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Abstract
This paper considers the H∞ control problem for Lur’e singular systems with time
delays. By using Lyapunov stability theory, sufficient conditions for the system to
be exponentially stable and satisfy the performance index of H∞ are obtained; these
conditions are based on the linear matrix inequality method. Then the design of a
state feedback controller is given, by applying a more clever approach for a nonlinear
matrix with a special format to convert it into the sum of several linear matrices, such
that the closed-loop system is also exponentially stable. Finally, numerical examples
illustrate the effectiveness of the proposed method and its advantages over existing
approaches.

Keywords Time-delay systems · Lur’e systems · Singular systems · Exponentially
stable · Lyapunov stability theory · Performance index of H∞

1 Introduction

A singular system is a kind of dynamic systemswith amore general form that hasmore
describe performance characteristics and has a broader form and wider application
background than normal systems [10]. The research content regarding singular systems
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is diverse, including stability, dissipation and H∞ control [17]. However, in many
practical control problems, there are multiple time delays in the studied systems,
whose existence may induce instability, oscillation and poor performance. System
stability is a prerequisite for the normal operation of a control system, and H∞ control
can ensure the stability of the system while suppressing the impact of interference on
the system performance to a certain extent. Therefore, it is necessary to study stability
and H∞ control problem of a singular time-delay system [1,10].

A Lur’e system is a type of typical, interval, nonlinear systemwith widely represen-
tative significance. Its nonlinear terms are usually contained in a finite sector interval
or an infinite open plane, that is, the linear parts of the system have a fixed matrix
and one or more uncertain nonlinear parts are utilized to satisfy sector constraints.
Since Lur’e introduced the absolute stability in 1957, many authors have extensively
discussed absolute stability of Lur’e control systems based on the Popov frequency
domain criteria and the Lyapunov function with a Lur’e form [2,3].

Reference [10] conducted an in-depth study on the delay-dependent H∞ control
problem of Lur’e singular time-delay systems, reference [7] addressed synchroniza-
tion methods for a specific Lur’e system, and references [6,21] studied the absolute
stability problem of Lur’e time-delay control systems, that is, the problem of global
asymptotic stability. Reference [18] studied system stability and the compactness of
the operators describing the solution trajectories. Based on the linear matrix inequality
(LMI)method,Wu proposed delay-range-dependent bounded real lemmas and studied
sufficient conditions for a system to be exponentially stable and the existence of the
linear H∞ filter [22]. Then, Park studied H∞ filtering for a class of Markovian jump
systems and successfully proved that there are necessary and sufficient conditions of
H∞ filtering for singular Markovian jump systems (SMJSs) whose transfer rates are
partially unknown [15]. Based on LMI theory, Kim used a new design method to study
the H∞ control problem for a singular time-delay system and obtained all solutions
including the controller gains [5]. In addition, Long designed a dynamic feedback
controller to ensure that the developed closed-loop system was impulse-free and sta-
ble under the given performance index of H∞ [11]. By constructing an enhanced
Lyapunov-Krasovskii function with triple integral terms, [4] proposed a bounded real
lemma to ensure that a singular state-delay systemwas stable and designed a static out-
put feedback controller. In addition, based on the bounded real lemma, Yang ensured
that the singular time-delay systemwas regular, impulse-free and stable under the con-
ditions of the performance index of H∞ [24]. Reference [25] studied the exponential
H∞ control problem for a singular system with time-varying delays, and references
[19,23] also studied the control problem for such systems. Furthermore, there are a
large number of papers that have studied the stability and H∞ control problems of
discrete-time descriptor systems [9,13], uncertain systems [12,26] and SMJSs [8].

This paper mainly studies the H∞ control problem of Lur’e singular time-delay
systems. By using Lyapunov stability theory, a new Lyapunov function is constructed,
which applies not only the upper and lower limits of the time delay, but also the
time-delay interval. Based on LMI method, sufficient conditions for systems to be
exponentially stable and satisfy the performance index of H∞ are given, and a state
feedback controller is designed to make the closed-loop system exponentially stable.
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Notations: Rn denotes the n-dimensional Euclidean space, and Rn×m is the set
of all m × n real matrices. || · || stands for the Euclidean norm of a vector and
|| f (t)||d = sup

−d≤t≤0
|| f (t)||. α1

∨
α2 = max{α1, α2}, and α1

∧
α2 = min{α1, α2}.

The superscripts ’T’ and ’∗’ denote the term that is induced by symmetry, respec-
tively.

2 Problem Formulation

Consider a Lur’e singular time-delay system:

Eẋ(t) = Ax(t) + Adx(t − d(t)) − Fϕ(y(t)) + Bww(t) + Buu(t) (1)

y(t) = Cx(t) + Cdx(t − d(t)) + Dww(t) (2)

z(t) = Lx(t) + Ldx(t − d(t)) + Lww(t) + Luu(t)

x(t) = φ(t), t ∈ [−d2, 0] (3)

where x ∈ Rn is the state, u ∈ Rm is the control input, w ∈ Rp is the disturbance
input that satisfies

∫ +∞
0 wT (t)w(t) < +∞, and z ∈ Rq is the control output of

the system. E, A, Ad , Bw, Bu,C,Cd , Dw, F, L, Ld , Lw, Lu are known real constant
matrices with appropriate dimensions, and Rank(E) = r ≤ n. φ(t) : R → Rn

is a compatible vector-valued initial function, y(t) ∈ Rl and the nonlinear function
ϕ(y) ∈ Rl → Rl is appropriately smooth and satisfy the sector constraint

ϕT (y)ϕ(y) ≤ ϕT (y)My (4)

where M ∈ Rl×l is a given positive definite matrix. In addition, d(t) is a time-delay
continuous function that is time-differentiable at all times, thereby satisfying

0 ≤ d1 ≤ d(t) ≤ d2, ḋ(t) ≤ α (5)

where d1 and d2 represent the upper and lower limits of the time delay, respectively,
ḋ(t) is the corresponding derivative function, and 0 ≤ α < 1.

Throughout this paper, the following definitions and lemmas will be used.

Definition 1 [20] A system is exponentially stable, if there exist scalars β1 > 0 and
β2 > 0 such that

||x(t)|| ≤ β1e
−β2t ||x(t)||d2 , t > 0

Definition 2 [11] The system (1)–(3) possesses an H∞ performance of γ , that is, under
zero initial conditions, the system satisfies

J (t) =
∫ t

0
[zT (s)z(s) − γ 2wT (s)w(s)]ds < 0
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for any nonzero ω(t) that satisfies
∫ +∞
0 wT (t)w(t) < +∞, where γ > 0 is a prede-

fined scalar.

Lemma 1 [20] (Jensen integral inequality) For any positive definite matrix M =
MT > 0, scalar quantities γ1 and γ2 and a vector-valued function v : [γ1, γ2] → Rn,
the following inequality holds:

(∫ γ2

γ1

v(s)ds

)T

M

(∫ γ2

γ1

v(s)ds

)

≤ (γ2 − γ1)

∫ γ2

γ1

vT (s)Mv(s)ds

Lemma 2 [11]Given any real matrices Q > 0, W1 and W2 of appropriate dimensions
and an umber λ > 0, the following inequality holds:

WT
1 W2 + WT

2 W1 ≤ λWT
1 QW1 + λ−1WT

2 Q−1W2

Lemma 3 [22] Suppose that the positive continuous function f (t) satisfies f (t) ≤
ζ1 sup

t−d≤s≤t
f (s) + ζ2e−εt , where ε > 0, 0 < ζ1 < 1, 0 < ζ1eεd < 1, ζ2 > 0. For

d > 0, the following inequality holds

f (t) ≤ e−εt || f (s)||d + ζ2e−εt

1 − ζ1e−εd

3 Main Results

First, we consider the exponential stability of the system (1)–(3) when it satisfies the
H∞ performance requirement. Then, we have the following result.

Theorem 1 In the system (1)–(3), for given 0 ≤ d1 ≤ d2, 0 ≤ α < 1, if there is a
scalar λ > 0, symmetric positive definite matrices Q j , R j , j = 1, 2, 3 and a matrix
P such that

ET P = PT E ≥ 0 (6)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 + LT L Ξ12 + LT Ld ET R1E 0 −ATW F + CT MT

∗ Ξ22 + LT
d Ld ET R3E Ξ24 −Ad

TW F + CT
d MT

∗ ∗ Ξ33 0 0
∗ ∗ ∗ −Q2 − Ξ24 0
∗ ∗ ∗ ∗ −(2 − λ)I + FTW F
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
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LT Lw + PT Bw + ATW Bw PT F
LT
d Lw + AT

d W Bw 0
0 0
0 0

−FTW Bw + MDw 0
LT

wLw + BwWBw − γ 2 I 0
∗ −λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (7)

where d12 = d2 − d1,W = d21 R1 + d12d22 R2 + d212R3, Ξ11 = PT A +
AT P + ∑3

k=1 Qk + ATW A − ET R1E − d12ET R2E, Ξ12 = PT Ad + ATW Ad +
d12ET R2E, Ξ22 = −(1 − α)Q3 + AT

d W Ad − ET ((d12 + d2)R2 + 2R3)E, Ξ24 =
ET (d2R2+R3)E, Ξ33 = −Q1−ET R1E−ET R3E,Ξ44 = −Q2−ET (d2R2+R3)E,
then for any time-delay function d(t) that satisfies (5), the system is exponentially sta-
ble and satisfies the performance index γ of H∞.

Proof First, we prove that the system (1)–(3) is asymptotically stable (w(t) = u(t) =
0). We choose the Lyapunov function candidate as

V (xt , t) = xT (t)ET Px(t) +
2∑

k=1

∫ t

t−dk
x(α)T Qkx(α)dα +

∫ t

t−d(t)
x(α)T Q3x(α)dα

+d1

∫ 0

−d1

∫ t

t+β

ẋ T (α)ET R1Eẋ(α)dαdβ

+d12d2

∫ 0

−d2

∫ t

t+β

ẋ T (α)ET R2Eẋ(α)dαdβ

+d12

∫ −d1

−d2

∫ t

t+β

ẋ T (α)ET R3Eẋ(α)dαdβ

where xt = x(t + θ), −2d2 ≤ θ ≤ 0. A denotes the derivative of a function, so from
(5), for the system (1)–(3), we have

AV (xt , t)

= 2xT (t)ET Pẋ(t) +
3∑

k=1

x(t)T Qkx(t) −
2∑

k=1

x(t − dk)
T Qkx(t − dk)

−(1 − ḋ(t))x(t − d(t))T Q3x(t − d(t)) + ẋ T (t)ETW Eẋ(t)

−d1

∫ t

t−d1
ẋ T (α)ET R1Eẋ(α)dα − d12

∫ t−d1

t−d2
ẋ T (α)ET R3Eẋ(α)dα

−d12d2

∫ t

t−d2
ẋ T (α)ET R2Eẋ(α)dα

≤ 2xT (t)ET Pẋ(t) +
3∑

k=1

x(t)T Qkx(t) −
2∑

k=1

x(t − dk)
T Qkx(t − dk)
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−(1 − α)x(t − d(t))T Q3x(t − d(t)) + ẋ T (t)ETW Eẋ(t)

−d1

∫ t

t−d1
ẋ T (α)ET R1Eẋ(α)dα − d12

∫ t−d1

t−d2
ẋ T (α)ET R3Eẋ(α)dα

−d12d2

∫ t

t−d2
ẋ T (α)ET R2Eẋ(α)dα

Using Lemma 1, the following formula can be obtained:

−d1

∫ t

t−d1
ẋ T (α)ET R1Eẋ(α)dα − d12d2

∫ t

t−d2
ẋ T (α)ET R2Eẋ(α)dβ

−d12

∫ t−d1

t−d2
ẋ T (α)ET R3Eẋ(α)dα

= −d1

∫ t

t−d1
ẋ T (α)ET R1Eẋ(α)dα − d12d2

∫ t

t−d(t)
ẋ T (α)ET R2Eẋ(α)dβ

−d12

∫ t−d1

t−d(t)
ẋ T (α)ET R3Eẋ(α)dα − d12

∫ t−d(t)

t−d2
ẋ T (α)ET (d2R2 + R3)Eẋ(α)dα

≤ −
(∫ t

t−d1
ẋ T (α)ET dα

)

R1

(∫ t

t−d1
Eẋ(α)dα

)

−d12

(∫ t

t−d(t)
ẋ T (α)ET dα

)

R2

(∫ t

t−d(t)
Eẋ(α)dα

)

−
(∫ t−d1

t−d(t)
ẋ T (α)ET dα

)

R3

(∫ t−d1

t−d(t)
Eẋ(α)dα

)

−
(∫ t−d(t)

t−d2
ẋ T (α)ET dα

)

(d2R2 + R3)

(∫ t−d(t)

t−d2
Eẋ(α)dα

)

The nonlinear function ϕ(y) satisfies inequality (4), and based on Lemma 2, from
(1) and (4), we have

AV (xt , t)

≤ 2xT (t)PT (Ax(t) + Adx(t − d(t)) − Fϕ(y(t))) +
3∑

k=1

x(t)T Qkx(t)

−
2∑

k=1

x(t − dk)
T Qkx(t − dk) − (1 − α)x(t − d(t))T Q3x(t − d(t))

+ẋ T (t)ETW Eẋ(t) −
(∫ t

t−d1
ẋ T (α)ET dα

)

R1

(∫ t

t−d1
Eẋ(α)dα

)

−d12

(∫ t

t−d(t)
ẋ T (α)ET dα

)

R2

(∫ t

t−d(t)
Eẋ(α)dα

)



Circuits, Systems, and Signal Processing (2022) 41:1367–1388 1373

−
(∫ t−d1

t−d(t)
ẋ T (α)ET dα

)

R3

(∫ t−d1

t−d(t)
Eẋ(α)dα

)

−
(∫ t−d(t)

t−d2
ẋ T (α)ET dα

)

(d2R2 + R3)

(∫ t−d(t)

t−d2
Eẋ(α)dα

)

+2(ϕ(y(t))T My(t) − ϕ(y(t))Tϕ(y(t))) (8)

≤ ξ T

⎡

⎢
⎢
⎢
⎢
⎣

Ξ11 + 1
λ
PT FFT P Ξ12 ET R1E 0 −ATW F + μCT MT

∗ Ξ22 ET R3E Ξ24 −AT
d W F + μCT

d MT

∗ ∗ Ξ33 0 0
∗ ∗ ∗ Ξ44 0
∗ ∗ ∗ ∗ −(2 − λ)I + FTW F

⎤

⎥
⎥
⎥
⎥
⎦

ξ

(9)

where ξ(t) = [
xT (t) xT (t − d(t)) xT (t − d1) xT (t − d2) ϕT (t)

]T
.

Next, the following matrix decomposition is executed. Since Rank(E) = r ≤ n,
there are nonsingular matrices G, H such that

GEH =
[
Ir 0
0 0

]

Denoting

GAH =
[
Â1 Â2

Â3 Â4

]

,G−T PH =
[
P̂1 P̂2
P̂3 P̂4

]

we can obtain P̂2 = 0 from (6). We can obtain ÂT
4 P̂4 + P̂T

4 Â4 < 0 by pre-multiplying
and post-multiplying Ξ11 < 0 by HT and H , respectively, so Â4 is nonsingular.
Setting

Ĝ =
[
Ir − Â2 Â

−1
4

0 Â−1
4

]

G

we have

ĜEH =
[
Ir 0
0 0

]

, Ĝ AH =
[
A1 0
A3 I

]

, Ĝ−T PH =
[
P1 P2
P3 P4

]

where A1 = Â1 − Â2 Â4
−1

Â3, A3 = Â4
−1

Â3.

Denoting

Ĝ Ad H =
[
Ad1 Ad2
Ad3 Ad4

]

, HT Q3H =
[
Q11 Q12
∗ Q22

]

, ĜFH =
[
F1 F2
F3 F4

]
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Inequality (6) implies that P2 = 0 and P1 ≥ 0.Wedefineη(t)=[
η1(t) η2(t)

]T =
H−1x(t), ψ(y(t)) = [

ψ1(y(t)) ψ2(y(t))
]T = H−1ϕ(y(t)). We can obtain

ĜEH η̇(t) = ĜE ẋ(t) = Ĝ[Ax(t) + Adx(t − d(t)) − Fϕ(y(t))]
= Ĝ AHη(t) + Ĝ Ad Hη(t − d(t)) − ĜFHψ(y(t))

Then, the system (1)–(3) with ω(t) ≡ 0 is a restricted system that is equivalent to

[
Ir 0
0 0

] [
η̇1(t)
η̇2(t)

]

=
[
A1 0
A3 I

] [
η1(t)
η2(t)

]

+
[
Ad1 Ad2
Ad3 Ad4

] [
η1(t − d(t))
η2(t − d(t))

]

−
[
F1 F2
F3 F4

] [
ψ1(y(t))
ψ2(y(t))

]

In other words, we have that

η̇1(t) = A1η1(t) + Ad1η1(t − d(t))

+Ad2η2(t − d(t)) − F1ψ1(y(t)) − F2ψ2(y(t)) (10)

0 = A3η1(t) + η2(t) + Ad3η1(t − d(t)) + Ad4η2(t − d(t))

−F3ψ1(y(t)) − F4ψ2(y(t))

η(t) = H−1φ(t), t ∈ [−d2, 0] (11)

Defining a new function W (xt , t) = eεt V (xt , t), we can obtain a scalar
σ > 0 such that AV (xt , t) ≤ −σ ||x(t)||2, so W (xt , t) ≤ W (x0, 0) +∫ t
0 e

εs(εV (xs, s) − σ ||x(s)||2)ds. Due to

xT (t)ET Px(t) = η(t)T HT ET ĜT Ĝ−T PHη(t)

= [
η1(t)T η2(t)T

]
[
Ir 0
0 0

] [
P1 P2
P3 P4

] [
η1(t)
η2(t)

]

= η1(t)
T P1η1(t)

we can obtain

λmin(P1)||η1(t)||2 ≤ xT (t)ET Px(t) ≤ V (xt , t) = e−εtW (xt , t)

≤ e−εt {W (x0, 0) +
∫ t

0
eεs[εV (xt , t) − σ ||x(s)||2]ds}

Because w(t) = u(t) = 0, Lemma 2 implies that we have

d1

∫ 0

−d1

∫ t

t+β

ẋ T (α)ET R1Eẋ(α)dαdβ

= d1

∫ 0

−d1

∫ t

t+β

[Ax(α) + Adx(α − d(α)) − Fϕ(y(α))]T R1[Ax(α)
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+Adx(α − d(α)) − Fϕ(y(α))]dαdβ
= d1

∫ 0

−d1

∫ t

t+β

[xT (α)AT R1Ax(α) + xT (α − d(α))AT
d R1Adx(α − d(α))

+ϕ(y(α))T FT R1Fϕ(y(α))

+xT (α)AT R1Adx(α − d(α)) + xT (α − d(α))AT
d R1Ax(α)

−xT (α − d(α))AT
d R1Fϕ(y(α))

−ϕ(y(α))T FT R1Adx(α − d(α)) − xT (α)AT R1Fϕ(y(α))

−ϕ(y(α))T FT R1Ax(α)]dαdβ
≤ d1

∫ 0

−d1

∫ t

t+β

[xT (α)AT R1Ax(α) + xT (α − d(α))AT
d R1Adx(α − d(α))

+ϕ(y(α))T FT R1Fϕ(y(α))

+xT (α)AT R1Adx(α − d(α)) + xT (α − d(α))AT
d R1Ax(α)]dαdβ

≤ d1

∫ 0

−d1

∫ t

t+β

[xT (α)AT R1Ax(α) + xT (α − d(α))AT
d R1Adx(α − d(α))

+λmax (F
T R1F)ϕ(y(α))Tϕ(y(α))

+xT (α)AT R2
1 Ax(α) + xT (α − d(α))AT

d Adx(α − d(α))]dαdβ
≤ d1

∫ 0

−d1

∫ t

t+β

{[λmax (A
T R1A) + λmax (A

T R2
1 A)]||x(α)||2

+[λmax (A
T
d R1Ad) + λmax (A

T
d Ad)]||x(α − d(α))||2

+λmax (F
T R1F)y(α)T M2y(α)}dαdβ

≤ d1

∫ 0

−d1

∫ t

t+β

{[λmax (A
T R1A) + λmax (A

T R2
1 A)]||x(α)||2

+[λmax (A
T
d R1Ad) + λmax (A

T
d Ad)]||x(α − d(α))||2

+λmax (F
T R1F)λmax (M

2)[Cx(t)

+Cdx(t − d(t))]T [Cx(t) + Cdx(t − d(t))]}dαdβ
≤ d1

∫ 0

−d1

∫ t

t+β

{[λmax (A
T R1A) + λmax (A

T R2
1 A)

+2λmax (F
T R1F)λmax (M

2)λmax (C
TC)]||x(α)||2d2

+[λmax (A
T
d R1Ad) + λmax (A

T
d Ad)

+2λmax (F
T R1F)λmax (M

2)λmax (C
T
d Cd)]||x(α − d(α))||2d2}dαdβ

≤ −d13

2
K1||x(α)||2d2

where Ki = λmax (AT Ri A)+λmax (AT R2
i A)+2λmax (FT Ri F)λmax (M2)λmax (CTC)

+ λmax (AT
d Ri Ad) + λmax (AT

d Ad) + 2λmax (FT Ri F)λmax (M2)λmax (CT
d Cd), i =

1, 2, 3. By the same way,

d12d2
∫ 0
−d2

∫ t
t+β

ẋ T (α)ET R2Eẋ(α)dαdβ ≤ − d12d22

2 K2||x(α)||2d2 ,
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d12
∫ −d1
−d2

∫ t
t+β

ẋ T (α)ET R3Eẋ(α)dαdβ ≤ − d12(d12−d22)
2 K3||x(α)||2d2 . Therefore,

λmin(P1)||η1(t)||2

≤ e−εt {W (x0, 0) +
∫ t

0
[εeεs K0||x(s)||2d2

+eεsεK
∫ 0

−d2
||x(s + θ)||2dθ − σ ||x(s)||2]ds}

≤ e−εt [W (x0, 0) +
∫ t

0
εeεs K0||x(s)||2d2ds + εK

∫ t

0
eεs

∫ 0

−d2
||x(s + θ)||2dθds]

(12)

where K0 = λmax (ET P)− d13

2 K1− d12d22

2 K2− d12(d12−d22)
2 K3, K = ∑3

k=1 λmax (Qk),
and we have

∫ t

0
eεs

∫ 0

−d2
||x(s + θ)||2dθds =

∫ t

0
eεs

∫ t

t−d2
||x(θ)||2dθds

≤
∫ t

−d2

(∫ (θ+d2)
∧

t

θ
∨

0
eεsds

)

||x(θ)||2dθ ≤
∫ t

−d2
d2e

ε(s+d2)||x(s)||2ds

≤ d2e
εd2

∫ t

0
eεs ||x(s)||2ds + d2e

εd2

∫ 0

−d2
||φ(s)||2ds (13)

Therefore, from inequalities (12) and (13), if the scalar ε is sufficiently small, there
exists a scalar k = W (x0, 0)(||φ(t)||2d2)−1 + K0eεd2 + εKd22eεd2 > 0, such that

λmin(P1)||η1(t)||2 ≤ ke−εt ||φ(t)||2d2 (14)

Therefore, η1(t) is exponentially stable.
Next, defining e(t) = A3η1(t) + Ad3η1(t − d(t)), it can be seen from (14) that, if

there exists a scalar m > 0,

||e(t)||2 ≤ me−εt ||φ(t)||2d2 (15)

We construct the function L(t) = η2(t)T Q22η2(t)−η2(t−d(t))T Q22η2(t−d(t)).
We can obtain following formula by pre-multiplying (11) by η2(t)T P4T :

0 = η2(t)T P4T η2(t) + η2(t)T P4T Ad4η2(t − d(t)) + η2(t)T P4T e(t)

+η2(t)T P4T [−F3ψ1(y(t)) − F4ψ2(y(t))] (16)

Then, we can obtain

L(t) = η2(t)
T (P4

T + P4 + Q22)η2(t)

+2η2(t)
T P4

T Ad4η2(t − d(t)) + 2η2(t)
T P4

T e(t)
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+2η2(t)
T P4

T [−F3ψ1(y(t)) − F4ψ2(y(t))] − η2(t − d(t))T Q22η2(t − d(t))

≤

⎡

⎢
⎢
⎣

η2(t)
η2(t − d(t))

ψ1(y(t))
ψ2(y(t))

⎤

⎥
⎥
⎦

T ⎡

⎢
⎢
⎣

P4T + P4 + Q22 P4T Ad4 −P4T F3 −P4T F4
∗ −Q22 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

η2(t)
η2(t − d(t))

ψ1(y(t))
ψ2(y(t))

⎤

⎥
⎥
⎦

+ε1η2(t)
T η2(t) + ε1

−1e(t)T P4P4
T e(t) (17)

where ε1 is an any positive real number.
From (7), we can obtain

[
Ξ11 Ξ12
∗ Ξ22

]

< 0

Pre-multiplying and post-multiplying the above formula, respectively, by

[
H 0
0 H

]T

and

[
H 0
0 H

]

we can derive

[
P4T + P4 + Q22 P4T Ad4

∗ −Q22

]

< 0

Then,

Ω1 =

⎡

⎢
⎢
⎣

P4T + P4 + Q22 P4T Ad4 −P4T F3 −P4T F4
∗ −Q22 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤

⎥
⎥
⎦ < 0

so there exists a scalar ε2 > 0 such that

Ω1 ≤ −

⎡

⎢
⎢
⎣

ε2 I 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤

⎥
⎥
⎦ (18)

Choosing a sufficiently small ε1, such that ε2 − ε1 > 0. Then we can obtain an
ε3 > 0 such that

ε3Q22 ≤ Q22 − (ε1 − ε2)I (19)
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It follows from (17), (18) and (19) that

L(t) ≤ −(ε2 − ε1)η2(t)
T η2(t) + ε1

−1e(t)T P4P4
T e(t) (20)

From (19) and (20), we have that

η2(t)
T Q22η2(t) ≤ ε3

−1η2(t)
T [Q22 − (ε1 − ε2)I ]η2(t)

= ε3
−1[η2(t)T Q22η2(t) − (ε1 − ε2)η2(t)

T η2(t)]
= ε3

−1[η2(t − d(t))T Q22η2(t − d(t))

+L(t) − (ε1 − ε2)η2(t)
T η2(t)]

≤ ε3
−1[η2(t − d(t))T Q22η2(t − d(t)) − (ε2 − ε1)η2(t)

T η2(t)

+ε1
−1e(t)T P4P4

T e(t) − (ε1 − ε2)η2(t)
T η2(t)]

= ε3
−1η2(t − d(t))T Q22η2(t − d(t)) + (ε1ε3)

−1e(t)T P4P4
T e(t)

≤ ε3
−1η2(t − d(t))T Q22η2(t − d(t))

+(ε1ε3)
−1me−δt ||P4||2||φ(t)||2d2 (21)

Because 0 < δ < min(ε, d2−1 ln ε3) and 0 < ε3
−1 < 1, we can obtain that for

0 < ε3
−1e−δd2 < 1, ζ = (ε1ε3)

−1m||P4||2||φ(t)||2d2 > 0, where d2 > 0. In addition,
Lemma 3 implies that we have

η2(t)
T Q22η2(t) ≤ e−δtλmax(Q22)||η2(t)||2d2 + ζe−δt

1 − ε3−1e−δd2

λmin(Q22)||η2(t)||2 ≤ η2(t)T Q22η2(t), so we can obtain

||η2(t)||2 ≤ λmin(Q22)
−1λmax(Q22)e

−δt ||η2(t)||2d2 + λmin(Q22)
−1ζe−δt

1 − ε3−1e−δd2
(22)

so η2(t) is exponentially stable.
Because of ||η(t)||2 = ||η1(t)||2+||η2(t)||2 and x(t) = Hη(t), we can obtain from

(14), (22) and Definition 1 that the system is exponentially stable for any time-delay
function d(t) that satisfies (5).

Next, we study the H∞ performance of the system, from (9) we can obtain

J (t) =
∫ t

0
[zT (s)z(s) − γ 2wT (s)w(s)]ds

≤
∫ t

0
[zT (s)z(s) − γ 2wT (s)w(s) + AV (xs, s)]ds

≤
∫ t

0

[
ξ(t)
w(t)

]T

Ω

[
ξ(t)
w(t)

]

(23)

where



Circuits, Systems, and Signal Processing (2022) 41:1367–1388 1379

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 + 1
λ
PT FFT P + LT L Ξ12 + LT Ld ET R1E 0 −AT W F + CT MT

∗ Ξ22 + LTd Ld ET R3E Ξ24 −AdW F + CT
d MT

∗ ∗ Ξ33 0 0
∗ ∗ ∗ Ξ44 0
∗ ∗ ∗ ∗ −(2 − λ)I + FT W F
∗ ∗ ∗ ∗ ∗

LT Lw + PT Bw + AT W Bw

LTd Lw + ATd W Bw

0
0

−FT W Bw + MDw

LTwLw + BT
wWBw − γ 2 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

By the Schur complements, Formula (7) implies that Ω < 0, so J (t) < 0 for
∀t > 0; therefore, ||z(t)||2 ≤ γ ||w(t)||2,∀w(t) ∈ L2[0,+∞]. 
�

Remark 1 In Theorem 1, a newLyapunov–Krasovskii functional is constructed, which
not only uses the information of the upper limit d2 of the time-delay; but also uses the
information of the lower limit d1 of the time-delay and the time-delay interval d12. By
using the Jensen Integral inequality and the Schur complements, the system is proven
to be exponentially stable and satisfies the performance index γ of H∞.

We design a controller for the Lur’e singular system. By considering the state
feedback controller u(t) = Kx(t), we obtain the following closed-loop system:

Eẋ(t) = (A + BuK )x(t) + Adx(t − d(t)) − Fϕ(y(t)) + Bww(t) (24)

y(t) = Cx(t) + Cdx(t − d(t)) + Dww(t) (25)

z(t) = (L + LuK )x(t) + Ldx(t − d(t)) + Lww(t) (26)

x(t) = φ(t), t ∈ [−d2, 0]

Corollary 1 In the system (24)–(26), for given 0 ≤ d1 ≤ d2, 0 ≤ α < 1, if there
is a positive number λ > 0, symmetric positive definite matrices N j , R̄ j , j =
1, 2, 3, V1, V2 and matrices X ,Y such that

X ET = EXT ≥ 0 (27)
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ1 Ad X
T EXT 0 XCT MT Bω FXT XLT + Y LuT

∗ Ξ2 0 EXT XCT
d MT 0 0 XLd

T

∗ ∗ V1 + V2 − N1 0 0 0 0 0
∗ ∗ ∗ V2 − N2 0 0 0 0
∗ ∗ ∗ ∗ −(2 − λ)I MDω 0 0
∗ ∗ ∗ ∗ ∗ −γ 2 I 0 Lω

T

∗ ∗ ∗ ∗ ∗ ∗ −λI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

d1X AT + d1Y BuT d2X AT + d2Y BuT d12X AT + d12Y BuT

d1X Ad
T d2X Ad

T d12X Ad
T

0 0 0
0 0 0

−d1F
T −d2F

T −d12F
T

d1Bω
T d2Bω

T d12Bω
T

0 0 0
0 0 0

−R̄1 0 0
∗ −R̄2 0
∗ ∗ −R̄3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (28)

whereΞ1 = X AT +AXT +∑3
k=1 Nk+Y Bu

T +BuY T −EXT −XET + R̄1, Ξ2 =
−(1−α)N3−EXT−XET+V1+R̄2, then for any time-delay functiond(t) that satisfies
(5), the closed-loop system is exponentially stable and satisfies the performance index
γ of H∞.

Proof Setting Ā = A + BuK , L̄ = L + LuK , it can be seen from Theorem 1 that (6)
is established and

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ̄11 + L̄T L̄ Ξ̄12 + L̄T Ld ET R1E 0 − ĀT W F + CT MT

∗ Ξ22 + LTd Ld ET R3E Ξ24 −Ad
T W F + CT

d MT

∗ ∗ Ξ33 0 0
∗ ∗ ∗ −Q2 − Ξ24 0
∗ ∗ ∗ ∗ −(2 − λ)I + FT W F
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

L̄T Lw + PT Bw + ĀT W Bw PT F
LTd Lw + ATd W Bw 0

0 0
0 0

−FT W Bw + MDw 0
LTwLw + BwWBw − γ 2 I 0

∗ −λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0
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where Ξ̄11 = PT Ā + ĀT P + ∑3
k=1 Qk + ĀT W Ā − ET R1E − d12ET R2E ,

Ξ̄12 = PT Ad + ĀT W Ad + d12ET R2E . At this time, the closed-loop system (24)–
(26) is stable and satisfies the performance index γ of H∞.

Setting

S1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S11 S12 ET R1E 0 − ĀT W F + CT MT

∗ S22 0 d2E
T R2E −Ad

T W F + CT
d MT

∗ ∗ −Q1 − ET R1E 0 0
∗ ∗ ∗ −Q2 − d2E

T R2E 0
∗ ∗ ∗ ∗ −(2 − λ)I + FT W F
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

L̄T Lw + PT Bw + ĀT W Bw PT F
LTd Lw + ATd W Bw 0

0 0
0 0

−FT W Bw + MDw 0
LTwLw + BwWBw − γ 2 I 0

∗ −λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

S2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−d12E
T R2E d12E

T R2E 0 0 0 0 0
∗ −d12E

T R2E − 2ET R3E ET R3E ET R3E 0 0 0
∗ ∗ −ET R3E 0 0 0 0
∗ ∗ ∗ −ET R3E 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where S11 = PT Ā + ĀT P + ∑3
k=1 Qk + ĀT W Ā − ET R1E + L̄T L̄, S12 =

PT Ad + ĀT W Ad + L̄T Ld , S22 = −(1− α)Q3 + AT
d W Ad − d2ET R2E + LT

d Ld , it
is easy to see that S = S1 + S2 and S2 ≤ 0 are naturally established, so S1 < 0 is the
sufficient condition of S < 0.

Pre-multiplying S1 by H1 = diag[P−T , P−T , P−T , P−T , I , I , P−T ] and post-
multiplying it by HT

1 , we can obtain S3 = H1S1HT
1 :

S3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S̄11 S̄12 P−T ET R1EP−1 0 −P−T ĀT W F + P−T CT MT

∗ S̄22 0 d2P−T ET R2EP−1 −P−T Ad
T W F + P−T CT

d MT

∗ ∗ S33 0 0
∗ ∗ ∗ S44 0
∗ ∗ ∗ ∗ −(2 − λ)I + FTW F
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
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P−T L̄T Lw + Bw + P−T ĀT W Bw FP−1

P−T LT
d Lw + P−T AT

d W Bw 0
0 0
0 0

−FTW Bw + MDw 0
LT

wLw + BwWBw − γ 2 I 0
∗ −λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where S̄11 = ĀP−1 + P−T ĀT + ∑3
k=1 P

−T Qk P−1 + P−T ĀT W ĀP−1 −
P−T ET R1EP−1+P−T L̄T L̄ P−1, S̄12 = Ad P−1+P−T ĀT W Ad P−1+P−T L̄T Ld P−1,
S̄22 = −(1−α)P−T Q3P−1+P−T AT

d W Ad P−1−d2P−T ET R2EP−1+P−T LT
d Ld P−1,

S33 = −P−T Q1P−1−P−T ET R1EP−1,S44 = −P−T Q2P−1−d2P−T ET R2EP−1.

It can be seen that for a matrix with the following format, there are positive definite
matrices V1 and V2 such that

⎡

⎣
−P−T ET R1EP−1 0 P−T ET R1EP−1

∗ 0 0
∗ ∗ −P−T ET R1EP−1

⎤

⎦

≤ −
⎡

⎣
P−T ET 0 0

0 0 0
−P−T ET 0 0

⎤

⎦ −
⎡

⎣
EP−1 0 −EP−1

0 0 0
0 0 0

⎤

⎦ +
⎡

⎣
R1

−1 0 0
0 V1 0
0 0 V2

⎤

⎦

(29)
⎡

⎣
−d2P

−T ET R2EP−1 0 d2P
−T ET R2EP−1

∗ 0 0
∗ ∗ −d2P

−T ET R2EP−1

⎤

⎦

≤ −
⎡

⎣
P−T ET 0 0

0 0 0
−P−T ET 0 0

⎤

⎦ −
⎡

⎣
EP−1 0 −EP−1

0 0 0
0 0 0

⎤

⎦ +
⎡

⎣
(d2R2)

−1 0 0
0 V1 0
0 0 V2

⎤

⎦

(30)

Substituting W = d21 R1 + d12d22 R2 + d212R3, Formulas (29) and (30) into matrix
S3, by the Schur complements, we can obtain matrix S4:

S4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Θ1 Ad P−1 EP−1 0 P−T CT MT Bω

∗ Θ2 0 EP−1 P−T CT
d MT 0

∗ ∗ V1 + V2 − P−T Q1P−1 0 0 0
∗ ∗ ∗ V2 − P−T Q2P−1 0 0
∗ ∗ ∗ ∗ −(2 − λ)I MDω

∗ ∗ ∗ ∗ ∗ −γ 2 I
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
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FP−1 P−T L̄T d1P−T ĀT d2P−T ĀT d12P−T ĀT

0 P−T Ld
T d1P−T Ad

T d2P−T Ad
T d12P−T Ad

T

0 0 0 0 0
0 0 0 0 0
0 0 −d1FT −d2FT −d12FT

0 Lω
T d1Bω

T d2Bω
T d12Bω

T

−λI 0 0 0 0
∗ −I 0 0 0
∗ ∗ −R1

−1 0 0
∗ ∗ ∗ −(d12R2)

−1 0
∗ ∗ ∗ ∗ −R3

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (31)

where Θ1 = ĀP−1 + P−T ĀT + ∑3
k=1 P

−T Qk P−1 − P−T ET − EP−1 +
R1

−1,Θ2 = −(1 − α)P−T Q3P−1 − P−T ET − EP−1 + (d2R2)
−1 + V1.

We substitute Ā = A + BuK and L̄ = L + LuK into matrix S4, and set P−T =
X , P−T K T = Y , P−T Qk P−1 = Nk, R1

−1 = R̄1, (d12R2)
−1 = R̄2, R3

−1 = R̄3, so
that (d2R2)

−1 = d12
d2

R̄2 = d2−d1
d2

R̄2 ≤ R̄2. From Formula (28), we can obtain S4 < 0,
so S3 < 0, which implies that S1 < 0. S2 ≤ 0, and S = S1 + S2 < 0 is established;
therefore, the closed-loop system is exponentially stable. 
�
Remark 2 In Corollary 1, we propose a more clever approach to deal with matri-
ces with a special format, where a nonlinear matrix is converted into the sum
of several linear matrices. For example, in Formula (29), the nonlinear matrix⎡

⎣
−P−T ET R1EP−1 0 P−T ET R1EP−1

∗ 0 0
∗ ∗ −P−T ET R1EP−1

⎤

⎦ is converted into the sum of three

linearmatrices through scaling:−
⎡

⎣
P−T ET 0 0

0 0 0
−P−T ET 0 0

⎤

⎦,−
⎡

⎣
EP−1 0 −EP−1

0 0 0
0 0 0

⎤

⎦

and

⎡

⎣
R1

−1 0 0
0 V1 0
0 0 V2

⎤

⎦. By applying the result of Theorem 1 and repeatedly applying

the Schur complements, the closed-loop system is proven to be exponentially stable
and to satisfy the performance index γ of H∞ .

4 Numerical Examples

In this section, several numerical examples are presented to illustrate the effective-
ness of the proposed method, especially regarding the responses of x(t),y(t) and
z(t). Through a comparison with existing results,the advantages of new method are
demonstrated.

Example 1 Consider the linear singular time-delay system of Example 1 (shown in
reference [14]), where the coefficient matrices and parameters are

E =
[
1 0
0 1

]

, A =
[−0.9 0.2

−0.1 −0.9

]

, Ad =
[−1.1 0.2

−0.1 −1.1

]
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Table 1 The maximum allowed time delay d2 for the different values of α

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[16] 1.14 0.89 0.81 0.79 0.78 0.76 0.75 0.75 0.74

[14] 1.71 1.60 1.49 1.39 1.29 1.20 1.10 1.00 0.90

Theorem 1 2.61 2.32 2.08 1.88 1.70 1.55 1.42 1.30 1.22

Table 2 The maximum allowed
time delay d2 for the different
values of d1

d1 2.5 3 3.5

[22] 3.0621 3.2234 3.6393

Theorem 1 3.0627 3.2260 3.6407

Table 3 The maximum allowed
time delay d2 for the different
values of γ

γ 1 2 3 4 5

[22] 1.8899 2.3430 2.5403 2.6506 2.7209

Theorem 1 1.9697 2.3971 2.5806 2.6826 2.7475

F =
[ −0.2 0.1

−0.45 −0.3

]

, d1 = 0

By choosing different values for the derivative upper limits α of the delay function,
the maximum allowed time delay d2 of the delay function, which ensures the stability
of the system, is obtained. Then, by comparing the obtained results with those of
references [16] and [14], we obtain Table 1.

Remark 3 It is clear that the structure of the Lyapunov function in our paper is simpler
than that in reference [14]. However, as shown in Table 1, when the derivative α of the
delay function takes different values, we derive larger maximum allowed time delays
than those in references [16] and [14], which ensures that the system is stable.

Example 2 Consider the linear singular time-delay system of Example 1 (shown in
reference [22]), where the coefficient matrices and parameters are

E =
[
9 3
6 2

]

, A =
[−13.1 −13.7

−15.4 −23.8

]

, Ad =
[−18.6 −10.4

−25.2 −16.8

]

Bw =
[
1.9
1.8

]

, L =
[

0.4
−0.8

]T

, α = 0.2

(1) Suppose that w(t) = 0; by comparing the values of the maximum allowed time
delay d2 for the different values of d1, we can obtain Table 2.

(2) Suppose that d1(t) = 0; by comparing the values of the maximum allowed time
delay d2 for the different values of γ , we can obtain Table 3.



Circuits, Systems, and Signal Processing (2022) 41:1367–1388 1385

It can be seen from Tables 2 and 3 that compared with those in reference [22], the
values of the maximum allowed time delay d2 that we obtain are larger, which means
that the system is more stable.

Remark 4 In Example 2, we illustrate how we choose the design parameters to affect
the control performance. First, in Table 2, through the LMImethod, we obtain different
values of the maximum allowed time delay d2 by choosing different values of d1 while
w(t) = 0. The values of d2 are larger when that of d1 is chosen to be larger. Then, in
Table 3, we choose different values of γ when d1(t) = 0 and obtain the corresponding
values of the maximum allowed time delay d2. It is clear that when we choose larger
values of γ , we can obtain larger values of d2.

Example 3 We design the state feedback controller for the system (1)–(3), and choose
scalars as follows:

E =
[
1 0
0 0

]

, � =
[ −5
20

]

, A =
[ −32.1 23.6

−45 100

]

, Ad =
[ −2 1

0 1

]

, M =
[
1 0
0 1

]

Bu =
[ −25 10

−0.3 0

]

, Bw =
[ −1 2

−0.2 0

]

, F =
[ −1.2 −10

1 −10

]

,C =
[ −24 0.1

0 −2

]

Cd =
[ −0.5 −16

3 0

]

, Dw =
[ −1 0

0 0

]

, L =
[ −2 −2.5

0 −1.4

]

, Lu =
[ −0.1 0

0 −3

]

Ld =
[ −1 −2

1 −3

]

, Lw =
[
0 0
0 −0.3

]

, ϕ(y(t)) = ω(t) =
[
e−t sin(t)
e−t cos(t)

]

d(t) = 0.1sin(t) + 0.1, d1 = 0, d2 = 0.2, d12 = d2 − d1, α = 0.2, γ = 1, λ = 0.1

By using Corollary 1 in this paper and the linear matrix inequality (LMI) method,
we can obtain the following results

X =
[
0.1433 0.0154
0.0143 −0.0574

]

, K =
[
20.3834 5.0959
5.4887 −50.9204

]

which means the state feedback controller we design is

u(t) =
[
20.3834 5.0959
5.4887 −50.9204

]

x(t)

so that the closed-loop system (24)–(26) is exponentially stable and satisfies the per-
formance index γ of H∞.

By applying simulink software, we can obtain the response figures of the state x(t),
control input y(t) and control output z(t), as shown in Figs. 1, 2 and 3.

In the figures, we can see that, at first, the values of the state x(t), control input y(t)
and control output z(t) in the chosen numerical system are not equal to zero. However
they rapidly approach zero with the state feedback controller, and after two seconds,
they steadily approach zero, which implies that the numerical system is exponentially
stable and satisfies the performance index γ of H∞. Therefore, this numerical example
illustrates that our method is effective.
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Fig. 1 State responses of x(t) in Example 3
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Fig. 2 Input responses of y(t) in Example 3

5 Conclusion

This paper mainly studies the H∞ control problem for Lur’e singular time-delay sys-
tems. By using Lyapunov stability theory, a new Lyapunov function is constructed.
Compared with that developed in a previous paper, our function has one more double
integral term d1

∫ 0
−d1

∫ t
t+β

ẋ T (α)ET R1Eẋ(α)dαdβ, which makes our obtained result
more conservative. Based on the linear matrix inequality (LMI) method, sufficient
conditions for the designed system to be exponentially stable and to satisfy the perfor-
mance index of H∞ are obtained. During this process, themain difficulty is confirming
the exponential stability of the system. Subsequently, a design method for the state
feedback controller of the system is given, and by applying a more clever approach
for a nonlinear matrix with a special format to convert it into the sum of several
linear matrices, the closed-loop system is also exponentially stable and satisfies the
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Fig. 3 Output responses of z(t) in Example 3

H∞ performance index. Finally, numerical examples illustrate the effectiveness of the
proposed method and its advantages over the existing results and the response figures
clearly reflect the stability of the system.

In the future, wewill consider more normal systems, such as Lur’e singular systems
with uncertainties or Markov process, and we will study the problems of stability, H∞
control and finite-time H∞ control for these systems.

Data Availability The data supporting the conclusions of this article is included within the article.
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