dynamics
[38].

Table 1 shows the system models and the performed fault estimation methods.
This table shows the classification of references based on the system model (linear
or nonlinear), the fault model (additive or multiplicative), the parameter multiplied
by the fault, and the estimation method (observer or filter). In previous studies, a
multiplicative fault was not fully discussed, and the fault was only multiplied by a
function of state variables [4, 57]. On the other hand, in filter-based methods for fault
estimation, the noise was assumed to be Gaussian, so the conventional Kalman filters
have been used [5, 10, 11, 13, 17, 29, 31, 35, 41, 48, 49]. In closed-loop systems,
the effect of the system output on the dynamic equations is related to the form of
feedback. If the actuator fault appears due to a multiplicative fault, the fault signal
is multiplied by a nonlinear function of the reference input and noise output. Thus,
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Table 1 Fault estimation methodologies
System model Fault model Parameter Estimator References
multiplied by
the fault
Linear Additive - Observer Robust UIO [2, 38]
Robust [4, 11, 36]
Robust adaptive  [8]
T-S Robust [33, 35]
T-S UIO [12,37]
Fuzzy SMO [39]
Filter T-S AKF [42]
T-S KF [43]
3-Stage KF [22]
Multiplicative X, u Observer Robust [3]
u Robust LPV [5]
F(u, y) T-S Robust [6]
UIO
Nonlinear Additive - Observer Fuzzy SMO [9]
T-S Robust [34]
T-S Adaptive [40]
Artificial bee [16]
colony
Filter 2-Stage KF [23]
Robust KF [24]
EKF and UKF [26]
2-Stage robust [27]
AUKF
Adaptive UKF [28, 30]
3-Stage robust [31]
AUKF
Multiplicative F(x, u) Observer Adaptive fuzzy [7]
SMO
X Robust BA [13]
X Filter KF [21]
X AEKF [25]
u Adaptive UKF [29]
F(u, y) UKF-GMM [32]
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the non-Gaussian element is produced in the system model. In addition, the systems
under study with fault are modeled using linear or nonlinear equations. In contrast, the
T-S fuzzy method has been used to transform a nonlinear system into a linear model.
This study introduces an estimator for a class of stochastic nonlinear systems with
a multiplicative fault to eliminate non-Gaussian factors by T-S model and improve
estimation. The main novelties and contributions of this work are as follows:

1. Aclass of nonlinear systems in which the fault is multiplied by a nonlinear function
of the output has been considered.

2. An online fault estimator has been provided for T-S fuzzy model systems.

3. A Kalman filter has been introduced to estimate the state with a non-Gaussian
process equation.

4. An ensemble fuzzy UKF whose stability has been proved is presented for fault
estimation.

The structure of the paper is organized as follows. Section 2 introduces the system
description with multiplicative faults. Section 3 describes the T-S fuzzy system and
proposes a fuzzy UKF for fault estimation. In Sect. 3.1, the error dynamics and algo-
rithm of the FAEnUKEF are presented. Also, the computational load and complexity of
the proposed algorithm are evaluated. The convergence proof of the error estimation
is performed in Sect. 3.2, using the Lyapunov function. In Sect. 3.3, the fact that the
covariance matrix as one of the parameters of filter performance has an upper bound is
proved. Section 4 includes two numerical examples to demonstrate the effectiveness
of the proposed estimator. In the first example, the performance of this method is eval-
uated by comparing against the AEKF and the AUKF. According to the simulation
results of Example 1, the FAEnUKF method has been used as a filter for states and
fault estimation in the inverted pendulum. Finally, the simulation results, discussion,
and conclusions are presented in Sect. 5.

2 The Problem Statement and Preliminaries

Equation (1) represents a class of nonlinear time-varying discrete-time stochastic sys-
tems with multiplicative faults and additive noises, described as follows:

Xkt = f O, wg) + Fr(ue, yi) fo + o )
Vil = h(Xka1, Ugs1) + Fo(ir1, Xee1) frea1 + Ppat

where x; € R” is the state vector,u;, € R? is the control input, and y; € R™ is the
output vector at time k. f(xg, ugx) € R” and h(xy, ur) € R™ are nonlinear functions
of the state variables and the control input and are differentiable concerning x and u.
fx is the multiplicative fault vector. The dynamic matrix Fj(ug, yi) fr displays the
actuator and component faults, and the matrix F, (uy, xi) fi displays the sensor fault.
The fault dynamic is generated by [5, 49]:

Sir1 = fx e 2
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The process noise wy, the measurement noise ¥, and the noise €; are zero-mean
white noises with covariance matrices Q,, R, and Q. fo is uncorrelated with
the system noises. Another assumption is that the noise signals referred to in these
equations are independent.

The dynamic model (1) is more comprehensive than the models which are rep-
resented for fault estimation. For example, the multiplicative fault was employed as
a parameter which was multiplied in the dynamic of the three-tank system [22] or
as a multiplicative signal which was multiplied in the dynamic function of the state
variables in the single-link flexible joint robot arm [4]. To achieve a physical model
(1), we can allude to closed-loop systems with noisy output feedback.

Considering the system model (1) and inserting the measurement function into the
process equation, the process equivalent noise will be a non-Gaussian noise as follows
[36]:

Wi = Fi(ug, h(xg, ug) + Fa(ug, xi) fr + 0) fao + o

This noise is a nonlinear function of the states, the fault, and the system noises. As
mentioned, the UKF may not work correctly for this class of systems. The solution
presented in the next section is to use a T—S fuzzy model to convert this non-Gaussian
noise factor into Gaussian noise.

Remark 1 The nonlinear system (1) should satisfy the nonlinear observability rank
condition.

3 State and Fault Estimator Design

According to the definition and hypothesis of the system model (1), we state the
principles of the proposed filter design based on the UKF for the state variables and
the multiplicative fault estimation. The augmented state vector is defined as X; =

|:XE”‘ i| = |:xk :|, and the dynamic system (1) can be rewritten as follows:
Xeok Sk

Xour = [f(Xelk, ur) + Fy(ug, }’k)Xe2k:| [wk]
k+l = +
Xeog €k

Vel = h(Xetjr1s Uks1) + Fo(urs1, Xetge1) Xe2k1 + il

3

Now to use the UKF to estimation the system model (3), we convert the model into
a usable model with Gaussian noise.

3.1 T-S Fuzzy Model

Using sector nonlinearity transformation, the nonlinear function Fj(ug, yi) is con-
verted into a constant matrix E; for each fuzzy set. A T-S fuzzy model for the process

Birkhauser



2572 Circuits, Systems, and Signal Processing (2022) 41:2566-2594

Eqg. (3) can be obtained under the following condition [42, 57]:

R TR0 (u, y)is M, ..., Op(u, y)is ME

THEN X}y = |:f(Xe1k’ ug) + EiXeZk:| + [wk]
Xe2k €k

where i = 1, ..., r is the number of fuzzy rules, Mﬁn is the fuzzy set, and 6,, (u, y)

is the premise variable.
The final outputs of nonlinear T-S fuzzy systems are inferred as follows:

Xpr1 =Y hi(®u, y))<|:f(Xelk’ ug) + EiXeZk] . [wk D
i=1

Xeok €k
Virl = h(Xe1ga1> k1) + F2(pe1s Xetka) Xe2ie1 + Dkl “4)
where 0(u, y) = [61(u, ), 62(ut, y), ..., 6, (u, y)] is the premise variable vector

and %; (0 (u, y)) is the normalized membership function defined as

Vief{l,....,r}0<h;j(O(u, y)) <1
i hi@u, y) =1

By simplifying (4), Eq. (5) will be obtained:

Xe1k> uk) + E; X ,
Xi,k+1:|:f( ele k) + Ei EZk}+[€:i|=Fi(Xk, Uk) + Weqy,

Xeok (&)

Vel = H (X1, ups1) + Dpet

The nonlinear function F; (X, uy) states that for any fuzzy rule 7, there is anonlinear
system. This method eliminates the dependence of the process noise on the state
variables. The mean and covariance of w,q, will be as follows:

E{weq} = E{[Zﬂ} N [8]n+1x1

Qu, 0

(6)
COU(a)eqk) = E{weql/weqlT} = [ 0 Qeki| = Qeqkaj,l
n+lxn+l

where §;; denotes the Kronecker delta function, and when j = [, §;; = 1. The
estimator for the nonlinear system (5) is considered as a UKF. With this proposed
model, the ensemble UKF is designed for each fuzzy set, and when this method is
integrated, it provides estimated states.

3.2 The FAEnUKF Algorithm

Considering the fuzzy form (5), for the augmented state estimation, the proposed fuzzy
UKEF algorithm is expressed as follows:
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Step 1 The estimation initial values of the augmented system state and their covari-
ance matrix are considered as Xoand Py, .
Step 2 The (2(n + 1) + 1) sigma points yj are generated as follows [46]:

X = X

Xk(”=7fk+[v("+1+K)Pk] s=1,2,....n+1 %)
X = Xy — [,/(n 1+ A)P,j]
N

Here, n + 1 is the number of augmented state variables and []; represents the sth
real row of the matrix square root.

Step 3 The update sigma points X i, k+1|k that are obtained for each fuzzy rule in the
dynamic model (5) are as follows:

Xk = F (0 w). s =01, 20+ 1) @®)

The augmented state prediction and covariance matrix are calculated by the process
noise:

2(n+1)
Xk = Yy w™X 4 ©9)
s=0

2(n+l1)

R R R . N T
P, o= Y ws(‘)(Xff)kHlk - Xi,k+l|k) (X,-(,S}Huk - Xi, k+1\k> + Qg (10)
s=0

Step 4 The state estimation of the nonlinear system (2) by defuzzification (4) is as
follows:

A r A
Xt = 2 hi (0@, y)Xi, g1k
A = A (1D
PXk+l|k = Z hi (0 (u, y))PXk+l|k
i=1

Step 5 The measurement estimation updates Y+ % that are obtained from the mea-
surement Eq. (5) are as follows:

T = H(f(fj”k, uk+1), s=0,1,...,2n+1) (12)

The predicted mean and covariance of the measurement signal are obtained by the
measurement noise:

2n+1)
Y = Z ws(m)/y\(ksluk (13)
s=0
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. ~ 2(n+1) O <) R ) R T A
Py, = Z W\ Vw11 — Yit1ik Vil — Yirik) + Ry (14)
s=0

There is no correlation between the process noise and the measurement noise at
different times, so:

2(n+1)

N ~ ~ N T
Pxy, = Y wl® (Xfﬁuk - Xk+uk) (yii)uk - Yk+1|k) (15)
s=0

The weights in (9), (10), (13—15), and the scaling parameter of the UKF algorithm
are derived from [46].

Step 6 The UKF gain Ky, the estimated augmented state, and covariance are cal-
culated as follows:

Kis1 = Py, 13y_k+11 (16)

Xis1 = )?k+l|k + K1 (Vk+1 — ?k+1|k) an
5 5 5 T

PXk+l|k = PXkH\k — Kk+1 Pyiyy Kiyy (18)

Repeat steps 2—6 for the next sample.

Remark 2 Proper selection of the membership functions and convergence of UKFs
are the main difficulties of using this method. The number of UKFs depends on the
number of fuzzy rules, which also affects the computational volume. Another point that
discusses the algorithm is the implementation of the method, which is examined from
the computational complexity of the algorithm [2, 43]. The order of computational
complexity of the FAEnUKF is O(n,%) (see Appendix A), which is equal to the order
of the EKF and UKF methods [1, 2, 43].

3.3 Stability of the FAEnUKF
In this section, we want to prove the stability by defining Lyapunov’s function from

the estimation error of the proposed algorithm.
First, define the estimation error for the fuzzy model (4):

r r
Xit = Xiat — Xpst = Y b0, ) (Xi g1 — Xigs1) = D hi@, ) Xi ka1
i=1 i=1
19)
The prediction error is defined as

X stk = X1 — ?A(kmk (20)
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Assuming that the functions F; (X, u#) and H (X, u) are differentiable at X, &, accord-
ing to [7], the Taylor series expansion can be presented as

Xin = Y hi@, ) (Fi(Re) + VE (R e+ + B+ oeg ) 21

i=1

The Jacobian matrices are as follows:

0F; (X oF; (X
i,k:M ,Bi,kZM , Hy
0X X=X, ou Uil
0H (X, u) D 0H (X, u)
= -— N k = -—
90X X=Xy du u=u

The prediction error can eventually be obtained by using (20) and (21) as

Xi kel = @ik Fy k Xk + Weqy, (22)
From (5), the measurement error is as follows:

Fit1 = Brst Hirr X k1 + Dksl (23)

The unknown diagonal matrices «;  and B; complete the first-order linearization
model in (22) and (23). By using (22), the real covariance matrix of the augmented
state is written as follows:

_ Y . el — .  F. . P T .
PXi,k+1|k = E{Xl’k+1\kxi,k+l|k} = O‘t,kFl,kPXk Fi,kal’k + APXi,kJrllk + Qeqk (24)

The matrix APy y4qx is the calculated difference between a; i F;, kﬁXk Fi,Tk“i, k

andE ai,kFi,kf(kaT Fi’kTa,-,k } The predicted covariance matrix calculated in (10)
will be as

A

Px

o 5 T ~
ikl at,kFt,kPXk Fl’kal,k + QEqI,k (25)

where the covariance matrix of Qeq,- . 1s defined as Qeq,. i = Qeqr tAQk+APYX,
8 Px; K+
(24). For the matrix Q. to always be positive, the matrix AQy is added to (10),

following [50]. Similarly, the covariance matrices ﬁx vy, and ﬁyk can be written as
follows:

. and 8 Px, ., is the difference between Py, ., and FA’X,.’HW{ in (10) and

ﬁxy,m = ﬁxk+1|k (Best Hie)T + APxy,,, +8Pxy,,, (26)

Py, = Bt Hit Px oy (Brst His)T + APy, + 8Py, + Ry, (27)
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From [24J’ by introcAlucing the stochastic matrix ¢ and the matrix © = Sy Hy ()T
from (26), Pxy,,, = Px kel @,{ The covariance matrix (18) and the FAEnUKF gain
matrix (16) are obtained as follows:

T
5 5 b T
Pxpn = PXk+l|k - Kk+l<PXk+1|k ®k+]> (28)
_ P T b T 5 -1 _ P T p—1 o)
K1 = Px,,, Oka1| Oks1 Px | Opyp + Rier = Px, . O Ry (29)
where
Rt = Py, — O Py, O (30)

From the inverse of (28) and using (29), (31) is obtained as

Pyl =Pyl 4O R Ok (31)

k+1 k+1]k

Lemma 1 [51] According to the system (4), the parameters hi(0)and rare defined.
Also, the matrix Px, € R"™" is a positive definite matrix, and X; € R"*™is the
state vector. It can be followed as

r r r
Y h@X] Px, Y hiO)Xjx <Y hi@X] Px, Xix (32)
i=1 j=1 i=1

Lemma 2 [21] Assuming that matrices V, Y > 0, the matrix inversion lemma is
vl > (w+r) L

Lemma 3 Reif etal. [32]said that if &is the stochastic variable and there is a stochas-
tic V (&x)as well as real numbers,Vpqayx, Unin, i > 0, and 0 < A < lsuch that Vk

Uninl&1* < V(&) < Unax &)1 (33)

E[VEDIE-1] = V(E-1) < — AV (1) (34)
are fulfilled, then the V (§;) is bounded in mean square, that is,

P
D (=P (35)
p=1

E{”fk”z} < 1”"—“f‘E[||§0||2}(1 PN

min min

According to Assumptions 1 and 2 in [50], the assumptions are developed to prove
the stability of the FAEnUKEF as follows:

Assumption 1 There exist real value constants o; min, %, max> fi.min> fi.max> Bmins

ﬂmax, hmim
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hmaxs> Omins Omax # 0 such that the following bounds on various matrices are
satisfied for every k > 0:

fi,min21 =< Fi,kFi,kT =< fi,max2l

i min’l < ik’ < i max®l
hmin < 1 Hk | < hinax (36)
Bmin 1Bkl < Bmax

Omin < ”@k”f Omax

IA

Assumption 2 There are real numbers Pi,min> Pi,max> Pmin> Pmax> qmin> 9max,

—~ —~
qi,min> 4i,max»

Fmax> Tmins Tmax > 0 such that the matrix is bounded via:

pi,minl < ﬁX,vyk =< pi,maxl
Gmin] < Qeqk =< gmax!
éi,minl =< Qeqi,k = quaxI
Ri < rmax!

fminl = R\k < ;maxl (37)

Theorem 1 Let Assumptions 1 and 2 for fuzzy subsystems are satisfied, then the esti-
mation error Xis bounded in mean square.

Proof Consider the Lyapunov function candidate as

Vk+1<}~(k+l) = (f(k+1>T<ﬁXk+l)_l<f(k+l) (38)

According to Assumption 2 and (11), the matrix Py 11 18 limited. So, the Lyapunov
function is limited:

- 2 -2
X X
| Xrerll - | Xkt ll

< Vi (ikﬂ) S (39)

pmax

From Lemma 1 and estimation errors (19), (22), and (23), the following equation
will be derived:

- - T/, -1, ~
Vie+1 (Xk+l) = (Xk+l|k - Kk+1}’k+l) (ka+1) (Xk+1\k - Kk+1yk+|)

u - T/ -1 -
= Zhi(F))(af,kFi,ka +weqk) (PXk+1) (O‘i,kFi,ka +weq)
i=1

,
. T
-> ki (9)[ﬁk+1 Hpy1 (Dli,kFi,ka + weqk> + 19k+1]
i=1

T (s 3
x KL, (PXk+l) (a,-’kF,-’ka +weqk)
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- T, . —1
- (ai,kFi,ka +weqk) (PXM )
X Ky [5k+1 Hyy (O‘i,kFi,kil« +weqk) + ﬁk+1]
- T 1 (s -1
+ [ﬁk+1 Hyyq (D‘i,kFi,ka + weqk) + l9k+1] K (ka+] )

K1 [ﬂk+l Hyy1 (a;,kF;,kffk + weqk) + ﬂk+|] (40)

By taking a conditional expectation from (40), and using the conditional expectation

properties where E {5( k‘f( = X «[28], it can be shown that

E{ Vi+1 ()_(k+1)| Xkl

" - ~
> hi 0 (oti,kFi,k)?k)T (ﬁx,m) I (ai,kFi,ka)
i=1
. -1
r ; (Brs1 Hest) T KL (Px K1 Bee1 Hal
-E ‘*';hi ) (O‘iAVkFiA,ka)T " kH) .

T 5 5 -1 1
— (Bi+1 Hie1) K'<T+1(ka+1) _(kan) Kit1 Bkl Hil s

(ai,kFi,k’?k) )f(k

41)
where (g1 1S

Mk+1

A —1
(Best Hen)T KL (ka+1> Kicy1Brr1 Hiy1

-1 -1
T A A
=E (@ | — Bt Hi)" K (PXM) - (ka+1) K1 Br1 Hicv 1 | @egy

N -1
+ (PXk+1)

1
T T D
+ 01 Ky (ka+1) Ki+10%+1

(42)
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Inserting (25) into (31), and using Lemma 2, for fuzzy sets with /; (6) # 0, the first
item in (40) may establish that

z N A -1 -
> hi @ (i Fiae) (Pr)  (cnkFiee)

i=1

r r -1
= X1 hi@)(eikFii) (Z h ,-(e)ﬁxjk+l> (ot 6 Fio i) X
i:l i=1 (43)
+X[ Zhi(9)(0ti,kﬂ,k)T@;{+11é[+ll O+ (i, k Fi k) Xk < Vi <)~(k>
i=1

r
+X7 Z hi(9)(0!i,kﬂ,k)T@;Z+11§;:1 Op+1 (Oéi,kFi,k)X’k

i=1
Focus on the second term in (41). Using (29) and Lemma 2, it can be shown that

(Brs1 Hes1)T KT (ﬁxkﬂ)il K1 Be+1 Hial
xI Xr;hi ® (i xFip)" — (Bes1 Hee1)” KL, (f’xkﬂ)_l (. Fi k)
i—
- (ﬁXkH )71 K1 Bt Hic1 (44)
— (Brat Hiet) " Ry Ora1 P,

.
% = %T S T T 51 5 T a1 P

X=X D 0 O) (i kFi k) | +(Bret Hie1) Rg Ot Py OF 1 Rl Bet i | (i 1 Fi k) Xk

i=l1

5 T a1

—ka+1®k+le+1/3k+lHk+l

By inserting (43) and (44) into (41), (45) can be written as:

{Vk+l (Xk+l)} Xk} - Vi (Xk)
<@r-1 )?,{ﬁ;kl)?k
®kT+11%k_+11 Ok+1
r T p—1 5 T p-1
< 7|+ Brr1 Hi+1)™ Ry Okt Pxyyy Opy Ry Biert Hirl
+XkTZhi (0) (i, 1 Fi k) r Aki] S e
i — (Brr1 His1)" Ry Opel Pxyyy
_ISan ®IZ+1 Iék_+11 Bier1 Hir1
(i k Fik) Xk + et
(45)

Now, using Ar+1 and 4y that are introduced in Appendix B, the inequality (45)
can be rewritten as follows:

E{ Vi1 (an) ’Xk} - Vi (&) =< Mmax — Me+1 Vi (&) (46)
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Therefore, Lemma 3 is applied and can be shown as

P

- 2 - 2 w
E{I%enl} = 2 LU0} 0 = ain* + 22530 = di)” @)

min Pmin =1

Finally, (47) is fulfilled to guarantee the boundedness of X k-

Remark 3 The matrices F; k, o r, Hi, and B in Assumption 1 are assumed to be
bounded. These assumptions are also given in [24, 50]. This limitation is applied to
estimate a finite physical system under (36) and (37) conditions. However, relatively
significant changes in the diagonal matrices «; x and By will affect the choice of Ay,
WUmax and the potential loss of stability.

Remark 4 The matrix Qeqi, . needs to be positively defined for the stability of the
modified AUKF. The inequality (43) is obtained using Lemma 2 and knowing the
positivity of the matrix Qeq,-, «- Also, the system noise covariance matrix Q.4 and Ry
should be bounded.

Remark 5 To confirm the stability of Theorem 1, Assumptions 1 and 2 must be satisfied
in that these inequalities depend on the number of fuzzy rules defined in (4).

3.4 Boundedness of the Error Covariance Matrix for the FAEnUKF

One of the performance criteria for filter design is the boundedness of the error covari-
ance matrix [19, 28]. Based on Theorem 1, the estimation error of the proposed filter
is bounded. This Sect. proves that the covariance matrix is bounded if the assumptions
of Theorem 1, together with the condition of Theorem 2, are satisfied.

Lemma 4 [19] The matrices ¥, Y € R" and ¥, Y > 0, then (¥ + T)_l >yl
(7t o\ ol

Theorem 2 Suppose the linearized form of the nonlinear system (1), and there are
real numbers in Assumptions 1 and 2, and real scalarPp,, > 0, also the matrix
Oy are invertible, then the expectation of the covariance matrix will be bounded and

E{ISX]{H ] = Pmaxl-
The proof of Theorem 2 is given in Appendix C.

Remark 6 The matrix E i ﬁxk ] is dependent on system dynamics and the covariance

matrices Q.4 andRy. According to Sect. 1, if the process noise is not converted to
Gaussian noise, the upper bound of the covariance matrix is dependent on the state
variables and fault signal and is not restricted.
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4 Simulation Examples

Simulation examples are provided to verify the performance of the proposed fuzzy
fault estimator scheme based on the UKF. In Example 1, the proposed scheme is
evaluated using the EKF and the UKF. Also, in Example 2, the FAEnUKF method
is implemented on the physical system of an inverted pendulum on a cart [14, 53],
whose parameters are selected based on Reference [14]. To evaluate the effectiveness
of the proposed method, MATLAB R2018b software and a computer with a CPU of
2.4 GHz and 8 GB installed memory (RAM) as the hardware have been used.

Example 1 Consider the following nonlinear discrete-time system with the multiplica-
tive fault and additive Gaussian noises:

Xlks+1 = Sin(x1x)cos(xox) + ug fx + w1x
X2k41 = COS(X14)C0S(X2x) + Uk i > fic + wag (48)
Vil = SIN(X gy 1)SIN(X2441) + X1 st Sl + Vit

The nonlinear functions Fi (ug, yr) = |: "k 2i| and F>(ug, xx) = x1; are multi-
Uk Yk

plied as matrix functions in the fault signal. By augmenting the fault as the state of
the system, the following is obtained:

sin(X1)cos(Xoy) + ur X3x

Xpe1 = | cos(X1g)cos(Xop) +upye Xzp | + ok 49)
X3k
Y+l = SIn(X 1 )SIN(X2441) + X 1441 X341 + Dir
W1k
o = | woy | and Y are zero-mean white noises with covariance matrices Q, =
€k

0.0113x3 and Ry, = 0.01. The input signal uy = 5sin(0.05 *x pi x k/Ty), and Ty, =

0.5s is the sample time. The initial conditions are given by Xo = [ 10.01 2]T and
Pxo = 0.11343.

In Sect. 2, Egs. (1) and (2) describe that the process equivalent noise Wy is non-
Gaussian as can be seen in the distribution of the second element of this noise (W, )
in Fig. 1.

By defining the fuzzy sets (4) where 6 (u, y) = u; x> which is a premise variable,
6(u, y) is bounded to:

—5<u;p <S5, 2437 <y <224

Using the polytopic transformation of the sector nonlinearity method and choosing
the membership functionsas i1 (6 (u, y)) = 06—60/60—60 and h2 (6 (u, y)) = 60—-6/60—-0,

the premise variable will be 6(u, y) = h1(.)0 + h2(3§. Therefore, a local dynami_c

model as illustrated in (4) is established.
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The proposed method FAEnUKEF, the conventional EKF [18, 41], and the UKF [24,
46, 50] are simulated in Fig. 2. This figure shows the actual state vector x, X2y, and
the fault f; and estimated values from each filter.

To evaluate the performance of the proposed method, compare the estimation error
represented by the root-mean-square error (RMSE). The RMSE of the state vector
with N samples is calculated by

1 ~ 5
RMSE(Xy) = * N};(Xk — Xp) (50)

The simulation results for the methods based on the Kalman filter are presented in
Table 2. The estimation error depends on the system and noise model. The estimation
error of the FAEnUKF and the AEKF is less than the AUKEF, due to the presence of
a conversion of the non-Gaussian noise Wy to Gaussian noise. The accuracy of the
FAEnUKEF is better than that of the AEKF method because it does not approximate the
nonlinear system. The AEKF and the AUKF include non-Gaussian noise as a function
of multiplying the states in the output noise, and in the AUKEF, in addition to this noise,
the second order of the output noise is multiplied by the states, which has negatively
affected the estimation.

Table 3 shows the mean and variance of the estimation error by performing 100
Monte Carlo simulations. The resulting high variance of the EKF is the derivative of
the dynamic function. Also, the execution time of these filters can be seen in this table.
As mentioned in Remark 2, the execution time of the FAEnUKF algorithm is longer
due to the higher computational load. On the other hand, as presented in Table 4 the
computational complexity of the FAEnUKF with two fuzzy rules is O(12n,%).

Table 2 Estimation error of the
FAEnUKEF, the AUKF, and the =~ RMSE

AEKF
Augmented state FAEnUKF AUKF AEKF
X1 1.03 2.62 1.71
X2 11.21 28.73 19.77
fault 0.09 0.25 0.2

Table 3 Performance benchmark of the FAEnUKEF, the AUKF, and the AEKF

FAEnAUKF AUKF AEKF

Algorithm execution time (s) 1.530814 0.718516 0.629351
Monte Carlo (100 simulations) Mean 3.9047 15.6026 9.5144
Var 1.4580 2.7863 5.2860
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Table 4 Computational

complexity for fuzzy UKF Equation number o)
algorithm
™ n}
®) 2rng O(F; ()
© 4rn’
(10) 6rn¢37
(11) 4rng O(h; (6(.)))
(12) 2nq O(H(.))
(13) 4ngm?
(14) 6nam2
(15) 4nZm
(16) 2nam2
a7 2ngm
(18) 3n3

In Fig. 3, the trace of the covariance matrix ﬁxk for each method is shown. It
is expected the Kalman filters will converge faster than the FAEnUKEF, but due to
the presence of nonlinear noise in the system model, the conventional Kalman filters
converge less quickly and with more error.

Figure 4 shows the expectation of the covariance matrix ﬁxk for the FAEnUKE. As
presented in Theorem 2 and Remark 6, the covariance matrix is bounded. From (64),
the upper bound is Py,qx = 0.45.

Example 2 Inthis example, the output feedback of the discrete-time inverted pendulum
on a cart with the multiplicative actuator fault and additive sensor fault is considered:

X1kl = Tyxop +X14 + 01

. amlxz%sin(lek)
gsin(xy, x ) ——— 55— —acos(xy)uk fi
X2kl = Ts( (o1.0) T +Xog + Wk (51)

% —amlcos?(x1x)

Vitl = X1ge1 + fral + Oprt

where x1j is the angle of the pendulum from the vertical position and xj; is the
angular velocity. uy is the control signal, and the discrete-time PID controller gains
are K, = 200, K; = 20, K; = 50, and filter time 7y = 0.002s. g = 9.8m/s2 is
the gravity acceleration, m = 2kg is the pendulum mass, M = 8kg is the cart mass,
2] = 1isthe pendulum length,a = 1/(m+ M), and Ty = 1ms is the sample time. The
reference input is y,; = % The covariances of zero-mean noises are Q, = 10_813X3

and Ry, = 0.0001. The initial augmented state conditions are Xo = [1 0 0.5 ]T and
Pxo = 103I3,3.
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Due to the presence of noise in the error signal and uy, the non-Gaussian noise
factor will be as follows:

—acos(x1)ug

Ou, y) =
Y % —amlcos?(x1y)

where 6(u, y) € [—0.06,0.01] and the membership functions are chosen as
h1(@(u, y)) = (0.01 —6)/0.07 and hy(6(u, y)) = (6 +0.06)/0.07. So, the T-S
. . 0 0
fuzzy model will be (4) and the system matrices are E; = [—0.06]’ E, = [0'01 :|
The reference and output signals in normal mode and faulty mode are shown in
Fig. 5. The linear controller provides a stability in the system in the presence of a fault,
but the steady-state error has increased. The control signal u is shown in Fig. 6.
The actual states and fault and their estimates are shown in Fig. 7. The state estima-
tion error is initially high due to sudden changes over time. Conversely, the estimation
error also decreases as well. Figure 8 presents that the fuzzy filter estimates the actual
fault signal f; with a small estimation error.

5 Conclusion

In this work, a novel optimal estimator was proposed for the state and fault estimation
with a T-S fuzzy model based on the UKF for discrete-time nonlinear systems with
a multiplicative fault. This method was investigated due to the influence of the non-
Gaussian factor on the nonlinear system. The conventional UKF did not provide an
appropriate estimator for the non-Gaussian system. However, the use of the UKF and
the fuzzy model estimation for the state and fault improved the results. The Lyapunov
function was employed to prove the stability of the proposed filter. The proof of the
stability of this filter depends on the assumptions of the UKF and the number of fuzzy
rules. Next, the covariance matrix was bounded in this method. The performance of
the AEKF, the AUKEF, and the FAEnUKF was demonstrated by numerical simulations.
The AEKF and the AUKF showed a higher estimation error than the FAEnUKF due to
the linearization of the nonlinear system model and non-Gaussian noise, respectively.
The FAEnUKF was robust under the non-Gaussian noise changes. The fuzzy filter
calculations were greater than the other two methods because this filter simultane-
ously calculated the ensemble UKFs and membership functions for each fuzzy set.
The effects of this technique were illustrated for fault estimation in output feedback
systems, e.g., the inverted pendulum system.
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Appendix A

According to [2, 43], the computational complexity for the proposed filter algorithm
can be expressed in Table 4, where n,, p, and m are the sizes of the augmented state,
input, and output. r is the number of fuzzy rules.

Appendix B

In this Sect., Ax and w4, are employed to get Lemma 3. Now, by definition A is
given as follows:

et = X[
T -1
|:(®k+1 — Bre1His1)' Ry (Oket — Brat Hir1)

.
> hi ©) (@ikFig)” . o1 (i, k Fi k)
— (Ber Hiet) " (®k+1 PXyoy 1 O + Rk+l) Br+1 Hirl (52)

i=1
+(r—1) Byl
X

Xie/ Vi (f(k)

According to conditions (36) and (37), the following matrix inequality is obtained:

,
T ~_
Zhi (0)(ati,k Fi k) [(®k+l - ,3k+1Hk+1)TRk+11 (Or+1 — ,3k+1Hk+l)] (i, kFik) =0

i=1

(53)
Amin 18 chosen by Assumptions 1 and 2, and using (11) and (25):
Mert Vi (f(k) = Amin Vi (f(k)
= 1) iy
A 5T - 2 2 2 - v (54)
- - i hi (9)0”'2, max‘ﬂ?maxﬁ%ax-hrznax JZ::1 me emi"'pmi"uj'mi"'fj’mi" ezt
= +9;%11n-‘?j,miu + Fmin
With respect to (34), the following condition must also be confirmed:
M+l Vk(f(k) — Vk(f(k) < 0> Ay < 1 (55)
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Therefore,

M1 Vi (f(k) — Vi (f(k)

. (Oks1 — Brat Hist)T Rl (Oat — Brot Herl)
= XZ Zhi ) (ai,kFi_k)T T R r N —1
i=1 — (Bk+1His1)" | Oks1Px Op1 + Rivt ) Biew1 Heal 56
k+1k

(ot,"kF,"k) +(r—2) ﬁ;kl Xk

For (56), derived from conditions (36) and (37), we obtain

A1 Vi (f(k) = Vi (Xk)

-1
(Omax — Bmin- mm) rmm

r
vT 2 2
= Xk Zhi(g)ai,min'-fi,min

i=1 mm mm (Z h] ©) (

2 2 -1 -1 |3
max-Pmax -0 max-fj, mdx)) +(r =2)ppin | Xk <0

+9max-‘1/‘, max + Fmax

(57

From (54) and (57), we get 0 < Ag41 < 1.
Now, from (42), including noises w4, and ¥+1, and (29), pi+1 will be:

Weq

T -1 5 T a1
r (Br+1His1)" Riyy ©ke1 Pxy,; Opat Rigy Bist Hirl
weqk
—E
Mk+1 Xk 1

T 5—1 5

_(ﬁk+1 Hk+1) R Ok+1 PXk+1 PXk+1 Ok+1 k+15k+1 Hyyp + Py
T p—1 D T p—1

1 Rir Okr1 Pxp g Okt Ry Okt

T
T D T p—1 D D T p-—1
lge (1= Pry O R B Bt ) (P ) (1= Py OF i Rl Bt Hit gy (58)

Il
y

T 3lg 5. o p-l
1 Ry Okt Pxpyy Ot Ry Pkt

Knowing that tr(A + B) = tr(A) + tr(B) and Eq. (58) is scalar, traces are taken
on both sides of (58)

T -1 (1
(’_PXk+IOk+1Rk+1ﬂk+lHk+l) (PXk+1) ~ T A—1 Qeqk

i+l = —Pxp 11 Okt Riy1 B 1 Hicl
+1r( 19k+1 PXk+lOk+] k+1)Rk+l
gmax (fmax - I’min-emin'/~3min~hmin)2 02, -Pmax -"max
S L+ max M
.22 72
Pmin-"max "min
A
= Kmax (59)
Appendix C

This appendix presents the proof of Theorem 2.
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Proof

For each fuzzy set, inserting (28) and (29) in (25) and rearranging the terms, we
obtain

5 5 5 T 5 P P T 5

PX, i =o¢,-’kFl-’k|:PXk‘k_l =P, % [@"P)‘k\k_u ef +Rk] OkPx :|Fi$ko¢,-’k+ Oeq, (60)

By definition ¥ = ®kﬁxk\k—l @kT andY = k\k, and applying Lemma 4:

ﬁX,'JH”k < ai,kFi,k|:®]zlﬁk®]:T:|Fkaai,k + Qeqk (61)
Using Assumptions 1 and 2 for the upper bound (61), we obtain

o) -2 A 2 2 ~ L~
PXi,k+1\k =< emin-rmaxﬂi,max-fi,max +gmaxI = pil (62)

The upper bound of ISXZ.‘ Kellk is shown in (62). From (31) and Lemma 2, we obtain

.
P = PXo = > O, y)Pil (63)
i=1

From h; (6 (u, y)) = 0, (18) and (63), the following is obtained:

El by} = ELY mi@w, )il } 2 P (64)
i=1

Thus, from Theorem 2, the upper bound P, is obtained.
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