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Abstract
Bipolar disorder is a serious psychiatric disorder characterized by periodic episodes of
manic and depressive symptomatology. Due to the high percentage of people suffering
from severe bipolar and depressive disorders, the modelling, characterisation, classi-
fication and diagnostic analysis of these mental disorders are of vital importance in
medical research. Electroencephalogram (EEG) records offer important information
to enhance clinical diagnosis and are widely used in hospitals. For this reason, EEG
records and patient data from the Virgen de la Luz Hospital were used in this work. In
this paper, an extremegradient boosting (XGB)machine learning (ML)method involv-
ing an EEG signal is proposed. Four supervised ML algorithms including a k-nearest
neighbours (KNN), decision tree (DT), Gaussian Naïve Bayes (GNB) and support
vector machine (SVM) were compared with the proposed XGB method. The perfor-
mance of these methods was tested implementing a standard 10-fold cross-validation
process. The results indicate that theXGBhas the best prediction accuracy (94%), high
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precision (> 0.94) and high recall (> 0.94). The KNN, SVM, and DT approaches also
present moderate prediction accuracy (> 87), moderate recall (> 0.87) and moderate
precision (> 0.87). The GNB algorithm shows relatively low classification perfor-
mance. Based on these results for classification performance and prediction accuracy,
the XGB is a solid candidate for a correct classification of patients with bipolar disor-
der. These findings suggest that XGB system trained with clinical data may serve as
a new tool to assist in the diagnosis of patients with bipolar disorder.

Keywords Machine learning · Extreme gradient boosting · Biomedical signals ·
Bipolar disorders

1 Introduction

The electroencephalogram (EEG) signals show information of the synchronous com-
ponents of the multiple electrical activity. The study of the EEG can reveal a variety
of behavioural, pathological and drug patterns, due to which its usefulness in medical
applications has increased. Nowadays, the EEG has been a very useful and important
part in the analysis of brain functions, diagnosis and treatment of mental diseases.
Therefore, it is important to research the properties of brain waves in mental diseases
and to utilise the results in medical applications, including early diagnosis, predic-
tion, rehabilitation and treatment. Visual EEG analysis for pathology detection varies
according to human experience. Therefore, an automatic diagnosis of a bipolar disor-
ders is important in medical settings [46].

On the other hand, early diagnosis of bipolar disorders (BD) may significantly
reduce health care costs [31]. The prevalence of bipolar disorder is between 2.6 and
5%of the population [5]. According to diverse authors,misdiagnosed patients received
inadequate and expensive therapeutic schemes entailing suboptimal medication treat-
ment [8,30]. When the patient does not receive treatment, there is a high risk of
morbidity and mortality. Furthermore, the high rate of suicide in this type of patient
compared to unipolar depression should be highlighted [40]. BD is a leading cause
of global disability. Therefore, the correct diagnosis of BD must be a priority item in
healthcare systems, for clinical, research and administrative purposes.

For 60 years, psychiatric case records have been considered important epidemio-
logical research tools for estimating the incidence and prevalence of treatment and
care patterns [51]. The classification is considered a tool for investigating medical
problems that has a useful scope focused on medical diagnosis. There are different
techniques used in classification such as expert systems, artificial neural networks,
fuzzy system, machine learning (ML) and deep learning. [3,7,24,32,38].

As for classification algorithms, conventional classifiers such as neural network
[24,42], singular value decomposition (SVD) [19,58] andBayesian linear discriminant
analysis (BLDA) [60,62] are widely used. In addition, researchers have also attempted
different ML methods such as support vector machines (SVM) [18,22,26,32,57], k-
nearest neighbour (KNN) [18,53,59], Bayes Classification [6,13], Gaussian Naïve
Bayes (GNB) [12,16], random forest (RF) [17,50], decision tree (DT) [18,41], adaptive
boosting (Adaboost) [27,52] and adaptive neuro-fuzzy systems [23,43] to classify
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data. In this study, we propose an extreme gradient boosting (XGB) method for the
classification of patients with bipolar disorder. XGB is one of the variants of gradient
boosting, and it is a supervised learning algorithm. It is a decision-tree-based ensemble
ML algorithm that uses a gradient boosting framework. XGB is designed to enhance
the performance and speed of a ML model. The implementation of XGB provides
several advanced features for model fitting, algorithm improvement and computer
environments [9,11,49]. As a result, this algorithm was implemented for the creation
of a new tool that allows physicians to make decisions based on real clinical data.

The article is structured in several sections. Section 2 presents the materials used
in this study. Section 3 shows our proposed approach. The description of the results
and the discussion are given in Sects. 4 and 5, respectively. Finally, the conclusions
are shown in Sect. 6.

2 Material

In this study, real EEG recordings have been used to review the operation of the
ML system. One hundred and five euthymic bipolar disorder and two hundred and
five comparison subjects were tested for brain-disorder diagnosis measured by EEG
recording. The Structured Clinical Interview for DSM-IV (SCID) was given to all
subjects to obtain the DSM-IV diagnoses. Participants in the study lived in the Cuenca
region (Spain) and the patients with BD belonged to the Severe Mental Disorders Pro-
gram of the Psychiatric Service of the Virgen de la Luz Hospital, Cuenca (Spain). All
participants provided written informed consent after being given an explanation of the
study and the procedures involved. The study was approved by the Clinical Research
Ethics Committee of the Cuenca Health Area. The EEG records were recorded at the
Psychiatric Service of the Virgen de la LuzHospital in Cuenca (Spain). The equipment
available at the Hospital was used to perform the EEGs, specifically the 32-channel
Brain Vision system with a sampling frequency of 500 Hz. The International System
10-20 was used to place the electrodes by the medical staff. The EEG records of the
different patients presented various noise samples, such as muscle noise, artefacts,
and baseline. To get a more accurate result of the proposed XGB method, these sig-
nals were filtered out [29,46,48]. It should be noted that the datasets generated and/or
analysed during the present study are not publicly accessible. Nevertheless, they are
available from the corresponding author upon reasonable request.

Fig. 1 shows an example the raw EEG recording and scalp maps, the colours
representing the value of the signal at that point. Scalp maps display the distribution of
voltage in the head in the time or frequency domain. Information about the position of
the electrodes is used to create the maps. In our case, according to the 10/20 system for
data acquisition. The algorithmused to create the scalpmap is based on spherical spline
interpolation [35]. To calculate the spherical splines, different parameters are used:
the order of the splines and the maximum degree of the Legendre polynomial. The
interpolationwill be flatter orwavier, depending onwhich values are used for the order.
The interpolation with an increasing order of splines becomes flatter. The Lambda
approximation parameter defines the accuracy with which the spherical splines are
approximated to the data to be interpolated [35].
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Fig. 1 In the figure, a signal from a patient can been observed. In this graph, the raw EEG recording and
the scalp maps are shown
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Fig. 2 Organisation of the proposed system for detecting patients with bipolar disorders

The proposed methodology consists of three main steps, as shown in Fig. 2. First,
the EEG recordingswere pre-processed to eliminate the interference and noise present.
Then, the different features were calculated for each EEG channel. Once the study
database was built, the last phase was the classification of bipolar disorders using the
ML methods.

3 Model Development

XGB is a supervised learning method designed to be highly efficient, flexible and
portable. It implements automatic learning algorithms under the Gradient Boosting
framework. XGB provides a parallel tree reinforcement (also known as GBDT, GBM)
that solves many data science problems quickly and accurately. Some of the main
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benefits of XGB are that it is highly scalable/parallel, fast to run and that it normally
outperforms other algorithms [9,11,37]. For these reasons, in this study, this method
has been used. XGB is adopted to construct the model to identify patients with bipolar
disorder. Given a data set S = {x j , y j }, an ensemble model was designed by

ŷ j =
P
∑

p=1

tp(x j ), (1)

where y j is the output, x j represents the input vector with m temporal variables, ŷ j
symbolizes the predicted output, j = 1; 2; ..; n, P is the number of trees, tp belongs
to a tree with the weight of the leaf wp and with the structure u p. Trees are predictive
models formed by rules that distribute the observations according to their attributes
and thus predict the value of the response variable. The proposed model is formed by
a set of individual trees, trained sequentially, so that each new tree tries to improve
the errors of the previous trees. The prediction of a new observation is obtained by
aggregating the predictions of all the individual trees that make up the model.

A change fromensemble systems is the term regulation. Theweight of the leaf nodes
and the tree depth represent the term of regulation of the objective function of XGB,
which can control the complexity of the model and avoid overfitting. In this study,
Taylor’s second-order expansion is used to approximate the XGB objective function
as it improves the accuracy of the prediction [9,11,37]. In the proposed method, the
regularized objective function is described as follows

R =
∑

j

r(ŷ j , y j ) +
∑

p

Ψ (tp), (2)

where
∑

j r(ŷ j , y j is a differentiable convex loss function between true and predicted
labels to measure howwell the classificationmodel fit the training data, and

∑

p Ψ (tp)
is a regularisation term which controls the complexity of the model

Ψ (tp) = λ f p + 1

2
γ
∥

∥wp
∥

∥

2
, (3)

where f p corresponds to the number of leaves in the tree. f p shows the pruning of
trees, used to monitor overfitting. Pruning is a method to improve generalization in
trees. Once the trees are built, the proposed XGBoost performs a “pruning” step that,
starting at the bottom (where the leaves are) and moving up to the root node, looks to
see if the gain falls below λ. If the first node encountered has a gain value below λ, then
the node is pruned and the pruner moves up the tree to the next node. If, on the other
hand, the node has a gain greater than λ, the node is left and the pruner does not check
the parent nodes [9,11,37]. The function Ψ () punishes the complexity of the method.
R() represents a function that measures the difference between the expected output
ŷ j and the target output y j . The learning rate is symbolised by λ, and w represents
the vector of scores on leaves. To control the weight of the complexity of the system,
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a parameter γ is used [9,11,37]. The proposed method seeks to minimise Eq. (2) to
improve the performance.

The tree set model incorporates the functions of the functions into Eq. (2). Because
of this, Eq. (2) cannot be optimised by applying traditional systems of optimisation in
Euclidean space. Therefore, in this work, ŷ j was the estimation of the sample j-th in
the iteration s-th. Eq. (2) is left as follows

R(s) =
∑

j=1

r(ŷ j
(s−1), y j + Cs(x j )) + Ψ (Cs). (4)

To decrease the objective function, the generated tree Cs by the j-th sample in the
s-th iteration is aggregated. In the proposed algorithm, a second-order approximation
is used to improve the objective function [9,11,37]

R(s)
≈

∑

j=1

[

r(ŷ j
(s−1), y j ) + h jCs(x j ) + 1

2
b jC

2
s (x j )

]

+ Ψ (Cs), (5)

where h j = ∂ŷ j (s−1)r(ŷ j (s−1), y j ) is the first-order gradient statistic in the loss function

R() and b j = ∂2
ŷ j (s−1)r(ŷ j

(s−1), y j ) is the second.

r(ŷ j (s−1), y j ) represents a constant value for the tree s−1. At the current step s, the
prediction of step s − 1 and everything before the regularization s are known values,
so they are constant values in the object function of step s, so it can be eliminated to
simplify Eq. (5) [9,11,37]. If we consider that K j = { j |u(xi ) = v} is the sample set
of the leaf v, v = 1, 2, .., f p and we extend Ψ (), Eq. (5) would be shown as

˜R(s)
≈

∑

j=1

⎡

⎣

∑

j∈Kv

(h j )w_rv + 1

2

∑

j∈Kv

(b j + γ )w_r2v

⎤

⎦+ λF, (6)

where ˜R(s) represents the simplification of R(s) by eliminating the constant terms. A
leave represents a node that can no more be divided. The optimal weight w_rv of the
leave v for a fixed structure u(x) can be calculated as

w_rv = −
∑

j∈Kv
(h j )

∑

j∈Kv
(b j + γ )

. (7)

And finally, for the proposed method the optimal value can be obtained by

˜R(s)(u) = −1

2

f p
∑

v=1

(
∑

j∈Kv
(h j ))

2

∑

j∈Kv
(b j + γ )

+ λF . (8)

As the number of tree structures is infinite, not all viable tree structures can be
listed. Because of this, the optimal splitting point is sought by constructing the tree
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Fig. 3 Training and validation scheme for machine learning methods

from a single leaf and adding branches to the tree iteratively. KL and KR represent the
samples of the left and right nodes after the splitting and k = KL ∪ KR , the reduction
in the loss after the split is given by

Rspli t = 1

2

[

(
∑

j∈KL
(h j ))

2

∑

j∈KL
(b j + γ )

+ (
∑

j∈KR
(h j ))

2

∑

j∈KR
(b j + γ )

− (
∑

j∈K (h j ))
2

∑

j∈K (b j + γ )

]

− λ. (9)

Five broadly known ML methods were used to train the models for classifying
the patients in two groups, patients with bipolar disorder and healthy patients. The
methods included DT [18,41], GNB [16], KNN [18,53,59], SVM [18,22,57] and the
proposedmethodXGB [9,11]. TheMLmethods were implemented using the statistics
and machine learning MatLab toolbox (Matlab 2020a), The Mathworks Inc., Natick,
MA, USA. For the evaluation cohort of patients, 10-fold cross-validation was used
to validate algorithm performance [18]. For each fold of the validation, 70% of the
patients were used to train and the remaining 30%were used for testing and validation.
Patient data were not shared across training and testing subsets to avoid the algorithm
being tested on data from the same patients used for training. Fig. 3 describes the
process followed to carry out the complete study. As can be observed, first the subjects
to be studied were selected. Once the database was created, the training and validation
of the implemented ML methods was carried out.

ML techniques usually have one or more hyperparameters that allow a differ-
ent adjustment of the algorithm during the training process. The different values of
these hyperparameters (number of splits, learners, neighbours, distance metric, distant
weight, kernel, box constraint level, multiclass method, etc) for each method lead to
algorithms with different prediction performances in order to obtain the best possible
performance. In order to optimise these hyperparameters for each ML technique used
in this study, eachmodel was trained with a Bayesian optimisation approach. Bayesian
optimisation aims to estimatewhich is the configuration of hyperparameters thatwould
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maximise the performance of the algorithm from the previous attempts, based on the
assumption that there is a relationship between the various hyperparameters and the
performance achieved by the algorithm. The area under the AUC and the balanced
accuracy were used as performance measures to be maximised. 100 repetitions were
used to calculate the mean and standard deviation values of the various performance
result numbers computed, given the stochastic nature ofmachine starting andML in all
simulations. In order to decrease the effects of noise on the data, to calculate accurate
area under the curve (AUC) values and to obtain statistically significant results, the
experiments were repeated in a uniformly random way.

3.1 Methods Used for Comparison

3.1.1 Gaussian Naive Bayes (GNB) Method

GNB is one of the simplest classification algorithms. It consists in assigning the label
of the class that maximizes the posterior probability of each sample, under the assump-
tion that the voxel contributions are conditionally independent and obey a Gaussian
distribution. The GNB decision rule is written in terms of the discriminant function for
each class k at each searchlight s (the searchlight index is omitted in the next equation
to avoid visual clutter). The discriminant function is defined as the sum of the squared
distances to the centroid of each class, across all voxels in the searchlight, weighted by
the variance, and the logarithm of the a priori probability pk computed in the training
set, according to the Bayes rule (see equation (2)). The predicted class for sample i
in the test set is assigned by selecting the label of the class having the discriminant
function with the largest value, which implies maximal posterior probability, within
discriminant functions of all classes [12,16].

3.1.2 Decision Tree (DT) Method

This classifier partitions the input space into small segments and labels these small
segments with one of the various output categories. However, conventional decision
tree only does the partitioning to the coordinate axes. With the growth of the tree,
the input space can be partitioned into very small segments so as to recognize subtle
patterns [18,41]. The main drawback is that overgrown trees could lead to overfitting.

3.1.3 Support Vector Machines (SVM) Method

The support-vector machine or network is a supervised learning technique for two-
group classification problems. The machine conceptually implements the following
idea: input vectors are nonlinearly mapped to a very high-dimension feature space. In
this feature space, a linear decision surface is constructed. Special properties of the
decision surface ensure high generalization ability of the learning machine. Given a
training set, whose elements are marked as belonging to one of two categories, the
SVM builds a model that assigns the elements of the testing set to one category or the
other, making it a non-probabilistic binary linear classifier. The SVMmodel represents
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the samples as points in space, mapped so that the samples of the separate categories
are divided by a clear gap that is as wide as possible. New samples are then mapped
into that same space and predicted as belonging to a category based on which side of
the gap they fall in. The SVM algorithm can efficiently perform both a linear and a
nonlinear classification using what is called the kernel trick, implicitly mapping their
inputs into high-dimensional feature spaces. Using a cubic or a Gaussian function
for the kernel, we obtain the so-called cubic SVM and Gaussian SVM, respectively
[18,22,57].

3.1.4 K-Nearest Neighbour (KNN) Method

This classifier is one of the most popular neighbourhood classifiers in pattern recogni-
tion and machine learning because of its simplicity and efficiency. It categorizes each
unlabelled test example using the label of themajority of examples among its k-nearest
(most similar) neighbours in the training data set. The similarity depends on a specific
distance metric; therefore, the performance of the classifier strictly depends on the dis-
tance metric used. However, it suffers of memory requirements and time complexity,
because it is fully dependent on every example in the training set [18,53,59].

SVM and KNN exemplify several important trade-offs in machine learning. SVM
is less computationally demanding than KNN and is easier to interpret but can identify
only a limited set of patterns. On the other hand, KNN can find very complex patterns,
but its output is more challenging to interpret. SVM take cares of outliers better than
KNN. If training data are much larger than no. of features(m�n), KNN is better than
SVM. SVM outperforms KNN when there are large features and lesser training data.
On the other hand, in almost all cases, the SVM is better than the GNB. From a
theoretical point of view, it is a little bit hard to compare the two methods. One is
probabilistic in nature, while the second one is geometric. With respect to DT and
KNN methods, it should be noted that both are nonparametric methods. Decision tree
supports automatic feature interaction, whereas KNN cannot. Decision tree is faster
due to KNN’s expensive real-time execution.

3.2 Feature Extraction

3.2.1 Approximate Entropy

Approximate entropy (ApEn) was developed by Pincus [36] as a measure of system
complexity. ApEn presents a non-negative number to quantify the complexity of the
time series data. The higher the value of ApEn, the more complex or irregular the time
series data are [36,39,55].

Suppose the original time series with N data points {x(l), l = 1, ..., N }. The cal-
culation of the ApEn is shown in the following steps ([36,39,55].

1. Construct a series of vectors in the embedding space Rm defined by

X(i) = [x(i), x(i + 1), ..., x(i + m − 1)], (10)
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where 1 ≤ i ≤ N − m + 1.
2. Compute the distance between X(i) and X( j),

di j = max
k=0∼m−1

|x(i + k) − x( j + k)| , (11)

where 0 ≤ k ≤ m − 1 and 1 ≤ i, j ≤ N − m + 1.
3. Given the vector comparison distance r(r > 0), for each X(i), count the number of

di j ≤ r , denoted as Nm
i (r). And then define the ratio between the number Nm

i (r)
and the total number of the vectors as Cm

i (r)

Cm
i (r) = Nm

i (r)

N − m + 1
. (12)

4. Compute the natural logarithm of the ratio Cm
i (r), then average it over i

Φm(r) = 1

N − m + 1

N−m+1
∑

i=1

ln Cm
i (r). (13)

5. Increase m by one and repeat steps (1)—(4). Thereby, Cm
i (r) and Φm+1(r) are

obtained.
6. ApEn is given by Φm(r) and Φm+1(r) as follows

ApEn(mr) = lim
N→∞

[

Φm(r) − Φm+1(r)
]

. (14)

7. If the number of data point N is limited, ApEn is estimated by the statistic values,
i.e.

ApEn(m, r , N ) = Φm(r) − Φm+1(r). (15)

Based on the works of Pincus [36,39,55], the embedding dimension m and vector
comparison distance r were, respectively, set to 2 and 0.05 times the standard deviation
of the EEG time series.

3.2.2 EEG Band Power

To extract the four frequency bands (delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz)
and beta (13-30 Hz)), the EEG signals were filtered out by a Butterworth bandpass
filter. Welch method was selected to obtain the power spectrum of each band. To
calculate the power, the time series were divided into segments and then averaged
with all the segments [4].

Denote the mth windowed, zero-padded frame from the signal x by

xm(n) = w(n)x(n + mR), n = 0, 1, ..M − 1, m = 0, 1, .., k − 1, (16)
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where R is defined as the window hop size, and let K denote the number of available
frames. Then, the periodogram of the mth block is given by

Pxm ,M (wk) = 1

M

∣

∣

∣

∣

∣

N−1
∑

n=0

xm(n)e− j2πnk/N

∣

∣

∣

∣

∣

2

, (17)

as before, and the Welch estimate of the power spectral density is given by

̂SWx (wk) = 1

K

K−1
∑

m=0

Pxm ,M (wk). (18)

When w(n) is the rectangular window.
The relative power contained in these bands is defined as

δ = 1

P

4Hz
∑

f =0.5Hz

p f , θ = 1

P

8Hz
∑

f =4Hz

p f , (19)

α = 1

P

13Hz
∑

f =8Hz

p f , β = 1

P

30Hz
∑

f =13Hz

p f , (20)

where P is the total power of the signal and p f the power spectrum.

3.2.3 Higuchi

To calculate the fractal dimension (FD) of time series, Higuchi proposed an efficient
algorithm [14]. This algorithm calculates the FD directly from the time series. This
algorithmcan be used tomeasure the complexity of theEEG records and self-similarity
of a signal [1,20].

Higuchi proposed in 1988 an efficient algorithm for measuring the FD of discrete
time sequences. Higuchi’s algorithm calculates the FDdirectly from time series. As the
reconstruction of the attractor phase space is not necessary, this algorithm is simpler
and faster than D2 and other classical measures derived from chaos theory. FD can
be used to quantify the complexity and self-similarity of a signal. Higuchi fractal
dimension (HFD) has already been used to analyse the complexity of brain recordings
and other biological signals [1,14,20].

Given a one-dimensional time series X = x[1], x[2], ..., x[N ], the algorithm to
compute the HFD can be described as follows [1,14,20]

1. Form k new time series Xm
k defined by

Xm
k =

{

x[m], x[m + k], x[m + 2k], ..., x
[

m + int

(

N − m

k

)

· k
]}

, (21)
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where k and m are integers, and int(•) is the integer part of •. k indicates the
discrete time interval between points, whereasm = 1, 2, ..., k represents the initial
time value.

2. The length of each new time series can be defined as follows

L(m, k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

int
(

N−m
k

)

∑

i=1

|x[m + ik] − x[m + (i − 1) · k]|

⎞

⎟

⎟

⎠

N−1

nt
(

N−m
k

)

·k

⎫

⎪

⎪

⎬

⎪

⎪

⎭

k
, (22)

where N is length of the original time series X and (N − 1)/{int[(N − m)k] · k}
is a normalization factor.

3. Then, the length of the curve for the time interval k is defined as the average of the
k values L(m, k), for m = 1, 2, . . . , k :

L(k) = 1

k

k
∑

m=1

L(m, k). (23)

4. Finally, when L(k) is plotted against 1/k on a double logarithmic scale, with k =
1, 2, ..., kmax , the data should fall on a straight line, with a slope equal to the FD of
X . Thus,HFD is defined as the slope of the line that fits the pairs {ln[L(k)], ln(1/k)}
in a least-squares sense [1,14,20].

3.2.4 Detrended Fluctuation Analysis

Another technique used to obtain information from the EEG is the detraction analysis
fluctuation (DFA). This algorithm allows the quantification of long-range temporal
correlations in the EEG time series. In addition, DFA can eliminate trends of different
order caused by noise from EEG time series and is robust to non-seasonality. DFA is
based on calculating the root mean square error of the fluctuation time series [21,25].

DFA provides different values of al f a. With α = 0.5, the EEG signal is a random
walk. When 0 < α < 0.5, there exist anti-correlation ship power laws in the EEG
signal. When 0.5 < α < 1, there exist long-range correlations of the power law
[21,25].

DFA is a method for quantifying fractal scaling and correlation properties in the
signal. The advantages of this method are that it distinguishes between intrinsic fluc-
tuation generated by the system and those caused by external system. In the DFA
computation of a time series, x(t) of finite length N is integrated to generate a new
time series y(k) shown in (1) [21,25]

y(k) =
k
∑

i=1

[x(i) − 〈x〉] , (24)
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where 〈x〉 is the average of x, is given by

〈x〉 = 1

N

k
∑

i=1

x(i). (25)

Next, the integrated time series, y(k), is divided into boxes of equal length and a
least squares line is fit to the data of each box, represents by yn(k). Then, the time
series y(k) is detrended by subtracting the local linear fit yn(k) for each segment.
The detrended fluctuation is given after removing the trend in the root-mean-square
fluctuation

F(n) =
√

√

√

√

1

N

N
∑

k=1

[y(k) − yn(k)]2. (26)

This computation is repeated for different box sizes (time scale) to characterize
the relation between F(n) and the box size n. A linear relation between logarithm of
F(n) and size of the box indicates the presence of power-law scaling: F(n) ∼ nα .
The scaling exponent, α, can be calculated as the slope of log F(n) versus log n. This
parameter represents the correlation properties of the time series [21,25].

3.2.5 Hurst Exponent

Hurst exponentwas utilised to describe the correlationproperties and the self-similarity
of the physiological timeline data. Hurst exponentmeasures the smoothness of a fractal
time series supported by the asymptotic performance of the reprogrammed process
range [2,33].

Assuming a time series is x(i), i = 1, ..., N . The deviation from the mean x(n)

for the first k data points is defined as

Wk = (x1 + x2 + · · · + xk) − kx(n), (27)

where 1 ≤ k ≤ n and 1 ≤ n ≤ N .
Then, the difference between the maximum value and minimum value of the devi-

ations corresponding to n is acquired by

R(n) = max(0,W1, . . . ,Wn) − min(0,W1, . . . · · · . . .,Wn), n = 1, . . . , N . (28)

If S(n) denotes the standard deviation of the time series {x(i), i = 1, . . . , n} ,
R(n)/S(n) increases as a power law

R(n)

S(n)
= C × nH , n = 1, . . . , N , (29)

where C is a constant and H is the estimated value of the Hurst exponent, i.e.

H = log [R(n)/S(n)]

log n
, n = 1, . . . , N . (30)
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3.3 Performance Evaluation

Performance was measured using the most familiar metrics: sensitivity (SE) (also
known as the recall), positive predictive value (PPV) (also known as the precision),
negative predictive value (NPV), specificity (SP), degenerated Youden’s index (DYI)
[63], receiver operating characteristic (ROC) and AUC. The F1-score is defined as

Precision = T P

T P + FP
, (31)

Recall = T P

T P + FN
, (32)

F1score = 2
Precision · Recall
Precision + Recall

. (33)

Another measure of overall model classification performance is the Matthew’s
correlation coefficient (MCC), and it is defined as

MCC = T P · T N − FP · FN√
(T P + FP)(T P + FN )(T N + FP)(T N + FN )

, (34)

where TP represents the number of true positives, FP the number of false positives,
TN the number of true negatives, and FN the number of false negatives. And finally,
Cohen’s Kappa (CK), CK is another metric estimating overall model performance,
attempts to leverage the Accuracy by normalizing it to the probability that the classi-
fication would agree by chance [63].

4 Results

This section describes the results obtained with the EEG records used for training and
validation in the classification of bipolar disorder. The performance of the proposed
system has been compared with different classification ML methods accepted in the
scientific community.

The data obtained through the different features were used for the training of the
ML techniques. As can be seen in Fig. 4, these were applied to each of the features
separately and finally, the systems were trained with the integration of all of them.
According to the data obtained, the proposed XGB method achieves a better classifi-
cation for the different features.

Table 1 shows the values of balanced accuracy, recall, precision and F1 score of
the classification methods for patients with bipolar disorder and healthy patients, such
as SVM, DT, GNB, KNN and proposed system with the integration of the features.
Systems based onSVMandGNBobtain lower classification values than othermethods
with accuracy values close to 86%, and this value is considerably improved with DT
and KNN methods that reached values around 88%. On the other hand, the proposed
system, based on a XGB, obtained a higher performance than the rest of the methods
analysed. Achieving accuracy values close to 94% for real EEG records. As for the
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Fig. 4 Results obtained using different features for the proposed system and othermachine learningmethods
analysed

Table 1 The table presents the mean values and standard deviation of balanced accuracy, recall, precision
and F1 score of the machine learning models and the proposed method implemented in this article

Methods Balanced Accuracy Recall Precision F1 score

SVM 87,48 ± 0.81 87,56 ± 0.82 86,80 ± 0.81 87,23 ± 0.80

DT 88,39 ± 0.83 88,49 ± 0.84 87,75 ± 0.82 88,13 ± 0.83

GNB 86,28 ± 0.87 86,35 ± 0.91 85,65 ± 0.87 86,02 ± 0.90

KNN 89,59 ± 0.51 89,70 ± 0.47 88,92 ± 0.46 89,28 ± 0.45

XGB 94,11 ± 0.32 94,16 ± 0.25 94,42 ± 0.28 94,79 ± 0.27

Precision and Recall values, the KNN and DT methods are the closest to the proposed
XGB system. In the case of the F1 score value, the SVM and GNB methods obtain
values close to 86%. The DT and KNN systems improve this data again. As for DT
and KNN, they do not reach the result achieved by the proposed method that improves
them in 4.9%.

Other parameters used in the scientific community, such as AUC, MCC, DYI and
Kappa index, have also been analysed to check the operation of the proposed XGB
system. These parameters will help us to check the correct functioning of the methods
when classifying the two classes investigated in the study. The Matthews correlation
coefficient (MCC) is a more reliable statistical rate which produces a high score only
if the prediction obtained good results in all of the four confusion matrix categories
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Table 2 The table shows the mean values and standard deviation of AUC, MCC, DYI and Kappa of all the
tested machine learning models and the proposed method implemented in our study

Methods AUC MCC DYI Kappa

SVM 0,87 ± 0.02 76.84 ± 0.73 87,49 ± 0.73 77,89 ± 0.67

DT 0,88 ± 0.02 78.43 ± 0.80 88,40 ± 0.74 77,81 ± 0.68

GNB 0,86 ± 0.02 75.64 ± 0.81 86,29 ± 0.75 76,81 ± 0.71

KNN 0,89 ± 0.02 79.05 ± 0.66 89,60 ± 0.65 79,78 ± 0.58

XGB 0,94 ± 0.02 91,06 ± 0.25 94,11 ± 0.26 91,58 ± 0.24
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100

AccuracyRecallPrecision
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Fig. 5 Graphical representation of the precision, recall and accuracy values in percentages

(true positives, false negatives, true negatives, and false positives), proportionally both
to the size of positive elements and the size of negative elements in the dataset. As
can be seen in Table 2, the XGB method achieves an MCC value closer to 1 than the
other methods. DT and KNN are the systems that present a MCC value closer to the
proposed method. The rest of the methods obtain a smaller value. Another parameter
used is the kappa index; in this case, the proposed XGB system obtains again a higher
value than KNN and DT. The other methods used in the comparison reach values
further away from 1.

Figure 5 compares the proposed XGBwith the existing classifiers, i.e. GNB, SVM,
DT and KNN with respect to accuracy, recall and precision metrics. The values of
obtained by the proposed XGB are 0.941, 0.941 and 0.944, respectively, while KNN
are 0.896, 0.897 and 0.889. Fig. 6 shows the values obtained for MCC, Kappa and
F1-score. As can be seen, the proposed method achieves values of 0.910, 0.915 and
0.947, respectively. The next system that comes closest to XGB is KNN with values
of 0.790, 0.797 and 0.892. As can be observed in these two figures, for all the metrics
compared, the proposed XGB presents a superior performance in predicting patients
with bipolar disorder.

The receiver operating characteristic (ROC) has been applied to compare the clas-
sification capability of the proposed system with other ML methods. The curve is
the result of representing, for each threshold value, the sensitivity and specificity
measurements [15]. Fig. 7 shows the result obtained by the different systems for the
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Fig. 6 Graphical representation of the MCC, Kappa and F1 score values in percentages

Fig. 7 ROC curves for the five
assessed machine learning
predictors
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classification between patients with bipolar disorder and healthy patients. According
to Table 1, the proposed XGB method has a larger area under the curve (0.94) and
the KNN method (0.89) is the closest to the proposed method. With all this, the XGB
method achieves an improvement of 4.5% over KNN for DYI (DYI parameter, val-
ues nearer to 1 indicate a better classification). KNN an improvement of 2.11% with
respect to the SVM method and 3.33% with respect to GNB.

For clarity, all metrics have been grouped by each training and test data set and
presented as radar plot. A perfect score on all metrics would be represented by a circle
the size of the entire grid. In our study, the model training sets have high scores on all
training set metrics and generally have lower scores for the test set. The shape of the
plots may also be indicative of the quality of the models. The larger the circle of the
test set, the better the model. The proposed XGB system (Fig. 8) is a good example
of a well-balanced model. The training and test sets are both virtually represented by
similar circular plots. As can be observed, the GNBmethod has the worst performance
in most metrics.

With these results, the proposed system can achieve a high accuracy of classifica-
tion of bipolar disorder patients automatically, resulting in a tool that could help the
physician for clinical practice.
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Fig. 8 The figure shows the radar plot of the training phase (left) and test (right) for the prediction of bipolar
disorders

5 Discussion

The discrimination of bipolar disorders is a hard classification problemwhich requires
the use of a strong optimizing algorithm and an effective feature set selection proce-
dure. Automated detection can guide treatment decisions, help prognostication and
study the pathophysiology of bipolar disorders [46].

In this work, the XGBmethod has been selected because it has excellent scalability
and a high running speed,which havemade it a successfulMLmethod [10]. In addition,
machine learning approaches allow for the parallel testing of multiple variables and
their complex interactions and enable nonlinearity in the production of predictive
models [10]. This method has been applied to various machine learning problems. In
biomedical fields, XGB has been used to classify cancer patients [28], patients with
epilepsy [47] and to diagnosis chronic kidney disease [34]. Especially, Sodmann et al.
[45] trained a convolutional neural network for ECG annotation and employed XGB
to classify atrial fibrillation (AF). Shi et al. [44] also used XGB for the classification
of AF aimed at single heartbeat classification, and Ye et al. [54] implemented the
state-wide electronic health record to predict the risk of hypertension with the XGB
method. Yu et al. [56] and Zhong et al. [61] also took advantage of the XGBmethod for
predicting the location of submitochondrial and essential proteins in their respective
works.

In this study, a XGB was effectively applied to this pattern recognition task. The
results show that discriminating between BD patients and healthy control with a high
accuracy can be possible by using our proposed XGB classification framework. A
maximum classification accuracy of 94.13% was obtained demonstrating the poten-
tial clinical use of our XGB framework to classify BD patients with an EEG data. The
proposed system was analysed with different ML methods described in the literature,
as can be seen in Tables 1 and 2. The comparison of the systems showed the consid-
erable improvement that XGB produced over the other methods analysed. SVM and
GNB methods performed less well than the other systems compared. The system that
most closely approximates the recall accuracy values of the proposed method is KNN.
In addition, a balanced radar plot was provided between the training and test phases.
The proposed XGB system can handle the high dimensions of the data avoiding over-
training. The results show that the proposal can effectively improve the performance



2262 Circuits, Systems, and Signal Processing (2022) 41:2244–2265

of other classification methods. Because of this, the proposed system can be a reliable
tool that facilitates automatic analysis to assist in the diagnosis of bipolar disorder.

6 Conclusion

In this paper, the proposed XGB method is applied for classification between patients
with bipolar disorder and healthy patients. Four supervised ML algorithms including
a k-nearest neighbours (KNN), decision tree (DT), Gaussian Naïve Bayes (GNB)
and support vector machine (SVM) were compared with the proposed XGB method.
The proposed system in this work has achieved higher values of precision, recall and
accuracy than those achieved by other methods. This guarantees its reliability for the
automatic classification of the pathology treated in this study. Finally, it is important
to see that high performance has been achieved with the XGB method, so this system
would facilitate the physicians in the decision-making process.
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