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Abstract
The fully distributed control of networked nonlinear systems under the sampled-
data control mechanism is a challenging task. The lack of global information, the
unavailability of continuous communication, and the influence of nonlinear factors
make most of the existing control schemes invalid. This article proposes an event-
triggered consensus protocol for a class of second-order nonlinearmulti-agent systems,
where all global information is unavailable in the protocol design. In order to deal
with the unknown nonlinear term in the differential equation which describes each
subsystem, the neural network approximation method is used. It is proved that the
states of all subsystems can reach bounded consensus with only intermittent and local
information exchange among subsystems. In addition, the proposed event-triggered
mechanism can run without continuous monitoring the triggered condition. The Zeno
behavior is then excluded to guarantee the implementability of the given protocol.
Finally, a demonstrative example is provided to illustrate the effectiveness of the
developed control scheme.
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1 Introduction

Consensus of multi-agent systems has been a hot topic in control theory community
for the past few years because of thewide applications in formation control, distributed
monitoring and so forth [7,19,24,27,34]. The objective of consensus control is to solve
a protocol via which the states of all subsystems can achieve synchronization in some
sense [2,23,38,44,48].

As a class of typical multi-agent systems, second-order nonlinear multi-agent sys-
tems have been widely investigated in recent years. In [43], a finite-time protocol was
proposed for a class of second-order nonlinear multi-agent systems, where the estima-
tions of the convergence time and final state were given. The periodically intermittent
pinning control strategy was applied to a second-order nonlinear multi-agent systems
with time delays in [31]. Consensus for second-order nonlinear multi-agent systems
with fractional-order dynamics was investigated in [10]. Wang et al. [29] presented a
protocol with only aperiodically intermittent position measurements for second-order
nonlinear multi-agent systems with time delays. By using the stochastic theory, the
means square consensus problem was addressed for a class of second-order nonlinear
multi-agent systems subject to white noises in [13]. It is noted that in these litera-
ture, the eigenvalues of Laplacian matrix are necessary in the protocol design, so the
protocols are not fully distributed. To overcome this drawback, many schemes based
on the adaptive control strategy have been developed. In [12,50], fully distributed
consensus for second-order nonlinear multi-agent systems with unmodeled dynam-
ics was investigated. Iterative learning-based fully distributed consensus protocols
were proposed in [14,35]. By the protocol in [42], consensus for the second-order
nonlinear multi-agent systems can be reached in finite time without global informa-
tion. Two edge-based distributed adaptive protocols were, respectively, designed for
leaderless and leader-following multi-agent systems in [39]. For a second-order non-
linear multi-agent system with position constraints and unknown control directions,
the fully distributed protocol was presented in [1]. In [32], a fully distributed pro-
tocol was derived without using velocity measurements. However, continuous data
transmissions among subsystems are required in the implementation of these fully
distributed protocols.

Event-triggered control is one of the important techniques to avoid the continuous
data transmission [5,25,26,33]. In recent years, the event-triggered control strategy
has been widely used in cooperative control of multi-agent systems. For instance,
the event-triggered formation control for multiple robots was considered in [37];
the containment control for multi-agent systems with event-triggered protocols was
investigated in [15,45]; for the cooperative output regulation problem, event-triggered
protocols were given in [21,41]; in [9,49], the event-triggered consensus tracking con-
trol problem was addressed. As a matter of fact, some efforts have been made on fully
distributed event-triggered consensus of multi-agent systems. In [46], fully distributed
event-triggered consensus for double-integrator multi-agent systems was studied. The
higher-order linear multi-agent systems were considered in [17,20,30,36]. In [3,18],
the fully distributed consensus for nonlinear multi-agent systems was addressed; how-
ever, the nonlinear terms are required to be bounded and satisfy theLipschitz condition,
respectively. There are also many results focusing on the event-triggered consensus



Circuits, Systems, and Signal Processing (2022) 41:725–742 727

for nonlinear multi-agent systems without these strict conditions, such as in [8,16,28].
However, the protocol design or the convergence performance relies on some global
information, so the protocols in these results are not fully distributed. To the best of our
knowledge, the fully distributed event-triggered consensus for more general nonlinear
multi-agent systems has not been considered in existing literature. Designing fully dis-
tributed consensus protocol for totally unknown second-order nonlinear multi-agent
systems by event-triggered strategies is thus the task of this article. The main work
and contributions of the article are given as follows. a) A new consensus protocol
is developed for a class of nonlinear multi-agent systems, where the implementation
of protocol does not depend on any global information or continuous communica-
tions. b) Compared with [1,12,14,32,35,39,42,50], the continuous data transmissions
among subsystems are avoided in this article. Compared with [8,16,28], the protocol
is designed in the fully distributed manner. c) Compared with [17,20,30,36,46], the
nonlinear multi-agent system is considered here. In addition, the nonlinear terms are
more general than those in [3,18]. The main difficulty of the work lies in that the
proposed protocol needs to deal with both the unknown topology information and the
more general nonlinearities, and ensure that no Zeno behavior occurs.

We organize the rest of the article as follows. The model, objective and some
mathematical tools are introduced in Sect. 2. In Sect. 3, the main results are given.
Simulation results are shown in Sect. 4. Conclusions are summarized in Sect. 5.
Notations: R denotes the set of all real numbers. Rm×n represents the set of all m × n
real matrices. 1n is an n-dimension vector with all elements being 1 and In is the
n-dimension identity matrix. The symbol ⊗ is used to denote the Kronecker product
operator. Denote by sig(·) the sign function.

2 Problem Formulation and Preliminaries

This article considers a multi-agent system consisting of n subsystems described by:

ξ̇i = ψi

ψ̇i = ciυi + φi (ξi , ψi ) + ρi , i = 1, 2, . . . , n, (1)

where ξi and ψi ∈ R are position and velocity of the i th subsystem, respectively;
υi ∈ R is the input to be designed, and ci ≥ ci > 0 is an unknown gain coefficient (ci
is a known positive constant); φi (·) ∈ R is an unknown continuous nonlinear function,
and ρi is the external disturbance satisfying that |ρi | ≤ ρ̄i (ρ̄i > 0 is a constant).

Remark 1 Second-order nonlinear multi-agent systems have drawn much attention
because of the typicality and wide applicability. In the existing literature, the similar
multi-agent systems have been widely investigated.

Definition 1 (bounded consensus [38,48]) Multi-agent systems with subsystems in
the form of (1) are said to reach bounded consensus if there are two positive constants
ε1 and ε2 such that

lim
t→∞

∣
∣ξi − ξ j

∣
∣ ≤ ε1 and lim

t→∞
∣
∣ψi − ψ j

∣
∣ ≤ ε2. (2)
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This article aims to design an appropriate event-triggered protocol without using the
global information such that the bounded consensus can be reached. Moreover, the
convergence errors are supposed to be as small as possible by adjusting the parameters
in the protocol appropriately.

Remark 2 The task of this article is inspired by [1,3,12,14,17,18,20,30,32,35,36,39,42,
46,50]. Compared with [1,12,14,32,35,39,42,50], the continuous data transmissions
among subsystems are avoided in this article. Compared with [17,20,30,36,46], the
nonlinear multi-agent system is considered here. In addition, the nonlinear terms are
more general than those in [3,18], and the neural networkmethodwas used to deal with
the nonlinearities. In [8,16,28], the neural network-based event-triggered consensus
protocols were given for nonlinear systems; however, these protocols are not fully
distributed.

Lemma 1 [11] For any vectors χ1, χ2 ∈ Rn, the following inequality holds:

χ1
Tχ2 ≤ γχ1

Tχ1 + 1

γ
χT
2 χ2, (3)

where γ > 0 is a positive real number.

2.1 Graph Theory

The subsystems are communicated under an undirected graph topology in this article.
G = { V, E} is used to denote a graph, where V = { v1, . . . vn} denotes the nodes set
and E ⊆ V ×V is the edge set. For each edge, there is a corresponding weight ai j > 0
if (v j ,vi ) ∈ E , otherwise, ai j = 0. A path is a series of linked edges with positive
weights. An undirected graph is connected if there is at lease a path between any two
nodes. An important matrix, Laplacian matrix is defined as L = [li j ]n×n ∈ Rn×n ,

where lii =
n∑

j=1, j 	=i
ai j and li j = −ai j , i 	= j .

Lemma 2 [6] If graph G is undirected and connected, then 0 is a simple eigenvalue
of the Laplacian matrix. Denote by λq the qth smallest eigenvalue of L, then we have

0 = λ1 < λ2 ≤ . . . ≤ λn and λ2 = min1Tn x=0,x 	=0
xT Lx
xT x

.

2.2 Radial Basis Function Neural Networks

The Radial basis function neural networks will be used to approximate the unknown
continuous functions in this article. A necessary lemma is given as follows.

Lemma 3 [40] For any continuous function φ(y) defined on a compact set C ∈ Rh,
the neural network ϑTΥ (y) can approximate φ(y) with a bounded error σ(y), that
is,

φ(y) = ϑTΥ (y) + σ(y), |σ(y)| ≤ σ, (4)
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where ϑ ∈ Rh is the ideal weight vector, Υ (y) = [Υ1(y), . . . , Υh(y)]T ∈ Rh is
the basis function vector, and σ > 0 is a constant. The basis function is chosen

as Υ j (y) = exp

(

− (y−c j )T (y−c j )

μ2
j

)

, where c j and μ j are the center and the width,

respectively.

3 Main Results

3.1 Protocol Design

To show the design protocol clearly, we introduce the following parameters and vari-

ables: M =
[

0 1
0 0

]

, N =
[

0
1

]

;Ω =
[

ω1 ω2
ω2 ω3

]

is a positive definite matrix satisfying

MTΩ + ΩM − ΩNNTΩ ≤ −β In, (5)

where β > 0 is a constant.
A fully distributed consensus protocol is proposed in the following form:

ς̇i = Φi

Φ̇i = υi
o � l θ̂i ei (t

i
k)

υi = fi (ξi , ςi , ψi , Φi , ϑ̂i ), i = 1, 2, . . . , n, (6)

where t ∈ [t ik, t ik+1), t
i
k is the triggered point for subsystem i , k = 0, 1, . . ., t i0 = 0;

ςi , Φi , θ̂i and ϑ̂i are adaptive variables to be designed; ei = ω2

n∑

j=1
ai j (ς j − ςi ) +

ω3

n∑

j=1
ai j (Φ j − Φi ) is a constructed error variable; l > 0 is a gain constant and fi (·)

is a operator to be designed.

Remark 3 In this article, the protocol form is well motivated by [48], in which the
finite-time consensus for switched nonlinear multi-agent systems. Compared with
[48], the input in (1) is considered with the unknown gain. Moreover, the protocol
in this article is fully distributed and designed based on the event-triggered control
strategy.

In the implementation of protocol (6), the operator fi (·), variables θ̂i , ϑ̂i and the
triggered condition should be determined. Then, we will derive the components to be
determined in the protocol by the Lyapunov functional method.

Define Λ = In − 1
n 1

T
n 1n and z = (Λ ⊗ I2)[ς1, Φ1, . . . , ςn, Φn]T . Consider the

following function

V0 = zT (L ⊗ Ω)z + γ

2

n
∑

i=1

(θ̂i − θ)
2
, (7)
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where γ and θ are two positive constants to be given later.

Defineηi =
[

ηi,1
ηi,2

]

=
[ n∑

j=1
ai j (ς j − ςi ),

n∑

j=1
ai j (Φ j − Φi )

]T

,η = [ηT1 , . . . , ηTn ]T ,
η̃ = η − η(t ik) = [η̃T1 , . . . , η̃Tn ]T , Ξi = [ςi , Φi ]T and Ξ = [Ξ T

1 , . . . , Ξ T
n ]T .

The dynamical equation of Ξ can be obtained as

Ξ̇ = (In ⊗ M)Ξ + (θ̂ ⊗ lN NTΩ)(η − η̃), (8)

where θ̂ = diag{θ̂1, . . . , θ̂n}.
Then, we can get

ż = (In ⊗ M)z + (Λθ̂ ⊗ lN NTΩ)(η − η̃), (9)

where the fact that LΛ = ΛL = L was used.
Combining (7) and (9), we have

V̇0 = zT (L ⊗ (ΩM + MTΩ))z − 2ηT (θ̂ ⊗ lΩNNTΩ)(η − η̃)

+γ

n
∑

i=1

(θ̂i − θ)
˙̂
θi . (10)

By Lemma 1, we have that

2ηT (θ̂ ⊗ lΩNNTΩ)η̃

≤ ηT (θ̂ ⊗ lΩNNTΩ)η+η̃T (θ̂ ⊗ lΩNNTΩ)η̃. (11)

If the variable θ̂i evolves as

˙̂
θ i = me2i (t

i
k), θ̂i (0) > 0, ∀t ∈ [t ik, t ik+1), (12)

we can obtain that

V̇0 ≤ zT (L ⊗ (ΩM + MTΩ))z − ηT (θ̂ ⊗ lΩNNTΩ)η

+η̃T (θ̂ ⊗ lΩNNTΩ)η̃ + mγ

n
∑

i=1

(θ̂i − θ)e2i

(

t i
kit

)

, (13)

where t ∈ [t ik, t ik+1), m > 0 is a constant, kit = argqminq∈N ,t≥t ik
{t − t iq}.

In addition,

mγ

n
∑

i=1

θ̂i e
2
i

(

t i
kit

)

= mγ

n
∑

i=1

θ̂i

(

NTΩηi

(

t i
kit

))2



Circuits, Systems, and Signal Processing (2022) 41:725–742 731

= mγ

n
∑

i=1

θ̂i

(

NTΩ(ηi − η̃i )
)2

≤ 2mγ ηT (θ̂ ⊗ ΩNNTΩ)η + 2mγ η̃T (θ̂ ⊗ ΩNNTΩ)η̃. (14)

The triggered rule is designed as:

t ik+1 = inf
t>t ik

{

t
∣
∣
∣gi (ei , ei (t

i
k), t) = 0

}

, (15)

where gi (ei , ei (t ik), t) = (ei − ei (t ik))
2 − δ1e2i − δ2

θ̂i
e−δ3t , 0 < δ1 < 1, δ2 > 0 and

δ3 > 0 are constants.
It can be concluded from (13) to (15) that

V̇0 ≤ zT (L ⊗ (ΩM + MTΩ))z − (l − 2mγ )ηT (θ̂ ⊗ ΩNNTΩ)η

+(l + 2mγ )η̃T (θ̂ ⊗ ΩNNTΩ)η̃ − mγ θ

n
∑

i=1

e2i

(

t i
kit

)

≤ zT (L ⊗ (ΩM + MTΩ))z − mγ θ

n
∑

i=1

e2i

(

t i
kit

)

+ nδ2(l + 2mγ )e−δ3t

−((1 − δ1)l − 2(1 + δ1)mγ )ηT (θ̂ ⊗ ΩNNTΩ)η. (16)

According to Lemma 1 and triggered rule (15), it can be obtained that

− e2i (t
i
k) ≤ − p

1 + p
e2i + p

(

ei − ei
(

t ik

))2

≤ p

((

ei − ei
(

t ik

))2 − δ1e
2
i

)

−
(

p

1 + p
− δ1 p

)

e2i

≤ pδ2

θ̂i
e−δ3t −

(
p

1 + p
− δ1 p

)

e2i , (17)

where 0 < p < 1
δ1

− 1 is a constant.
It is noted that

eT e =
n

∑

i=1

(NTΩηi )
2

= ηT (In ⊗ ΩNNTΩ)η

= Ξ T (L2 ⊗ ΩNNTΩ)Ξ

= zT (L2 ⊗ ΩNNTΩ)z. (18)
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If we choose γ such that (1 − δ1)l > 2(1 + δ1)mγ , then we can get from (16) to
(18) that

V̇0 ≤ zT
(

L ⊗
(

ΩM + MTΩ
))

z − θκ1z
T

(

L2 ⊗ ΩNNTΩ
)

z+κ2e
−δ3t , (19)

where κ1=mγ
(

p
1+p − δ1 p

)

, κ2=nδ2(l+2mγ )+mγ θ
n∑

i=1

pδ2
θ̂i (0)

. It is noted that κ1> 0

and θ̂i (0) ≤ θ̂i , because of 0 < p < 1
δ1

− 1 and ˙̂
θ i ≥ 0, respectively. Here, we choose

θ ≥ 1
κ1λ2

. From Lemma 2, we know that λ2 > 0.

In what follows, the operator fi (·) and the dynamical system for variable ϑ̂i will
be designed. Considering the following function

Vi,1 = 1

2
(ξi − ςi )

2, i = 1, . . . , n. (20)

The derivation of Vi,1 can be obtained as V̇i,1 = (ξi − ςi )(ψi − Φi ).
Define�i,1 = ξi−ςi ,�i,2 = ψi−Φi ,� ∗

i,2 = −r(ξi−ςi ) and �̃i,2 = �i,2−� ∗
i,2,

where r > 1 is a constant. Considering the function

Vi,2 = Vi,1 + 1

2ci
�̃ 2

i,2, (21)

we can obtain that

V̇i,2 = �̃i,2

(

υi + φi (ξi , ψi )

ci
+ ρi

ci
− l

ci
θ̂i ei

(

t ik

)

+ r

ci
�i,2

)

−r� 2
i,1 + �i,1�̃i,2. (22)

By Lemma 1, it is easy to get

�i,1�̃i,2 ≤ 1

2
� 2

i,1+
1

2
�̃ 2

i,2, (23)

r

ci
�̃i,2�i,2 = r

ci
�̃i,2(�̃i,2 − r�i,1) ≤ r

ci
�̃ 2

i,2 + r4

2c2i
�̃ 2

i,2 + 1

2
� 2

i,1. (24)

It follows from (22)-(24) that

V̇i,2 ≤ �̃i,2

(

υi + φi (ξi , ψi )

ci
+ ρi

ci
− l

ci
θ̂i ei

(

t ik

))

−(r − 1)� 2
i,1 +

(

r4

2c2i
+ r

ci
+ 1

2

)

�̃ 2
i,2. (25)
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Since φi (ξi , ψi ) and ci are unknown, the neural network approximation strategy will
be adopted. Here, we use the neural network ϑT

i Υi (ξi , ψi ) to approximate φi (ξi ,ψi )
ci

,
that is,

φi (ξi , ψi )

ci
= ϑT

i Υi (ξi , ψi ) + σi (ξi , ψi ), (26)

where Lemma 3 was used, Υi (ξi , ψi ) = [Υi,1(ξi , ψi ), . . . , Υi,h(ξi , ψi )]T is the basis
function vector, ϑi is the ideal weight vector, |σi (ξi , ψi )| ≤ σi is the approximation
error, σi > 0 is a constant.

By Lemma 1, we can get that

�i,2σi (ξi , ψi ) ≤ 1

2
� 2

i,2 + 1

2
σ 2
i . (27)

Construct the following Lyapunov function candidate

Vi = Vi,2 + 1

2
ϑ̃T
i ϑ̃i , (28)

where ϑ̃i = ϑi − ϑ̂i , ϑ̂i is the adaptive law to be designed.
If the adaptive law ϑ̂i and input υi are designed as

˙̂
ϑ i = �̃i,2Υi (ξi , ψi ) − ι2ϑ̂i , (29)

υi = fi (ξi , ςi , ψi , Φi , ϑ̂i )

= −
(

r4

2c2i
+ r

ci
+ 1

2
+ ι1

)

�̃i,2 − ϑ̂T
i Υi (ξi , ψi ) + υo

i , (30)

where ι1 > 0, ι2 > 0 are constants, υo
i = − sig(�̃i,2)

ci
(ρ̄i + l θ̂i

∣
∣ei (t ik)

∣
∣) is the compen-

sation component.
It can be concluded from (25) to (29) that

V̇i ≤ −(r − 1)� 2
i,1 − ι1�

2
i,2 + ι2ϑ̃

T
i ϑ̂i + 1

2
σ 2
i . (31)

Remark 4 The proposed protocol is in fact composed by (6), (12), (15), (29) and (30).
Based on the above analysis, the results on the bounded consensus can be easily
derived, which will be shown in the next subsection.

3.2 Consensus Analysis

Theorem 1 Protocol (6) ensures that the bounded consensus of multi-agent system
(1) under a connected graph can be reached if variables θ̂i , ϑ̂i and function fi (·) are



734 Circuits, Systems, and Signal Processing (2022) 41:725–742

designed as in (12), (29) and (30), respectively, and the triggered rule is given as in
(15).

Proof It can be easily obtained that there is a unitary matrix U such that UT LU =
Lu = diag{0, λ2, . . . , λn}. Define z′ = [z1′T , . . . , zn ′T ]T = (U−1 ⊗ I2)z, we have
that

V̇0 ≤ z′T (Lu ⊗ (ΩM + MTΩ))z′ − θκ1z
′T (Lu

2 ⊗ ΩNNTΩ)z′ + κ2e
−δ3t . (32)

Since θ ≥ 1
κ1λ2

, we can get that

V̇0 ≤
n

∑

i=2

λi z
′
i
T
(ΩM + MTΩ − ΩNNTΩ)z′i+κ2e

−δ3t

≤ −β

n
∑

i=2

λi z
′
i
T z′i+κ2e

−δ3t . (33)

From (33), we obtain that

V0 ≤ V0(0) +
∫ t

0
κ2e

−δ3τdτ ≤ V0(0) + κ2

δ3
. (34)

The boundedness of V0 means that monotonically nondecreasing θ̂i converges to a
positive value and ei (t) is bounded. Then, it can be analyzed that lim

t→∞ ei (t ik) = 0.

From the triggered rule (15), we can get that

(1 − δ1)e
2
i (t) ≤ 2ei (t)ei (t

i
k) − e2i (t

i
k) + δ2

θ̂i (0)
e−δ3t , (35)

which implies that lim
t→∞ ei (t) = 0.

It can be obtained that

lim
t→∞(ςi − ς j ) = 0, lim

t→∞(Φi − Φ j ) = 0. (36)

It is noted that

ι2ϑ̃
T
i ϑ̂i = −ι2ϑ̃

T
i ϑ̃i + ι2ϑ̃

T
i ϑi ≤ − ι2

2
ϑ̃T
i ϑ̃i + ι2

2
ϑT
i ϑi . (37)

It can be concluded from (31) and (37) that

V̇i ≤ −αi Vi + di , (38)

where α = min{2(r − 1), 2ci ι1, ι2}, di = 1
2σ

2
i + ι2

2 ϑT
i ϑi .
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We can obtain from (38) that lim
t→∞ Vi ≤ di

αi
, which means that

lim
t→∞ |ξi − ςi | ≤ εi,o,1 =

√

2di
αi

,

lim
t→∞ |ψi − Φi | ≤ εi,o,2 =

√

max{4, 4cir2}di
αi

. (39)

We can conclude from (36) and (39) that

lim
t→∞

∣
∣ξi − ξ j

∣
∣ ≤ εi,o,1 + ε j,o,1, lim

t→∞
∣
∣Φi − Φ j

∣
∣ ≤ εi,o,2 + ε j,o,2. (40)

The proof is complete. �
Remark 5 Since there are errors in the neural network approximation for the unknown
functions, only bounded consensus can be reached. The consensus errors can be as
small as possible by using as many neural network nodes as possible.

Then, we show that the Zeno behavior can be excluded.

Theorem 2 If the protocol (6) is applied to multi-agent system (1) under a connected
graph, where variables θ̂i , ϑ̂i and function fi (·) are designed as in (12), (29) and (30),
respectively, and the triggered rule is given as in (15), then the Zeno behavior can be
excluded.

Proof Motivated by [20,22], we hope to exclude the Zeno behavior by showing that

lim
k→∞ t ik = ∞. Since ei = ω2

n∑

j=1
ai j (ς j − ςi ) + ω3

n∑

j=1
ai j (Φ j − Φi ), we have

d(ei − ei (t ik))
2

dt
= 2(ei − ei (t

i
k))ėi

≤ 2(ei − ei (t
i
k))N

TΩ

⎡

⎢
⎢
⎣

n∑

j=1
ai j (Φ j − Φi )

n∑

j=1
ai j (Φ̇ j − Φ̇i ).

⎤

⎥
⎥
⎦

(41)

From Theorem 1, we can obtain that
n∑

j=1
ai j (Φ j − Φi ) is bounded. From (6), we can

also obtain that Φ̇i is bounded since θ̂i converges to a constant. In combining with

triggered rule (15), we can conclude that
d(ei−ei (t ik ))

2

dt is bounded, that is, there is a

constant πi such that
d(ei−ei (t ik ))

2

dt ≤ πi . Therefore, we have

(ei − ei (t
i
k))

2 ≤ πi (t − t ik), t ∈ [t ik, t ik+1). (42)
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According to triggered (15), it can be seen that

(ei (t
i
k+1) − ei (t

i
k))

2 = δ1e
2
i (t

i
k+1) + δ2

θ̂i (t ik+1)
e−δ3t ik+1 , (43)

which means that

δ2

θ̂i (t ik+1)
e−δ3t ik+1 ≤ (ei (t

i
k+1) − ei (t

i
k))

2 ≤ πi (t
i
k+1 − t ik). (44)

If lim
k→∞ t ik = t̄ i < ∞, then from lim

k→∞(t ik+1 − t ik) = 0, we have

0 < lim
k→∞

δ2

θ̂i (t ik+1)
e−δ3 t̄ i ≤ lim

k→∞ πi (t
i
k+1 − t ik) = 0, (45)

which results in a contradiction. As such, the Zeno behavior can be excluded.
The proof is complete. �
In the implementation of (6), the triggered condition should be checked continu-

ously. If the information of ςi and Φi is required to be transmitted continuously, the
event-triggered scheme will be meaningless. In fact, the information can be accurately
estimated by neighbored subsystems and the drawback can be overcome.

It is noted that

[

ς j

Φ j

]

= eM(t−t jk )

[

ς j

Φ j

]

(t jk ) +
∫ t

t jk

N Φ̇ j (τ )dτ

θ̂ j = θ̂ j (t
j
k ) + me2j (t

j
k )(t − t jk ). (46)

It can be seen that the information of ςi and Φi can be well estimated by neigh-
bors under the discontinuous communication. Of course, when the i th subsystem is
triggered, ei (t ik) is required to be transmitted to neighbors.

Remark 6 By the data transmissions on triggered points, the information of ςi and
Φi can be well estimated by neighbors. This method, which is an effective tool to
avoid the continuous data transmissions, has been widely used, such as in [4,47]. In
addition to saving communication resources, the protocol is in fully distributed form
and of scalability. Since more general nonlinearities are considered in this paper, the
proposed control scheme can be applied to more physical systems.

4 Simulation Study

In this section, an example is given to illustrate the effectiveness of the proposed
protocol. Consider multi-agent system (1) with 6 subsystems, and the corresponding
graph is shown in Fig. 1.
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Fig. 1 The graph of the
multi-agent system
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Fig. 2 State trajectories of θ̂i
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Fig. 3 State trajectories of ξi
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Fig. 4 State trajectories of ψi
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The nonlinear functions are given as follows:

φ1(ξ1, ψ1) = sin ξ1 + cosψ1, φ2(ξ2, ψ2) = cos ξ1 + sinψ1,

φ3(ξ3, ψ3) = sin ξ3 cosψ3, φ4(ξ4, ψ4) = 4ξ4 + 2ψ4,

φ5(ξ5, ψ5) = e−3|ξ5| + 2ψ5, φ6(ξ6, ψ6) = e−3|ξ6|cos2ψ6. (47)

We can see that the constraints on nonlinear terms in [3,18] are not satisfied here,
so the proposed protocol is of wider applicability. The gain coefficients are given as
c1 = . . . = c6 = 0.85, and the external disturbances are given as ρi (t) = 0.1 sin t ,
i = 1, 2, 3, 4, 5, 6.
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By solving (5), we can get that Ω =
[

ω1 ω2
ω2 ω3

]

=
[

12 2
2 6

]

is a solution for β = 4.

The other parameters in the protocol are chosen as follows: l = 3, m = 3, ι1 = 2,
ι1 = 4, r = 4, ρ̄i = 0.1, δ1 = 0.02, δ2 = 0.8 and δ3 = 10. The neural networks are
constructed by the basis functions

Υi, j (ξi , ψi ) = e− (ξi−3+ j)2+(ψi−3+ j)2

52 , j = 1, 2, 3, 4, 5.

The initial values of designed dynamical variables and states for subsystems are set
as:

θ̂i (0) = 0.8, i = 1, 2, 3, 4, 5, 6,

ϑ̂i (0) = [0, 0, 0, 0, 0]T , i = 1, 2, 3, 4, 5, 6,

[ς1(0), ς2(0), ς3(0), ς4(0), ς5(0), ς6(0)] = [0.3,−0.5,−0.3,−0.1, 0.5, 0.7],
[Φ1(0),Φ2(0),Φ3(0),Φ4(0),Φ5(0),Φ6(0)] = [0.4,−0.75, 0.075, 0.1,−0.1, 0.2],
[ξ1(0), ξ2(0), ξ3(0), ξ4(0), ξ5(0), ξ6(0)] = [0.6,−1,−0.6,−0.2, 1, 1.4],
[ψ1(0), ψ2(0), ψ3(0), ψ4(0), ψ5(0), ψ6(0)] = [0.8,−1.5, 0.15, 0.2,−0.2, 0.4].

The simulation is carried out by the M-file tool from Matlab. In the simulation,
the step length is chosen as 0.0001s. The trajectories of θ̂i , i = 1, 2, 3, 4, 5, 6, are
shown in Fig. 2. Figures 3 and 4 display the positions and velocities of 6 subsystems,
respectively. The simulation results show that the proposed protocol can make the
multi-agent system achieve bounded consensus successfully. Since the event instants
can be reflected by signals υo

i , i = 1, 2, 3, 4, 5, 6, we depict the trajectories in Fig. 5,
where the jump instants are event instants. From the simulation data, we can get that
the minimum time interval is 0.0011 s, which is much lager than the step length.
Therefore, there is no Zeno behavior in this numerical example.

5 Conclusion

In this article, an event-triggered protocol was proposed, under which the practical
consensus of the considered multi-agent system can be reached. Due to that the global
information is unavailable, the protocol is of fully distributed feature. The consumption
of communication resources among subsystems can be well reduced by the developed
control scheme. Via a numerical example, the validity of the protocol was verified. In
four future work, fully distributed event-triggered consensus for nonlinear multi-agent
systems with switching networks will be investigated.
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