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Abstract
In order to eliminate the effect of noise on the performance of the direction-of-arrival
(DOA) estimation and reduce the computational complexity, a sparse representation
(SR) DOA estimation method is proposed. The proposed method first utilizes the
beamspace and element-space covariance differencing to eliminate noise. Afterward,
it vectorizes the difference covariance matrix. In a sequence, it establishes a new
SR model to complete DOA estimation. Compared to existing SR DOA estimation
methods, the proposed method significantly reduces the computational complexity
since the parameters to be solved in its SR cost function are regardless of the number
of sources and the number of array elements. Simulation results show that in the case
of the unknown number of sources and low signal-to-noise ratios (SNRs), the proposed
method has high DOA resolution and estimation accuracy.
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1 Introduction

DOA estimation is an important research topic in array signal processing, and it is
widely applied in radar, sonar and other fields. The subspace-based direction-of-arrival
(DOA) estimation methods such as MUSIC [8,14] and ESPRIT [13] have high res-
olution. However, they need the accurate information of the number of sources to
separate the signal and noise subspace. In recent decades, the sparse representation
(SR) DOA estimation methods have been widely studied because they do not require
the accurate knowledge of the number of sources and gain higher DOA resolution
than the subspace-based methods. The l1-SVD method [9] estimates the DOA by
sparsely representing the signal subspace obtained from singular value decomposi-
tion (SVD) of the data received by an array. Due to the SVD involved, the l1-SVD
method requires the assumed number of sources. However, it is more robust to the
mistakes in estimating the number of sources, compared to the subspace-based meth-
ods. Based on the acoustic intensity principle and sparse representation technique,
the l1-SRLSV method obtains high-resolution DOA estimation without knowing the
number of sources [17]. The l1-SRACV method [19] uses the sparse representation
of the array covariance matrix for DOA estimation, which does not require the infor-
mation of the number of sources and improves the robustness in a low signal-to-noise
ratio (SNR). However, it leads to high computational complexity due to sparse repre-
sentation of the array covariance matrix. SPICE [15] uses a robust covariance-fitting
criterion and iterative method to estimate the sparse parameters in linear models to
obtain DOA estimation, while LIKES [16] estimates the sparse parameters according
to the maximum-likelihood principle. LIKES obtains more accurate parameter esti-
mation performance than SPICE at the cost of increasing computational burden. In
[4], the Khatri–Rao product was explored to cast the array covariance matrix SR DOA
estimation as the SR problem of only a single measurement vector, which significantly
reduces the computational load. Based on the vectorization of the array covariance
matrix, a DOA estimation method is obtained by employing the sparse recovery con-
cept and maximum likelihood estimation criteria, which gains high computational
efficiency [6]. Based on the matrix completion theory, the MC-SRSSVWL1 method
proposes a SR method to combine the second-order statistical vector and weighted
l1-norm for DOA estimation, which has high angle estimation accuracy and resolution
in low SNRs [2].

In order to eliminate the influence of noise on DOA estimation, Tian Ye proposed a
SR-based covariance differencing method (SR-CD) [20],which applied the SR on the
difference of the array covariance matrix and its transpose. The SR-CD method has
high resolution andDOA estimation accuracy. In addition, it overcomes the drawbacks
that the conventional covariance differencing methods require multiple estimates of
the array covariance matrix [11,18] or has the angle ambiguity issue [12]. Moreover,
its computational complexity is clearly lower than the l1-SVD and l1-SRACV meth-
ods. It was demonstrated by simulation that the spatial spectrum of SR-CD method
has false peaks, which can be recognized by the sign of the spatial spectrum. In this
paper, the reason why the SR-CD method produces false peaks is analyzed. It is also
proved that the SR-CD method fails when the sources are with the DOAs of 0 degree
and/or the symmetric DOAs. In order to overcome the shortcomings of the SR-CD
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method, this paper proposes a SR-based DOA estimation method by applying SR
on the beamspace and element-space covariance differencing, named as SR-BECD.
Similar to the SR-CD method, the SR-BECD method eliminates noise by using the
covariance differencing and it has a low computational complexity. Different from the
SR-CDmethod, it employs the covariance differencing in the beamspace and element-
space instead of the covariance differencing between the array covariance matrix and
its transpose, avoiding the false peaks encountered in the SR-CD method. Simulation
results demonstrate its superior performance in angle resolution and estimation accu-
racy in low SNRs. In addition, it is not limited to specific arrays such as a uniform
linear array.

2 Data Model

We assume that K far-field narrow-band stationary source signals impinging on an
array with M elements. By taking the first element as the reference, the data received
by the array at time t can be expressed as:

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), · · · , xM (t)]T is the M-dimensional data received by the
array, xm(t)(m=1,...,M) is the data of the m-th array element at time t . A =
[a(θ1), a(θ2), · · · , a(θK )] is thematrix of steering vectors, a(θk) is theM-dimensional
steering vector, θk is the DOA of the k-th source. s(t) = [s1(t), · · · , sK (t)]T is
the K -dimensional source signal vector, sk(t) is the k-th source signal. n(t) =
[n1(t), · · · , nM (t)]T is the M-dimensional noise vector, and nm(t) is the noise of
the m-th array element at time t . We give the following assumptions of source signals
and noises:

(1) The source signals are uncorrelated.
(2) The noises at different elements are uncorrelated with each other and have zero

mean and same covariance.
(3) The source signals and noises are uncorrelated.

Under the aforementioned assumptions, the array covariance matrix R is expressed
as:

R = E
[
x(t)xH (t)

]

= ARs AH + σ 2 IM

=
K∑

k=1

pka (θk) aH (θk) + σ 2 IM (2)

where E[·] is the expectation, (·)H is the conjugate transpose, Rs = E{s(t)sH (t)} is
the covariance matrix of source signals, pk is the power of the k-th source signal, σ 2

is the noise variance, and IM is the identity matrix.
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3 Analysis on SR-CDMethod

The methodology of the SR-CD method is to first obtain the difference matrix ΔRt

based on the array covariance matrix R and its transpose RT , and then vectorize ΔRt

to establish a sparse representation model for DOA estimation. In this section, we use
the uniform linear array for analysis. The SR-CDmethod first obtainsΔRt as follows

ΔRt = R − RT

= ARs AH − A∗Rs AT (3)

where (·)∗ is the conjugate operation and (·)T is the transpose. For the uniform linear
array, we have

a (θk) = [
1, exp (− j2πd2sin (θk) /λ) , · · · , exp (− j2πdMsin (θk) /λ)

]T (4)

where dm represents the distance from the m-th element to the first element, λ is the
wavelength of the source signals. The SR-CD method then vectorizes the difference
matrix by columns to obtain

r t = vec (ΔRt ) (5)

where vec(·) means stack operation, which returns the vector obtained by stacking
the columns of the matrix one above the other. Afterward, based on r(t), the SR-CD
method builds the sparse representation model to implement the DOA estimation.

This section analyzes the reason that the SR-CD method products the false peaks
and it fails when the sources are with the DOA of 0◦ and/or from symmetric angles,
that is, ±θ .

According to Eq.(2), we obtain

RT =
K∑

k=1

pka∗ (θk)
(
a∗ (θk)

)H + σ 2 IM (6)

Based on Eqs. (2) and (6), we get the vectorization of the difference matrix as

r t = vec (ΔRt )

= vec

(
K∑

k=1

pka (θk) aH (θk) −
K∑

k=1

pka∗ (θk)
(
a∗ (θk)

)H
)

= V p (7)

where V = [v(θ1), · · · , v(θK )] is an M2 × K matrix, v(θk) = a∗(θk)
⊗

a(θk) −
a(θk)

⊗
a∗(θk) is an M2 × 1 vector,

⊗
is the Kronecker product operation and p =

[p1, · · · , pK ]T is the K -dimensional signal power vector.
Because a∗(−θ) = a(θ) and a∗(θ) = a(−θ), we have



1600 Circuits, Systems, and Signal Processing (2022) 41:1596–1608

v(−θ) = a∗(−θ)
⊗

a(−θ) − a(−θ)
⊗

a∗(−θ)

= a(θ)
⊗

a∗(θ) − a∗(θ)
⊗

a(θ)

= −v(θ) (8)

According to Eq. (8), when θ1 = −θ , ps1 = −ps , we obtain

v(θ)ps = v (θ1)ps1 (9)

From Eqs. (8) and (9), we conclude that the SR-CD method produces the false peaks
at −θk , k = 1, · · · , K . Moreover, the amplitudes of the false peaks are negative,
which can be used for recognizing the false peaks. However, due to the false peaks,
the SR-CD method fails when the sources are with symmetric DOAs such as ±θk . In
addition, when θ = 0◦, v(θ) = 0. Therefore, the SR-CD method fails as well, when
the source is with a DOA of 0◦.

4 ProposedMethod

In contrast to theSR-CDmethod,wepropose theSR-BECDmethodwhich implements
the covariancedifferencingbyusing thematrix in the beamspace and that in the element
space. For that purpose, the dimensions of the covariance matrix in the element space
(denoted by R) and that in the beamspace (denoted by Rb) are required to be the same.
Therefore, Rb must be an M × M-dimensional matrix since the dimension of R is
M × M . As a result, we first construct an M × M-dimensional beamforming matrix
B that satisfies BH B = BBH = IM , which has the following formulation [7]

B = [
b
(
θ̃1

)
, b

(
θ̃2

)
, , · · · , b(θ̃M )

]
(10)

where b(θ̃m) is the m-th column of the beamforming matrix B. In addition, θ̃m is the
m-th beam direction in the beamforming matrix B.

b
(
θ̃m

) = 1√
M

[
1, exp

(− jπsin
(
θ̃m

))
, · · · , exp

(− j(M − 1)πsin
(
θ̃m

))]T
(11)

where sin(θ̃m) = (M − 2m + 1)/M , m = 1, · · · , M .
According to Eqs. (1) and (10), the linear transformation of the beamformingmatrix

B is applied on the M-dimensional data x(t)to obtain the M-dimensional beamspace
data vector xb(t) as follows

xb(t) = BH x(t) (12)

where C = BH A = [c(θ1), c(θ2), · · · , c(θK )] is composed of the steering vectors in
the beamspace, that is, c(θk) = BH a(θk).

The covariance matrix in the beamspace is then obtained below

Rb = E
[
xb(t)xH

b (t)
]
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=
K∑

k=1

pkc (θk) cH (θk) + σ 2 IM (13)

Afterward, the matrix differencing ΔR between the beamspace covariance matrix
Rb and the element-space covariance matrix R is constructed as

ΔR = R − Rb (14)

According to Eqs. (2) and (13), the noise covariance matrices in the covariance
matrices R and Rb are the same. Therefore, the noise is eliminated in the difference
matrix between R and Rb, as shown in Eq.(15).

ΔR =
K∑

k=1

pka (θk) aH (θk) −
K∑

k=1

pkc (θk) cH (θk) (15)

Afterward, the vectorization of ΔR leads to

r = vec(ΔR)

= (
A∗�A − C∗�C

)
p

= Ac p (16)

where r is an M2 × 1-dimensional vector,
⊙

represents the Khatri–Rao product,
Ac = [ac(θ1), ac(θ2), · · · , ac(θK )] is an M2 × K matrix, ac(θk) = a∗(θk)⊗a(θk) −
c∗(θk)⊗c(θk). Based on simulations, for an amount of signal cases with difference
directions and different number, we confirm that the matrix Ac is full column rank
when K < M . Therefore, Ac can yield correct DOA estimation.

The potential space of the source signals is sampled discretely to form a grid set
θ = [θ1, · · · , θ N ]. Here, we assume that the real DOAs is on this grid set θ and
N � M2. Therefore, r can be expressed as the following sparse representation

r = Ap (17)

where Ac = [ac(θ1), ac(θ2), · · · , ac(θN )] is theM2×N over-complete basis matrix,
p = [p1, p2, · · · , pN ]T is the N × 1 vector. When θk(k = 1, ..., K ) is equal to
θ i (i = 1, ..., N ), pi equals pk . On the contrary, pi is equal to zero when θk does not
equal to θ i . That is, p has K nonzero element which correspond to the DOAs of the
sources. As a result, the DOA estimation problem can be solved by recovering the
sparse vector p.

Similar to the methodology used in [5], recovery of sparse vector p in Eq.(17) can
be obtained by solving the following minimization problem

min
p

‖ r − Ac p ‖2 +μ ‖ p ‖1 (18)
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where ‖ · ‖2 denotes the l2-norm, ‖ · ‖1 denotes the l1-norm, regularization parameter
μ balances the sparsity of p and ‖ · ‖2-norm term.

In practice, finite sampling is required to estimate the covariance matrix. In this
paper, ·̂ is used to represent the estimated value. The covariance matrixes in the
beamspace and the element-space are, respectively, obtained as follow

R̂ = 1

T1

T1∑
t=1

x(t)xH (t) (19)

R̂b = 1

T1

T1∑
t=1

xb(t)xH
b (t) (20)

As a summary, the steps of the proposed SR-BECD method are given in Algorithm 1
as follows.

Algor i thm 1: DOA Estimation Using Sparse Representation of Beamspace
and Element-space Covariance Differencing (SR-BECD)

1: Difference R̂ and R̂b according to Eq. (14) to get ΔR̂;
2: The vector r̂ is obtained by vectorizing ΔR̂;
3: Sparse representation of r̂ according to Eq. (17), i.e.,

r̂ = Ac p̂ (21)

4: Solving the following minimization problem obtain the sparse vector p

min
p̂

‖ r̂ − Ac p̂ ‖2 +μ ‖ p̂ ‖1 (22)

5: The locations of the spectral peaks of p̂ give the estimated value of the source
DOAs.

The problem of DOA estimation in (22) can be efficiency solved in the second-order
cone (SOC) programming framework[1,10].

5 Computational Complexity

Note that the sparse vector p̂ in Eq. (22) can be obtained through the optimization
software CVX. Regarding computational complexity, only the main part of each algo-
rithm, that is, the computational complexity of the sparse recovery, is considered here.
The computational complexity of the proposed algorithm and the existing algorithms
is shown in Table 1.

It can be seen from Table 1 that in the case of multiple sources, the computational
complexity of the SR-CD and SR-BECD methods based on matrix differencing is
significantly reduced compared to othermethods. This is because in the sparse recovery
process, the SR-CD and SR-BECDmethods are independent of the number of sources
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Table 1 Computational Complexity of each algorithm

Algorithm l1-SVD l1-SRACV SR-CD SR-BECD

Computational complexity O(K 3N3) O(M3N3) O(N3) O(N3)

and the number of array elements. In contrast, the computational complexity of the l1-
SVDmethod is related to the number of sources,while the computational complexity of
the l1-SRACVmethod is related to the number of elements. In addition, in Table 1, for a
fair comparison,we assume that the SR-CDmethodusesEq. (18) in the sparse recovery
process forDOAestimation, which does not involve theweighted l1-norm. In this case,
the SR-CD and SR-BECD methods have the same computational complexity. This is
because each of them requires only one time sparse recovery process for recovering the
sparse vector of the source powers, which has a computational complexity of O(N 3).

6 Simulation

A uniform linear array with an element spacing of half a wavelength (λ/2) is used.
The number of array elements is 8, the number of snapshots is 500, and the signal
powers for different sources are equal. The space area Ω = [−90◦, 90◦] is divided
into equal angle intervals, and the angle interval is 1◦. In the following simulations, an
empirical parameter value (μ = 3) is selected for the proposed SR-BECD method. In
addition, we compare the proposed SR-BECD method with the l1-SVD, l1-SRACV,
SR-CD, MUSIC and the method in [9]. In the following simulation, the simulation
conditions are as described above if not stated otherwise.

6.1 Spatial Spectrum

Assuming that two far-field narrowband source signals are incident on the array with
a SNR of 0 dB. First, the DOAs of the source signal are set as θ1 = 10◦ and θ2 = 16◦,
respectively. The spatial spectra are provided in Fig. 1a. Then, the DOAs of the source
signals are changed as θ1 = 0◦ and θ2 = 6◦, respectively. In this case, the spatial
spectra are given in Fig. 1b. At the end, the DOAs of the source signal are set as
θ1 = −3◦ and θ2 = 3◦, respectively, which leads to the spatial spectra in Fig. 1c.
Since the SR-CD method uses the positive and negative signs of the recovered sparse
vector to identify locations of the sources, the spatial spectra are given as the recovered
sparse vector instead of the form of dB.

It can be seen from Fig.1a that for the SR-CD method, when the DOAs of the two
source signals are θ1 = 10◦ and θ2 = 16◦, the false peak appears at θ1 = −10◦ and
θ2 = −16◦, and the false peak sign is opposite to the sign of the peak value at the
location of the source. In Fig.1b, when the DOA of the source is θ = 0◦, the SR-CD
method does not show a peak at θ = 0◦. As shown in Fig.1c, the SR-CD method
does not provide spectral peaks at the DOAs of the symmetric sources; therefore, it
cannot estimate the DOAs of the symmetric sources. On the other hand, as shown in
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Fig. 1 Spatial spectrums. a θ1 = 10◦ and θ2 = 16◦; b θ1 = 0◦ and θ2 = 6◦; c θ1 = −3◦ and θ2 = 3◦

Fig. 1a-Fig. 1c, the proposed SR-BECDmethod has no false peaks and can accurately
estimate theDOAof the sourcewith an angle of θ = 0◦ and theDOAs of the symmetric
sources.

In addition, it is illustrated in Fig. 1a–c that when the DOA interval is small, the
l1-SVD, l1-SRACV and the method in [9] cannot accurately estimate the DOA. The
spectral peak of MUSIC method is not sharp enough. However, the proposed SR-
BECD method has sharp spectral peaks at the locations of sources and thus can
accurately estimate the DOAs of sources.

Consider two source signals impinging on the array from 10◦ and 30◦, respectively.
The SNR is -10 dB, and the other simulation conditions are the same as the above
simulation. In Fig. 2, we compare the spatial spectra of SR-BECD to those of l1-SVD,
l1-SRACV, MUSIC and the method in [9]. It can be seen from Fig. 2 that the spectral
peak of MUSIC method is not sharp enough. In the case of a low SNR such as -10
dB, the peaks of the l1-SVD and l1-SRACV obviously deviate from the true target
direction. The peak of the method in [9] has a deviation of 1◦ at θ = 30◦. In contrast,
the SR-BECD method remains sharp peaks at the true source direction.

6.2 Probability of DOA Resolution

Suppose that two far-field narrow-band source signals impinging on the array, each
of them has a SNR equal to -5 dB, and the DOAs of the sources are θ1 = 20◦ and
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Fig. 2 Spatial spectra. SNR=-10
dB
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Fig. 3 Probability of DOA
resolution

2 4 6 8 10
Angular Separation(degree)

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f D
O

A
 re

so
lu

tio
n

SR-BECD
L1-SVD
L1-SRACV
SR-CD
MUSIC
[9]

θ2 = 20◦ + Δ, respectively. The DOA of the second source increases with Δ = 1◦
per time until θ2 = 30◦. 100 independent repeated experiments are conducted at each
angle separation. If the estimated DOA θ̂1 and θ̂2 of a certain experiment satisfy the
following equation[3]

|θ̂1 − θ1| + |θ̂2 − θ2| < |θ1 − θ2| (23)

then it is said that the two sources in the experiment are correctly resolved. The
probability of DOA resolution refers to the percentage of correct resolution times
included in the total number of experiments. The probability ofDOA resolution against
the angle separation (i.e.,θ2 − θ1) is shown in Fig. 3.

In Fig. 3, as the angle interval of the source signal increases, the probability of
DOA resolution is gradually increased. When the angle interval is less than 8◦, the
probabilities of DOA resolution by the SR-BECD and SR-CD methods are signifi-
cantly higher than those of other methods. On the other hand, when the angle interval
is larger than 9◦, the probabilities of DOA resolution by the aforementioned methods
are all approaching to 1.

6.3 RMSE

We assume that two far-field narrowband signals impinging on the array, the DOAs
of the sources are θ1 = 0◦ and θ2 = 8◦, respectively, and the SNR varies from -12
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Fig. 4 RMSE against SNR
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dB to 8 dB, the angle interval is 0.25◦. The root mean square error (RMSE) of DOA
estimation is defined as follows

RMSE =
√√√√ 1

MlK

Ml∑
l=1

{
K∑

k=1

(
θ̂k,l − θk

)2}
(24)

where Ml = 100 is the number of Monte Carlo simulation experiments, θ̂k,l is the
estimated DOA of the k-th source in the l-th experiment, and θk is the DOA of the
k-th source. The RMSE of all the aforementioned methods against SNRs is given in
Fig. 4.

As shown in Fig. 4, the RMSE of all the methods decreases with the increment
of the SNR. In addition, from Fig. 4, we observe that the SR-CD method fails. This
is because that the SR-CD method cannot handle the case of the sources with DOAs
of 0◦. In addition, we can see that the RMSE of the proposed SR-BECD method is
obviously lower than that of the l1-SRACV, l1-SVD and the method in [9]. Moreover,
when the SNR is lower than -6 dB, the SR-BECD method behaves better than the
MUSIC method.

Consider three signals that arrive from [−20◦, 10◦, 35◦]. The SNR of all three
signals is set to 0 dB. Figure 5 depicts the RMSE versus the number of snapshots.
From Fig. 5, we observe that the performances of l1-SRACV and the method in [9] are
sharply degradingwhen the number of snapshots is less than about 200. This is because
the error-suppression criterion of l1-SRACV and the method in [9] are derived under
the large snapshots. Similarly, the performance of the MUSIC method also declines
under low snapshots condition. However, l1-SVD method has better performance in
low snapshots. Under the condition of low snapshots, the estimation error of SR-BECD
method is smaller than that of l1-SRACV, the method in [9] and MUSIC. When the
number of snapshots is higher than 400, the RMSE of each method is less than 1◦.
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Fig. 5 RMSE against the
number of the snapshots
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7 Conclusion

In this paper, the SR-BECD method is developed to estimate the DOAs of sources.
The SR-BECD method eliminates the noises by using the covariance differencing
between the covariance matrixes in the beamspace and element space. The existing
SR-CD method also uses the difference covariance matrix to eliminate the noises.
However, it is based on the difference between the covariance matrix and its transpose.
In this paper, it is proved that the false peaks occur in the SR-CD method when the
array is a linear array. Moreover, when the DOAs of the sources are equal to 0◦
and/or symmetric, the SR-CD algorithm fails. In contrast, the proposed SR-BECD
method avoids the aforementioned problems encountered in the SR-CD method and
it is not limited to specific arrays such as a uniform linear array. In addition, the sparse
recovery process of the proposed SR-BECD method is regardless of the number of
sources and the number of array elements and it has low computational complexity.
Simulation results demonstrate that the SR-BECD method has high DOA resolution
and estimation accuracy even in low SNRs.
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