
Circuits, Systems, and Signal Processing (2022) 41:661–683
https://doi.org/10.1007/s00034-021-01803-9

Finite-Time Stabilization of Multi-rate Networked Control
System Based on Predictive Control

Hairui Zhao1,2 · Dongyan Chen1,2 · Jun Hu1,2 · Junhua Du3

Received: 4 December 2020 / Revised: 16 July 2021 / Accepted: 19 July 2021 /
Published online: 5 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
This paper deals with the problem of finite-time stabilization for the multi-rate net-
worked control system with network-induced time delays. In order to guarantee the
finite-time stability and overcome the adverse impact of network-induced time delays
in both sensor-to-controller channel and controller-to-actuator channel, a networked
predictive control strategy is proposed based on multi-rate sampling mechanism. By
utilizing the techniques of lifting and augmenting, the augmented closed-loop system
is derived with a uniform sampling rate. By applying the Lyapunov stability theo-
rem, sufficient conditions are established such that the multi-rate networked control
system can be finite-time stabilized. Furthermore, the gain matrices are determined
for the observer and the controller by solving bilinear matrix inequality or linear
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matrix inequality. Finally, a numerical example is presented to show the validity of
the obtained results.

Keywords Finite-time stabilization · Multi-rate networked control system ·
Predictive control · Network-induced time delays

1 Introduction

At present, most of the existing studies have assumed that the networked control
system has a single sampling rate for the convenience of theoretical research [7,18–
21]. However, due to the different physical characteristics of each system component
(such as plant, sensor, controller and actuator), it is quite complicated to unify the
sampling rate. The network environment and location of each system component are
different, so it is generally difficult to meet the performance requirement of each
system component at the same sampling rate. From a practical point of view, it is
sometimes unnecessary to sample all the different kinds of signals at the same rate.
In addition, the multi-rate networked control system has the advantage on balancing
resource consumption and system performance [33,35]. Consequently, the multi-rate
sampling mechanism (MRSM) has been proposed instead of using the synchronous
sampling mechanism by some researchers. During the past few decades, the great
concern among scholars has been aroused by the analysis problems of the multi-rate
sampling on account of their successful applications in practice [6,25,32,34,39,52]. For
example, the problems of H∞ state estimation and distributed set-membership filtering
have been discussed in [24] and [42] for the multi-rate systems with different sampling
rate of the plant, the sensor and the filter, respectively. It’s worth mentioning that the
lifting technique proposed in [26] has become a pivotal instrument in developing the
MRSM by converting the multi-rate sampling system into an equivalent system with
single-rate sampling.

As is well known, the stability of the system is one of the primary concerns in the
design and the analysis of the control system [30,44]. Up to now, with the help of
the Lyapunov stability theorem, a large amount of efforts have been dedicated to the
stabilization problem for multi-rate networked control system (MRNCS) with some
results of significance presented in [10,27,54]. For instance, in order to guarantee the
stability of theMRNCS, the state feedback controller has been designed in [54], where
the MRNCS with time delays and packet dropout has been modelled as a switched
system.Based on previous study, the stabilization problemhas been dealtwith in [2] for
a discrete-time linear MRNCS whose sets of sampling rates are the integer multiples
of those operating on all the preceding substates. However, it is necessary to consider
the finite-time behaviors of state variables in some networked control systems. For
example, for those systems that work in a short time (such as missile system, robot
operating system) in practical engineering, if their overshoot is extremely large, it
maybe bring about that the control system cannot work normally. Over the last few
decades, the finite-time stability problem has triggered an intense discussion among a
great of scholars because of its fast convergence [3,9,14,28,29,46,51]. Among them,
the finite-time stability and stabilization problems have been studied for a class of
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linear discrete time-varying stochastic systems in [51] by employing the state transition
matrix approach and the Lyapunov function method, respectively. In [28], by using
the Lyapunov stability theorem, the finite-time stability criteria have been presented
in the forms of linear matrix inequalities for a class of linear systems with time delays.

In the backdrop of the prevailing network environment, the network-induced phe-
nomena (such as network-induced time delays (NITDs), data packet dropout, data
packet disordering and so on) are occurred frequently during the signal transmission
via the network [22,23,40,41]. It will weaken the control performance of the system,
even lead to instability [16,47,50]. Accordingly, various approaches have been pro-
posed by scholars to deal with these disadvantages, such as switched system method
[4], time-delay system method [5], jump system method [37] and so on. Another
effective method is the networked predictive control which has been widely employed
to address the negative impact of network-induced phenomena [11–13,38,45,48,49].
Among them, according to the state space model, some networked predictive con-
trol strategies have been designed to focus on the analysis problems of stability or
stabilization. Recently, the problems of networked predictive control and finite-time
stabilization have been studied in [17] by using networked predictive control method,
where the effects of network-induced phenomena have been overcome and sufficient
conditions have been given such that the networked control system is finite-time
stabilized. It is worth mentioning that most of the existing results on finite-time sta-
bilization problem have been concerned with single-rate system [3,9,14,28,29,46,51].
However, the finite-time stabilization problem of MRNCS has not been received ade-
quate attention. This is one of motivations of this paper. In addition, most of the
designed networked predictive control strategies are applicable to single-rate system
[11–13,38,45,48,49]. To the best of our knowledge, the MRNCS has seldom been
taken into account in the design of NPCS, and a few proposed NPCS can be used
directly to deal with the NITDs in MRNCS. Consequently, another motivations of this
paper is to shorten such a gap by developing a new NPCS based on MRSM.

Influenced by the above discussion, we aim to address the finite-time stabilization
problem forMRNCSwith NITDs by employing networked predictive control method.
The main challenges and difficulties from the following three aspects. (1) How to
design the NPCS to overcome the negative effects for system performance caused by
NITDs? (2)Due to different sampling rates of the plant and the sensor, how to transform
the MRNCS into a equivalent single rate system? (3) How to guarantee the finite-time
stability ofMRNCS?To answer thementioned three questions, themajor contributions
of this paper can be outlined as follows. The major contributions of this paper can
be outlined as follows. (1) A novel NPCS based on MRSM is designed to overcome
the NITDs. (2) With the help of the Lyapunov stability theorem, sufficient conditions
are derived to ensure that the MRNCS is finite-time stable. (3) The gain matrices of
observer and controller are not only obtained by solving the bilinear matrix inequality,
but also explicitly expressed in terms of the solution to linear matrix inequality.

The rest of this article is introduced as follows. In Sect. 2, the discrete-time system
model and the output model are mentioned, respectively. The NPCS is designed based
on MRSM as well. In Sect. 3, the crucial theorems are proposed to cope with the
finite-time stabilization problem for the MRNCS with NITDs. Next, the simulation
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example of this paper is expressed to demonstrate the validity of the main results in
Sect. 4. In Sect. 5, the conclusion is given.

Notations The notations used in this paper are quite standard. Rn and R
n×m stand

for the n-dimensional Euclidean space and the set of all n ×m matrices, respectively.
RT and R−1 represent the transpose and inverse of the matrix R, respectively. R > 0
denotes that R is a real positive-definite symmetric matrix. I and 0 stand for the
identity matrix and the zero matrix with appropriate dimensions, respectively. In a
symmetric matrix, “*" is used to describe symmetric term. cond(R) represents the
ratio of λmax(R) to λmin(R), where λmax(R) and λmin(R) stand for the maximum
eigenvalue and minimum eigenvalue of the matrix R, respectively.

2 Problem Formulation and Preliminaries

The structure of the MRNCS with NITDs in this paper is shown in Fig.1.
In Fig. 1, the scalars d1 and d2 are used to characterize the NITDs in the sensor-

to-controller channel (feedback channel) and controller-to-actuator channel (forward
channel), respectively. For the convenience of future research, we assume that the
NITDs are integer multiples of the sampling period. Specifically, the scalars τ1 and τ2
are introduced to account for the upper bounds of delays form the feedback channel
and the forward channel, respectively.

The plant is described in the form of

x(ki+1) = Ax(ki ) + Bu(ki ) (1)

where x(ki ) ∈ R
n accounts for the state vector, and u(ki ) ∈ R

m denotes the control
input. Without loss of generally, A ∈ R

n×n and B ∈ R
n×m are two matrices given

previously. Besides, for further analyzing, define h � ki+1 − ki (∀i = 0, 1, · · · ) as
the sampling period of system (1) with k0 = 0.

The measurement model is described by

y(si ) = Cx(si ) (2)

where y(si ) ∈ R
l denotes the measurement output at sampling instant si , C ∈ R

l×n

is a constant matrix. Under the initial condition s0 = 0, denote h̃ � si+1 − si (∀ i =
0, 1, · · · ) as the sampling period of the sensor.

Considering physical restrictions on different system components, the MRSM is
discussed here. To be more specific, the relationship among h and h̃ is h̃ = ah, in
which a ≥ 2 and h ≥ 2 are known positive integers. Specially, Fig. 2 provides an
illustration of the multi-rate sampling mechanism among different devices.

By using the lifting technique, we can obtain the following dynamics equations:
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Fig. 1 The structure of MRNCS

Fig. 2 MRSM for the plant and the sensor with a = 2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(si+1) =Aax(si ) + Aa−1Bu(si ) + Aa−2Bu(si + h)

+ · · · + Bu(si+1 − h)

x(si+1 − h) =Aa−1x(si ) + Aa−2Bu(si ) + Aa−3Bu(si + h)

+ · · · + Bu(si+1 − 2h)

...

x(si + 2h) =A2x(si ) + ABu(si ) + Bu(si + h)

x(si + h) =Ax(si ) + Bu(si ).

(3)
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In this paper, the following observer is constructed:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(si+1|si ) =Aa x̂(si |si−1) + Aa−1Bu(si ) + Aa−2Bu(si + h)

+ · · · + Bu(si+1 − h) + La(y(si ) − Cx̂(si |si−1))

x̂(si+1 − h|si ) =Aa−1 x̂(si |si−1) + Aa−2Bu(si ) + Aa−3Bu(si + h)

+ · · · + Bu(si+1 − 2h) + La−1(y(si ) − Cx̂(si |si−1))

...

x̂(si + 2h|si ) =A2 x̂(si |si−1) + ABu(si ) + Bu(si + h)

+ L2(y(si ) − Cx̂(si |si−1))

x̂(si + h|si ) =Ax̂(si |si−1) + Bu(si ) + L1(y(si ) − Cx̂(si |si−1))

(4)

where x̂(si+1|si ) is the prediction of the state for time si+1, La, La−1, · · · , L1 are
gain matrices of observer to be designed.

Recalling from the fact that NITDs are unavoidable in the feedback channel, the
observer (4) is further rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(si+1 − τ1|si − τ1) =Aa x̂(si − τ1|si−1 − τ1) + · · ·
+ Bu(si+1 − h − τ1) + La(y(si − τ1)

− Cx̂(si − τ1|si−1 − τ1))

x̂(si+1 − h − τ1|si − τ1) =Aa−1 x̂(si − τ1|si−1 − τ1) + · · ·
+ Bu(si+1 − 2h − τ1) + La−1(y(si − τ1)

− Cx̂(si − τ1|si−1 − τ1))

...

x̂(si + 2h − τ1|si − τ1) =A2 x̂(si − τ1|si−1 − τ1) + ABuh(si − τ1)

+ Bu(si + h − τ1) + L2(y(si − τ1)

− Cx̂(si − τ1|si−1 − τ1))

x̂(si + h − τ1|si − τ1) =Ax̂(si − τ1|si−1 − τ1) + Bu(si − τ)

+ L1(y(si − τ1) − Cx̂(si − τ1|si−1 − τ1)).

(5)

In order to handle the NITDs caused by the network, the state x̂(si+1 − h|si −
τ), · · · , x̂(si |si − τ) can be predicted by following equations
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(si+1 + p − h − τ1|si − τ1) =Ax̂(si+1 + p − 2h − τ1|si − τ1)

+ Bu(si+1 + p − 2h − τ1|si − τ1)

x̂(si+1 + p − 2h − τ1|si − τ1) =Ax̂(si+1 + p − 3h − τ1|si − τ1)

+ Bu(si+1 + p − 3h − τ1|si − τ1)

...

x̂(si + p + h − τ1|si − τ1) =Ax̂(si + p − τ1|si − τ1)

+ Bu(si + n − τ1|si − τ1)

x̂(si + p − τ1|si − τ1) =Ax̂(si + p − h − τ1|si − τ1)

+ Bu(si + p − h − τ1|si − τ1)

(6)

for p = 2h, 3h, · · · , τ , where τ = τ1 + τ2, u( f |g) ( f > g) denotes the predictive
control input at time f .

On account of the predicted state from (6), the predictive controller is designed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(si+1 − h) =u(si+1 − h|si − τ) = Ka x̂(si+1 − h|si − τ)

u(si+1 − 2h) =u(si+1 − 2h|si − τ) = Ka−1 x̂(si+1 − 2h|si − τ)

...

u(si + h) =u(si + h|si − τ) = K2 x̂(si + h|si − τ)

u(si ) =u(si |si − τ) = K1 x̂(si |si − τ)

(7)

where Ka, · · · , K1 are gain matrices of controller to be designed.

Remark 1 Generally speaking, the NITDs caused by network are time-varying. The
time-varying delays can be transformed into the constant delays by using the dwell
time method in [43]. That is, if the NITDs less than the upper bound of the delay, the
signal with NITDs will be transmitted via network after the signals are forced to dwell
such that the NITDs achieve the upper bound.

Set the error e(si ) = x(si )− x̂(si |si − τ). It is certain from (3) and (4) that the error
dynamic equations can be expressed by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(si+1) =(Aa − LaC)e(si )

e(si+1 − h) =(Aa−1 − La−1C)e(si )

...

e(si + 2h) =(A2 − L2C)e(si )

e(si + h) =(A − L1C)e(si ).

(8)

Before proceeding, the following definition and lemma are introduced and they are
useful for the later developments.
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Definition 1 [1] For the discrete-time linear system

x(s + 1) = Ax(s) (9)

if xT (0)Rx(0) ≤ δ2 implies xT (s)Rx(s) ≤ ε2 in the interval 0 ≤ s ≤ N , then the
system (9) is said to be finite-time stable with respect to (δ, ε, R, N ), where matrix
R > 0, integer N , and scalars δ > 0, ε > 0 (δ < ε) and γ > 1 are given previously.

Remark 2 It should be noted that the definitions between finite-time stability and Lya-
punov stability are different. On the one hand, the finite-time dynamic behaviors of
system states are discussed in the discussion of finite-time stability. However, the
infinite-time behaviors of the system states are addressed in the discussion of Lya-
punov stability. On the other hand, the bound of state trajectory should be given in
advance when discussing the finite-time stability (this bound is generally given based
on practical situation), but the bound is not pre-determined in the discussion of Lya-
punov stability.

Lemma 1 [31] For a known matrix H ∈ R
n×m with rank(H) = m and H =

U

[
Ξ

0

]

V T , where U ∈ R
n×n and V ∈ R

m×m are orthogonal matrices, if the matrix

Q can be written Q = U

[
Q1 Q2
0 Q3

]

UT , then there exists a matrix M ∈ R
m×m, such

that QH = HM, and M = VΞ−1Q1ΞV T , where Ξ = diag{λ1, λ2, · · · , λm},
λi (i = 1, 2, · · · ,m) with λi �= 0 are singular values of H, Q1 ∈ R

m×m,
Q2 ∈ R

m×(n−m) and Q3 ∈ R
(n−m)×(n−m).

The aim of this paper is to investigate the finite-time stabilization issue for MRNCS
by using the networked predictive control method. Specially, the objectives of this
paper can be given as follows.

1) For the MRNCS, a novel NPCS is designed to attenuate the negative effect from
NITDs.

2) The sufficient conditions are given to guarantee the finite-time stability of the
closed-loop system.

3 Main Results

In this section, sufficient conditions will be provided to ensure that the MRNCS is
finite-time stable with respect to (δ, ε, R, N ). Subsequently, the observer gain matrix
and the controller gainmatrix are determined simultaneously by solvingbilinearmatrix
inequality or linear matrix inequality. In addition, an algorithm is provided for calcu-
lating the bilinear matrix inequality.

Based on (6) and replacing si + τ2 with si , the relationship is established between
information fromobserver and the predictions of state x̂(si+1−h|si−τ), · · · , x̂(si |si−
τ) by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(si+1 − h|si − τ) =A
τ−h
h x̂(si+1 − τ |si − τ) + ũa(si )

x̂(si+1 − 2h|si − τ) =A
τ−h
h x̂(si+1 − h − τ |si − τ) + ũa−1(si )

...

x̂(si + h|si − τ) =A
τ−h
h x̂(si + 2h − τ |si − τ) + ũ2(si )

x̂(si |si − τ) =A
τ−h
h x̂(si + h − τ |si − τ) + ũ1(si )

(10)

where ũ j (si ) =
τ+( j−1)h∑

p=2h
A

τ+( j−1)h−p
h Bu(si + p − 2h − τ + jh|si−1 − τ) ( j =

1, 2, · · · , a).
On the basis of (10), substituting the observer state (5) into (10) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(si+1 − h|si − τ) =A
τ−h
h (Aa − LaC)x̂(si+1 − τ |si − τ)

+ A
τ−h
h LaCx(si − τ) + ūa(si )

x̂(si+1 − 2h|si − τ) =A
τ−h
h (Aa−1 − La−1C)x̂(si+1 − τ |si − τ)

+ A
τ−h
h La−1Cx(si − τ) + ūa−1(si )

...

x̂(si + h|si − τ) =A
τ−h
h (A2 − L2C)x̂(si+1 − τ |si − τ)

+ A
τ−h
h L2Cx(si − τ) + ū2(si )

x̂(si |si − τ) =A
τ−h
h (A − L1C)x̂(si+1 − τ |si − τ)

+ A
τ−h
h L1Cx(si − τ) + ū1(si )

(11)

where ū j (si ) =
τ+( j−1)h∑

p=h
A

τ+( j−1)h−p
h Bu(si + p − h − τ |si−1 − τ) ( j = 1, 2, · · · , a).

Bearing in mind (3), one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(si+1 − h) =A
τ+(a−1)h

h x(si − τ) + ūa(si )

x(si+1 − 2h) =A
τ+(a−2)h

h x(si − τ) + ūa−1(si ))

...

x(si + h) =A
τ+h
h x(si − τ) + ū2(si )

x(ti ) =A
τ
h x(si − τ) + ū1(si ).

(12)
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Combining (11) with (12), the predictions of state x̂(si+1−h|si −τ), · · · , x̂(si |si −τ)

can be described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(si+1 − h|si − τ) =A
τ−h
h (Aa − LaC)x̂(si − τ |si−1 − τ)

+ A
τ−h
h LaCx(si − τ) + x(si+1 − h)

− A
τ+(a−1)h

h x(si − τ)

x̂(si+1 − 2h|si − τ) =A
τ−h
h (Aa−1 − La−1C)x̂(si − τ |si−1 − τ)

+ A
τ−h
h La−1Cx(si − τ) + x(si+1 − 2h)

− A
τ+(a−2)h

h x(si − τ)

...

x̂(si + h|si − τ) =A
τ−h
h (A2 − L2C)x̂(si − τ |si−1 − τ)

+ A
τ−h
h L2Cx(si − τ) + x(si + h)

− A
τ+h
h x(si − τ)

x̂(si |si − τ) =A
τ−h
h (A − L1C)x̂(si − τ |si−1 − τ)

+ A
τ−h
h L1Cx(si − τ) + x(si )

− A
τ
h x(si − τ).

(13)

Moreover, from (8) and (13), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(si+1 − h|si − τ) =x(si+1 − h) − A
τ−h
h e(si+1 − τ)

x̂(si+1 − 2h|si − τ) =x(si+1 − 2h) − A
τ−h
h e(si+1 − τ − h)

...

x̂(si + h|si − τ) =x(si + h) − A
τ−h
h e(si − τ + 2h)

x̂(si |si − τ) =x(si ) − A
τ−h
h e(si − τ + h).

(14)

Based on (14), the predictive control input can be derived as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(si+1 − h) =Kax(si+1 − h) − Ka A
τ−h
h e(si+1 − τ)

u(si+1 − 2h) =Ka−1x(si+1 − 2h) − Ka−1A
τ−h
h e(si+1 − τ − h)

...

u(si + h) =K2x(si + h) − K2A
τ−h
h e(si − τ + 2h)

u(si ) =K1x(si ) − K1A
τ−h
h e(si − τ + h).

(15)
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According to (1), it is not difficult to obtain that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x(si+1) =Ax(si+1 − h) + Bu(si+1 − h)

x(si+1 − h) =Ax(si+1 − 2h) + Bu(si+1 − 2h)

...

x(si + 2h) =Ax(si + h) + Bu(si + h)

x(si + h) =Ax(si ) + Bu(si ).

(16)

Subsequently, based on (15) and (16), the closed-loop system is written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(si+1) =(A + BKa)x(si+1 − h) − BKa A
τ−h
h e(si+1 − τ)

x(si+1 − h) =(A + BKa−1)x(si+1 − 2h)

− BKa−1A
τ−h
h e(si+1 − τ − h)

...

x(si + 2h) =(A + BK2)x(si + h) − BK2A
τ−h
h e(si − τ + 2h)

x(si + h) =(A + BK1)x(si ) − BK1A
τ−h
h e(si − τ + h).

(17)

That is to say

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(ki+a) =(A + BKa)x(ki+a−1) − BKa A
τ−h
h e(ki+a − τ)

x(ki+a−1) =(A + BKa−1)x(ki+a−2) − BKa−1A
τ−h
h e(ki+a−1 − τ)

...

x(ki+2) =(A + BK2)x(ki+1) − BK2A
τ−h
h e(ki+2 − τ)

x(ki+1) =(A + BK1)x(ki ) − BK1A
τ−h
h e(ki+1 − τ).

(18)

Letting E(si ) = col {e(si ), e(si − h), · · · , e(si−1 + h)}, according to (8), the aug-
mented error dynamics system is derived as follows:

E(si+1) = ΣE(si ) (19)

whereΣ = col{Σ̃T , 0, · · · , 0}T , Σ̃ = col{Aa−LaC, Aa−1−La−1C, · · · , A−L1C}.
According to (18), we have

η(ki+a) = Γ η(ki+a−1) + �E(ki+a − τ) (20)

where

η(ki+a) = col{x(ki+a), x(ki+a−1), · · · , x(ki+1)}
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Γ = diag{A + BKa, A + BKa−1, · · · , A + BK1}
� = diag{−BKa A

τ−h
h ,−BKa−1A

τ−h
h , · · · ,−BK1A

τ−h
h }.

Together with (19) and (20), the following compact form can be derived by means
of augmenting technique

ξ(si+1) = Πξ(si ) (21)

where ξ(si ) = [ηT (ki+a) ET (si+1 − τ)]T , Π =
[

Γ �

0 Σ

]

.

Remark 3 The lifting technique is used to deal with the multi-rate networked control
system described by (1) and (2), ultimately, the equivalent single-rate system (19) is
obtained. According to (19), (20) and letting ξ(si ) = [ηT (ki+a) ET (si+1 − τ)]T ,
we can get the system (21) with the help of augmenting technique. As a matter of
fact, the system (21) can be considered as an autonomous system. Therefore, all the
eigenvalues of matricesΓ andΣ are within the unit circle that constitute the necessary
and sufficient condition of asymptotic stability for the system (21).

Remark 4 According to (21), it is very evident that x(ki ) is the element of ξ(si ). In
other word, the finite-time stabilization problem for the MRNCS described by (1) and
(2) has been transformed into the finite-time stability issue of the system (21).

The following two theorems provide sufficient conditions that can guarantee the
finite-time stability of the MRNCS described by (1) and (2), respectively.

Theorem 1 For given positive definite matrix R ∈ R
2na×2na, integer N > 0, scalars

ε > δ > 0, γ > 1, the system (21) is finite-time stable with respect to (δ, ε, R, N ),
if there exist positive definite matrix P ∈ R

2na×2na, real matrices K j ∈ R
m×n and

L j ∈ R
n×l ( j = 1, 2, · · · , a), such that

Θ =
[−γ P ∗

PΠ −P

]

< 0 (22)

cond(P̃) <
ε2

γ N δ2
(23)

where cond(P̃) = λmax(P̃)

λmin(P̃)
and P̃ = R− 1

2 PR− 1
2 .

Proof The Lyapunov function is chosen in the following form

V (si ) = ξ T (si )Pξ(si ). (24)

Letting ΔV (si ) = V (si+1) − γ V (si ), along the trajectory of system (21), we can
obtain

ΔV (si ) = ξ T (si )(Π
T PΠ − γ P)ξ(si ). (25)
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If ΠT PΠ − γ P < 0, we have ΔV (si ) < 0. Using the Schur complement lemma
[53], ΠT PΠ − γ P < 0 is equivalent to Θ < 0. Assume that ξ T (0)Rξ(0) ≤ δ2.
Further, we can obtain

V (si+1) < γ V (si ) < γ si V (0) < γ N ξ T (0)Pξ(0) ≤ γ Nλmax(P̃)δ2. (26)

On the other hand,

V (si ) = ξ T (si )Pξ(si ) ≥ λmin(P̃)ξ T (si )Rξ(si ). (27)

According to (26) and (27), if cond(P̃) < ε2

γ N δ2
, we have ξ T (si )Rξ(si ) < ε2. Based

on the Definition 1, the system (21) is finite-time stable with respect to (δ, ε, R, N ).
The proof is now complete. 	


Note that the formula (22) is a bilinearmatrix inequality, which includes the bilinear
item PΠ . As far as we know, the parameters Ka, · · · , K1, La, · · · , L1 cannot be
acquired directly from the formula (22) by usingMatlab LMI Toolbox. For the sake of
convenience, letting K = diag{Ka, · · · , K1} and L = col{La, · · · , L1}, the following
iterative algorithm is needed to obtain the gainmatrices via Theorem 1 for the observer
and the controller.

Iterative algorithm:

Step 1. Set i = 0. Choose the initial value of the matrix P and let P = P0.
Step 2. Set i = i + 1. In virtue of Pi−1, calculate the gain matrices K and L by solving

optimization problem: min t1, subject to Θ − t1 I < 0. Let Ki = K , Li = L .
Step 3. If t1 < 0, exit algorithm. Otherwise, go to next step.
Step 4. In virtue of Ki and Li , calculate the positive definite matrix P by solving

optimization problem: min t2, subject to Θ − t2 I < 0. Let Pi = P .
Step 5. If t2 < 0, exit algorithm, Otherwise, return to Step 2.

Remark 5 The iterative algorithm proposed in this paper has provided a strategy to
solve bilinearmatrix inequality. By adding unknown parameters, the trouble of solving
bilinear matrix inequality is transformed into an optimization issue based on linear
matrix inequality. The iteration number of the algorithm is affected by the initial value
selected. It should be noted that the feasible solution is gained by this way rather than
the optimal solution of bilinear matrix inequality.

Theorem 2 For given positive definite matrix R ∈ R
2na×2na, integer N > 0, scalars

ε > δ > 0, γ > 1 and rank(B) = m (m < n), the system (21) is finite-time stable with
respect to (δ, ε, R, N ), if there exist positive definite matrix Pj ∈ R

n×n, Q ∈ R
na×na,

real matrices W j ∈ R
m×n and Y ∈ R

na×al , such that the following linear matrix
inequality

� =
[−γ P ∗

�1 −P

]

< 0 (28)
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and

cond(P̃) <
ε2

γ N δ2
(29)

hold. Furthermore, the corresponding gain matrices of controller and observer are
presented by K j = V T

j Ξ P−1
j1 Ξ−1VjW j , L j = E j L ( j = 1, 2, ..., a), respectively,

where

P = diag{Pa, · · · , P1, Q}, �1 = PΠ1 + Ψ1 + Ψ2 + Ψ3, Ψ1 = diag{B̄W , 0}
Ψ2 =

[
0 −B̄W Ā
0 0

]

, Ψ3 = diag{0,Y C̃}, Π1 = diag{A1, A2}, C̃ = {C, 0, · · · , 0
︸ ︷︷ ︸

a−1

}

W = diag{W1, · · · ,Wa}, A1 = diag{A, · · · , A
︸ ︷︷ ︸

a

}, Ā = diag{A τ−h
h , · · · , A

τ−h
h

︸ ︷︷ ︸
a

}

A2 = [ Ã2 0, · · · , 0
︸ ︷︷ ︸

a−1

], Ã2 = col{Aa, Aa−1, · · · , A}, B̄ = diag{B, · · · , B
︸ ︷︷ ︸

a

}

Pj = Uj

[
Pj1 Pj2
0 Pj3

]

UT
j , P̃ = R− 1

2 PR− 1
2 , E j = [0, · · · , 0, I jl×n, 0, · · · , 0]

and U j , Ξ , Vj are defined by B = Uj

[
Ξ

0

]

V T
j .

Proof Assume that ξ T (0)Rξ(0) ≤ δ2. If

[−γ P ∗
PΠ −P

]

< 0 and cond(P̃) <

ε2

γ N δ2
, according to Theorem 1, the system (21) is finite-time stable with respect to

(δ, ε, R, N ). Subsequently, the condition

[−γ P ∗
PΠ −P

]

< 0 will be processed.

For simplicity, the following notations are introduced

Π = Π1 + Π2 + Π3 + Π4, P̄ = diag{Pa, · · · , P1}, Π2 = B̃ K̃1

Π3 = −B̃ K̃2 Ã, Π4 = diag{0,−LC̃}, B̃ = col{B̄, 0}
K̃1 = [K 0] , K̃2 = [0 K ] , Ã = diag{0, Ā}.

It is not intricate to derive that

PΠ2 = P B̃ K̃1 = diag{P̄ B̄K , 0}
PΠ3 = −P B̃ K̃2 Ã =

[
0 −P̄ B̄K Ā
0 0

]

PΠ4 = diag{0, QLC̃}.

Since rank(B) = m, it is obvious that rank(B̄) = am. For all j = 1, · · · a, from
Pj = Uj

[
Pj1 Pj2
0 Pj3

]

UT
j , B = Uj

[
Ξ

0

]

V T
j and Lemma 1, there exists Z j , such that
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Fig. 3 The state trajectories of the open-loop system

Pj B = BZ j . Subsequently, setting Z = diag{Za, · · · , Z1}, we have P̄ B̄ = B̄ Z .
Letting Wj = Z j K j and Y = QL , the linear matrix inequality (28) can be obtained.
From Lemma 1, one can obtain Z j = VjΞ

−1Pj1ΞV T
j and L = Q−1Y . Therefore,

K j = V T
j Ξ P−1

j1 Ξ−1VjW j , L j = E j L . The proof is now complete. 	

Remark 6 Up till now, Theorems 1 and 2 have provided sufficient conditions to ensure
the finite-time stability of the system (21), respectively. In order to obtain the gain
matrices from Theorem 1 for the observer and the controller, we need to employ
the proposed iterative algorithm to solve the bilinear matrix inequality (22). It is
worthwhile noting that the initial value of matrix P must be determined in advance
and it will affect the solution of (22). Compared with the Theorem 1, due to the form of
the positive definitematrix P and the rank of B are constrained, the sufficient condition
given by Theorem 2 is more conservative. But the sufficient condition of Theorem 2
is made up of the linear matrix inequality (28), which is simpler to solve than formula
(22). In addition, the design methods of observer and controller parameters have been
given in Theorem 2.

4 An Illustrative Example

In this part, an example is utilized to illustrate the validity of the results proposed in
this paper. For theMRNCS described by (1) and (2), the related parameters are chosen
by
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Fig. 4 The energy curve of the open-loop system
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Fig. 5 The state trajectories of the closed-loop system in case 1
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Fig. 6 The state trajectories of the closed-loop system determined by Theorem 1

0 20 40 60 80 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time step

 

 
u1(ki)
u2(ki)

Fig. 7 The trajectories of the predictive control input determined by Theorem 1

A =
⎡

⎣
−0.8 −0.3 0.6
−0.2 −0.3 −0.2
0.7 0.4 0.3

⎤

⎦ , B =
⎡

⎣
0.23 −0.47

−0.04 −0.42
0.67 −0.75

⎤

⎦ , C = [−1.84 −0.55 0.87
]
.

Assuminga = 2 and the sampling period of the plant is 2, i.e., h = 2, TheNITDs are
τ1 = τ2 = 4.The initial values of theMRNCSare selected as x(0) = [

0.7 −0.3 0.6
]T ,
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Fig. 8 The state trajectories of the closed-loop system determined by Theorem 2
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Fig. 9 The trajectories of the predictive control input determined by Theorem 2

u(0) = 0 and x̂(0) = [
0 0 0

]T . The other parameters are selected as R = I , δ = 1,
N = 100, γ = 1.01, ε = 2.32.

Fig. 3 depicts the state trajectories of the open-loop system, where xl (l = 1, 2, 3) is
the l-th element of the state. It is very obvious that the state trajectories are divergent
for the open-loop system. We are convinced that the energy curve xT (ki )x(ki ) is
unbounded from Fig. 4.
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Fig. 10 The energy curves of the closed-loop system in different cases

Two cases are considered for the purpose of comparison. Case 1: there exist NITDs
in the feedback channel and forward channel, and the controller without handling the
NITDs is utilized as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(si+1 − h) =u(si+1 − h − τ)

...

u(si + h) =u(si + h − τ)

u(si ) =u(si − τ).

Case 2: considering the NITDs in the MRNCS, the following predictive controller is
chosen by employing the networked predictive control method

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(si+1 − h) =u(si+1 − h|si − τ)

...

u(si + h) =u(si + h|si − τ)

u(si ) =u(si |si − τ).
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Selecting the initial value of positive definite matrix P = I , by solving the bilinear
matrix inequality (22), the following gain matrices are obtained

L1
1 =

⎡

⎣
−0.6164
−0.0654
0.2844

⎤

⎦ , K 1
1 =

[−0.1136 −0.0060 −0.7981
−0.3919 −0.4829 0.0826

]

L1
2 =

⎡

⎣
0.4803
0.1163

−0.3286

⎤

⎦ , K 1
2 =

[−0.0918 −0.0208 −0.7522
−0.3946 −0.4810 0.0769

]

.

By solving the linear matrix inequality (28), the following gain matrices are acquired

L2
1 =

⎡

⎣
0.5811
0.0653

−0.2881

⎤

⎦ , K 2
1 =

[−0.3489 −0.2083 −0.8756
−0.3518 −0.5000 −0.2256

]

L2
2 =

⎡

⎣
−0.4857
−0.0808
0.2805

⎤

⎦ , K 2
2 =

[−0.3489 −0.2083 −0.8756
−0.3518 −0.5000 −0.2256

]

.

For case 1, the state trajectories are shown in Fig. 5. Apparently, the closed-loop
MRNCS is unstable. This result is principally because that the effect of NITDs are
neglected. For case 2, the simulation results are described in Figs. 6, 7, 8, 9 and
10. Among them, Fig. 6 and Fig. 7 describe the trajectories of state and predictive
control input determined by Theorem 1, respectively, where ul (l = 1, 2) is the l-
th element of the predictive control input. As such, by applying the gain matrices
of observer and controller from Theorem 2, the trajectories of state and predictive
control input are shown in Fig. 8 and Fig. 9, respectively. From Figs. 6 and 8, the
closed-loop system is finite-time stable under the action of the predictive controller.
Besides, the convergence rate of state trajectories in Fig. 6 is faster than in Fig. 8,
this also means that the condition obtained from Theorem 2 is more conservative than
Theorem 1. Figure 10 displays that the energy curve xT (ki )x(ki ) is bounded, where
the energy curves x1T (ki )x1(ki ) and x2T (ki )x2(ki ) are calculated from Theorems 1
and 2, respectively. In summary, this example shows that the NPCS proposed in this
paper compensates the negative effect of NITDs actively.

5 Conclusions

The finite-time stabilization problem has been investigated for discrete-time MRNCS
with NITDs in this paper. A new NPCS has been designed based on MRSM to handle
the effects of NITDs. By applying the lifting technique and augmenting method, the
MRNCS has been changed into a single-rate system. With the help of the Lyapunov
theorem, two sufficient criteria have been derived to guarantee finite-time stability
for the given MRNCS. Moreover, the observer gain matrices and the controller gain
matrices have been designed based on the solution to somematrix inequalities. Finally,
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the effectiveness and feasibility has been shown for the results proposed in this paper
by a numerical example. It should be pointed out that the depth of the results needs to
be further expanded. Further research directions include the extension of the current
results to MRNCS with communication constraints [15], and to the nonlinear multi-
agent systems [3], the nonlinear complex networks [8] and the nonlinear systems over
sensor networks [36]. Besides, it is also interesting to consider the influences of model
uncertainty and external disturbances on the design of NPCS.
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