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Abstract
Signal modeling is an important technique in many engineering applications. This
paper is concerned about signal modeling problem for the sine multi-frequency sig-
nals or periodic signals. In terms of different characteristics between the signal output
and the signal parameters, a separable modeling scheme is presented for estimating
the signal parameters. In order to seize the real-time information of the signals to
be modeled, a sliding measurement window is designed for using the observations
dynamically and implementing accurate parameter estimates. Because the amplitude
parameters are linear with respect to the signal output and the angular frequency
parameters are nonlinear with respect to the signal output, the signal parameters are
separated into a linear parameter set and a nonlinear parameter set. Based on these
separable parameter sets, a nonlinear optimization problem is converted into a combi-
nation of the optimization quadric and the nonlinear optimization. Then, a separable
multi-innovationNewton iterative signalmodelingmethod is derived and implemented
to estimate sine multi-frequency signals and periodic signals. The simulation results
are found to be effective of modeling dynamic signals. For the reason that the proposed
method is based on dynamic sliding measurement window, it can be used for online
estimation applications.
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1 Introduction

Estimating for the parameters of multi-frequency signal models and dynamical sys-
tems has many engineering applications, such as channel sounding, power quality
analysis, wireless communication systems [16–22]. Moreover, a periodic signal can
be transformed into the sum of multi-sine or multi-cosine signals in accordance with
the Fourier transform. In addition, parameter estimation of sinusoidal signals plays
a vital role for the quality monitoring and reliability assessment of power systems
[55,58,99]. Sine waves are easily generated within a wide frequency range and can
be simply analyzed in frequency domain and time domain which are widely used as
excitation signals in devices, circuits and control systems [62,68]. Many engineer-
ing applications need to accurately estimate the signal parameters of sine waves, and
many parameter estimation algorithms for sine waves were proposed in time domain
and frequency domain such as the three-parameter sine-fitting least squares method
or four parameter least squares method [1,5,34]. All these methods are supposed that
the frequencies of the noisy sine-waves are known. However, many practical appli-
cations need to accurately obtain the parameter estimates of signals in real-time in
the condition that no priori knowledge on frequencies is known [4]. Practically, the
unknown signal parameters describing circuits or devices can be estimated by dis-
crete measurements based on the minimization of the squared residual error between
a practical signal and the available output measurements of the signal [35]. In most
cases, for the sine-wave signals, all of the characteristic parameters comprising the
amplitude, frequency and phase of the basic wave and each harmonic wave compo-
nent are unknown. Therefore, it is meaningful to estimate all of the signal parameters
under the circumstances that frequency, phase and amplitude parameters are unknown
in advance.

Various parameter estimation algorithms with regard to multi-sine signals have
been addressed and used widely in engineering fields. Zhao et al. [96] proposed a least
squares multi-frequency identification approach to estimate the amplitude and phase
of signals having multiple frequencies, but this method is realized on the premise
of known main frequency values. Chaudhary et al. proposed a fractional order LMS
parameter estimation algorithm to estimate power signal with the form of a multi-
frequency sine signal.However, all of the characteristic parameters cannot be estimated
simultaneously [9]. Moreover, some estimation methods by means of discrete-time
Fourier transform have been presented for identifying the parameters of sine-waves or
multi-sine signals. Belega et al. [2,6] developed a two-point interpolated discrete-time
Fourier transform method to estimate the amplitude and phase of the noisy sine-
waves. Moreover, they studied the performance of interpolated DFT algorithms based
on few observed cycles [3]. Wang et al. proposed a four-point interpolated discrete-
timeFourier transformestimationmethod simultaneously taking into consideration the
fundamental component, frequency parts and direct-current component [75]. These
methods based on the discrete-time Fourier transform need signal transformation,
which can result in new errors. Therefore, the estimation processing is complicated
and the parameter estimates are not accurate. In this study, we try to develop a param-
eter estimation method aiming to obtain all of the characteristic parameter estimates
simultaneously and directly.
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Separable techniques are used widely to solve nonlinear problems with a special
structure in which the objective function to be minimized with respect to a number
of parameters can separate two different characteristic parameter sets in accordance
with different parameter characteristics. It is noted that one parameter set enters the
objective function through a linear form and the other parameter set enters in a nonlin-
ear form [10–12,26–30]. By means of the separable techniques, the dimension of the
parameter space is reduced for solving nonlinear optimization problems and the condi-
tioned optimization problem can be improved. In system identification, the separable
techniques are adopted to reduce the complexity of the identification algorithms,which
are also called hierarchical identification methods [79]. The basic principle of the sep-
arable techniques is parameter decomposition or model decomposition. Generally,
the identification model is separated into several identification models after decom-
position. Then, many complicated nonlinear optimization problems can be solved by
some linear optimal methods [85–91]. For example, Ngia proposed a separable non-
linear least-squares algorithm for offline and online identification through Kautz and
Laguerre filters, in which a nonlinear least squares minimization problem became
separable regarding the linear coefficients and got better condition than the original
unseparated one [56]. Mahata et al. investigated a separable nonlinear least squares
estimation algorithm in terms of the condition of complex valued data and established
the convergence properties of the proposed parameter estimation algorithm [54]. In
this study, the separable technique is expanded into the field of signal modeling to
develop more effective parameter estimation methods.

It is well know that the observations contain the information of the systems or sig-
nals. If the observed data are collected in real time and used in identification methods,
the obtained parameter estimates aremore accurate than those obtained by offlinemea-
surements [33,42,67]. In general, the dynamical measurements can be single datum
or batch data containing the dynamical information of the systems or signals to be
identified. If more measurements are employed into identification algorithms, one can
get more accurate estimation results [15,69,70]. Moreover, sliding window is widely
employed in communication, control engineering and data processing, which are used
to capture dynamical information [8,66,76]. In this study, we design the dynamical
sliding window data to estimate the signal parameters by iterative strategies, which
is called the multi-innovation iterative algorithm. In this method, the sliding window
data dynamically change with time increasing. After new observed data are introduced
to the sliding window, an iterative process happens until the satisfactory estimates are
obtained. The multi-innovation has been used widely for the identification of linear
systems and nonlinear systems [78]. Multi-innovation identification algorithms are
proposed based on dynamical batch data and recursive estimation, which can be used
in online identification. The multi-innovation is effective to improve the identifica-
tion accuracy by expanding a scalar innovation into the innovation vector. Moreover,
external disturbances, modeling errors and various uncertainties in real systems will
influence the model accuracy. In order to overcome these problems, the filtering tech-
niques are effective to cope with them [13,23,64,65,101]. In this paper, we study
the parameter estimation methods for the multi-frequency signals by means of the
multi-innovation and iterative estimation for presenting high-performance identifica-
tion algorithms.
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The main contributions of this paper are summarized as follows:

– In accordance with different features of the parameters of the multi-frequency
signals, the parameters are separated into a linear parameter set and a nonlinear
parameter set to reduce parameter dimensions. Based on the separable parameter
sets, two different objective functions are constructed, which shows linear form
and nonlinear form.

– In terms of different objective functions, two dynamical iterative sub-algorithms
are derived by Newton optimization. Because the signal parameters are separated
into a linear set and a nonlinear set, one of the sub-algorithms derived by the
Newton optimization becomes the linear least squares method.

– In order to capture the dynamical information of the signals to be modeled and
obtain higher estimation accuracy, a sliding window and an iterative scheme are
designed to employ the observations into the estimation computation. In the pro-
posed signal modeling method, the iterative process and the real-time acquisition
happen interactively, which can seize more dynamical information and obtain
higher estimation accuracy.

The remainder of this paper is outlined as follows. In Sect. 2, the parameter esti-
mation problems are described and the separable principle for the multi-frequency
sine signal is introduced. In Sect. 3, we derive a multi-innovation Newton iterative
parameter estimation sub-algorithm for the linear amplitude parameters. In Sect. 4,
we present a multi-innovation Newton iterative estimation algorithm for the nonlinear
angular frequency parameters. In Sect. 5, a separable multi-innovation Newton itera-
tive parameter estimation algorithm is developed by combining two sub-algorithms. In
Sect. 6, some numerical examples are provided to test the performance of the proposed
method. Finally, we summarize the conclusions of this paper in Sect. 7.

2 ProblemDescription

Consider the following identification problem of the multi-frequency sine signal:

y(t) =
n∑

i=1

ai sin(ωi t) + v(t), (1)

where ai is the amplitude parameters, ωi is the angular frequency parameter, i =
1, 2, . . . , n, y(t) is the output of the signal model and v(t) is the noise with mean zero.

For measuring technique, oscilloscopes are convenient instruments for signal test
and are used widely in many applications. However, the oscilloscopes only can obtain
the single frequency of the periodic signal or the sine signal with a few frequen-
cies. In statistical identification, the system models can be obtained by means of the
measurement data from identification experiments. According to the statistical iden-
tification theory, we use the discrete measurement data y(tk), k = 1, 2, . . . to fit the
multi-frequency sine signal. Using these discrete sampled data y(tk) to fit the multi-
frequency sine signal, we can obtain the fitting signal, see Fig. 1. The procedure for
obtaining the parameter estimates of the signal models is called signal modeling.
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Fig. 1 Fitting multi-frequency sine signal using the discrete measurement

From (1), we can see that the amplitude parameters ai , i = 1, 2, . . . , n are linear
regarding y(t) while the angular frequencies ωi are nonlinear regarding y(t). This
inspires us to decompose the characteristic parameters of the multi-frequency sine
signal into separated parameter sets with different characteristics. Then, we separate
the total parameter vector into two parameter sets, i.e., the amplitude parameter vector
a and the angular frequency parameter vector ω:

a := [a1, a2, . . . , an]T ∈ R
n, ω := [ω1, ω2, . . . , ωn]T ∈ R

n .

The current sampling moment is denoted by t = tk , k = 0, 1, 2, . . .. Define the error

between the observed output y(tk) and the model output
n∑

i=1
ai sin(ωi tk) as

v(a,ω, tk) := y(tk) −
n∑

i=1

ai sin(ωi tk) ∈ R.

Using the latest window data with the length p up to the current time t = tk to define
the objective function of the sliding window data gives

J1(a,ω) := 1

2

k∑

m=k−p+1

v2(a,ω, tm).

Based on the separable parameter sets, the above objective function can be separated
into two objective functions: One is with respect to the linear parameter set a, and the
other is with respect to the nonlinear parameter setω. Therefore, the parameter decom-
position leads to two identification sub-models and two identification sub-algorithms.
In the next sections, we give the separable signal modeling method.
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3 Multi-innovation Newton Iterative Parameter Estimation
Sub-algorithm for Amplitude Parameters

In this section, the proposed algorithm is on the condition that the angular frequency
parameters are known. In this case, the criterion function J1(a,ω) is a function with
respect to the amplitude parameter vector a, which can be rewritten as

J2(a) := J1(a,ω) = 1

2

k∑

m=k−p+1

[
y(tm) −

n∑

i=1

ai sin(ωi tm)

]2
.

Define the information vector ϕa(ω, tk) and the piled information matrix as

ϕa(ω, tk) := [sin(ω1tk), sin(ω2tk), . . . , sin(ωntk)]T ∈ R
n,

�a(p,ω, tk) := [ϕa(ω, tk),ϕa(ω, tk−1), . . . ,ϕa(ω, tk−p+1)]T ∈ R
p×n .

Define the piled observation output as

Y(p, tk) := [y(tk), y(tk−1), . . . , y(tk−p+1)]T ∈ R
p.

Then, the criterion function J2(a) can be further expressed as

J2(a) := 1

2
‖Y(p, tk) − �a(p,ω, tk)a‖2.

The gradient vector of the criterion function J2(a)with respect to the parameter vector
a is obtained by taking the first-order derivative:

grad[J2(a)] := ∂ J2(a)
∂a

= −�T
a(p,ω, tk)[Y(p, tk) − �a(p,ω, tk)a] ∈ R

n .

Taking the second-order derivative of the criterion function J2(a) with respect to the
amplitude parameter vector a obtains the Hessian matrix:

Ha(p,ω, tk) := ∂2 J2(a)
∂a∂aT

= ∂grad[J2(a)]
∂aT

= �T
a(p,ω, tk)�a(p,ω, tk) ∈ R

n×n .

Let l be an iterative variable and let âl(tk) := [â1,l(tk), â2,l(tk), · · · , ân,l(tk)]T ∈ R
n

denote the lth iterative estimate of the amplitude parameter vector a at time t = tk . By
means of theNewton iterative principle, minimizing the criterion function J2(a) yields
the multi-innovation Newton iterative algorithm (MINI) for estimating the amplitude
parameter vector a:

âl(tk) = âl−1(tk) − H−1
a (p,ω, tk)grad[J2(âl−1(tk))]

= âl−1(tk) − H−1
a (p,ω, tk)grad[J1(âl−1(tk),ω)]
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= âl−1(tk) + [�T
a(p,ω, tk)�a(p,ω, tk)]−1

�T
a(p,ω, tk)[Y(p, tk) − �a(p,ω, tk)âl−1(tk)]

= [�T
a(p,ω, tk)�a(p,ω, tk)]−1�T

a(p,ω, tk)Y(p, tk), (2)

Y(p, tk) = [y(tk), y(tk−1), . . . , y(tk−p+1)]T, (3)

�a(p,ω, tk) = [ϕa(ω, tk),ϕa(ω, tk−1), . . . ,ϕa(ω, tk−p+1)]T, (4)

ϕa(ω, tk) = [sin(ω1tk), sin(ω2tk), . . . , sin(ωntk)]T, (5)

âl(tk) = [â1,l(tk), â2,l(tk), . . . , ân,l(tk)]T. (6)

Remark 1 From (2), we can see that when the criterion function is the quadratic func-
tion of the parameter vector a, the multi-innovation Newton iterative algorithm is
reduced to the least squares algorithm, which is a sliding window least squares algo-
rithm in (2)–(6).

Remark 2 The proposed MINI sub-algorithm in (2)–(6) is derived on the premise
that the angular frequency parameter vector ω is known. If the angular frequency
parameter vector ω is unknown, the algorithm cannot calculate the estimate of the
amplitude parameter vector a.

4 Multi-innovation Newton Iterative Estimation Sub-algorithm for
Angular Frequency Parameters

When the amplitude parameters ai (i = 1, 2, . . . , n) are known, the parameter vector
a does not need to be identified. Under this condition, the criterion function J1(a,ω)

is the function with respect to the angular frequency parameter vector ω, which can
be denoted by

J3(ω) := J1(a,ω) = 1

2

k∑

m=k−p+1

[
y(tm) −

n∑

i=1

ai sin(ωi tm)

]2
.

Taking the first-order derivative of the criterion function J3(ω) with respect to the
parameter vector ω obtains the gradient vector of the criterion function as follows:

grad[J3(ω)] := ∂ J3(ω)

∂ω
=

[
∂ J3(ω)

∂ω1
,
∂ J3(ω)

∂ω2
, . . . ,

∂ J3(ω)

∂ωn

]T

∈ R
n,

∂ J3(ω)

∂ω j
= −

k∑

m=k−p+1

[
y(tm) −

n∑

i=1

ai sin(ωi tm)

]
a j tm cos(ω j tm).

Define the information vector:

ϕω(a,ω, tk) := [a1tk cos(ω1tk), a2tk cos(ω2tk), · · · , antk cos(ωntk)]T ∈ R
n .



812 Circuits, Systems, and Signal Processing (2022) 41:805–830

Define the piled information matrix:

�ω(p, a,ω, tk) := [ϕω(a,ω, tk),ϕω(a,ω, tk−1), . . . ,ϕω(a,ω, tk−p+1)]T ∈ R
p×n .

Define the error vector:

V (p, a,ω, tk) := [v(a,ω, tk), v(a,ω, tk−1), . . . , v(a,ω, tk−p+1)]T ∈ R
p.

Then, the gradient vector grad[J3(ω)] can be rewritten as

grad[J3(ω)] = −�T
ω(p, a,ω, tk)V (p, a,ω, tk).

Taking the second-order derivative of the criterion function J3(ω) with respect to the
parameter vector ω obtains the Hessian matrix as follows:

Hω(p, a, ω, tk) := ∂2 J3(ω)

∂ω∂ωT
=

[
∂2 J3(ω)

∂ω j∂ωr

]
∈ R

n×n, j, r = 1, 2, . . . , n,

∂2 J3(ω)

∂ω j∂ωr
=

k∑

m=k−p+1

a jar t
2
m cos(ω j tm) cos(ωr tm), j �= r ,

∂2 J3(ω)

∂ω j∂ω j
=

k∑

m=k−p+1

a2j t
2
m cos2(ω j tm) +

[
y(tm) −

n∑

i=1

ai sin(ωi tm)

]
a j t

2
m sin(ω j tm)

=
k∑

m=k−p+1

a2j t
2
m +

[
y(tm) −

n∑

i �= j

ai sin(ωi tm)

]
a j t

2
m sin(ω j tm).

Let ω̂l(tk) := [ω̂1,l(tk), ω̂2,l(tk), . . . , ω̂n,l(tk )]T denote the lth iterative estimate of
the amplitude parameter vector ω at time t = tk . According to the Newton search,
minimizing the criterion function J3(ω) gives the multi-innovation Newton iterative
algorithm for estimating the angular frequency parameter vector ω:

ω̂l(tk) = ω̂l−1(tk) − H−1
ω (p, a, ω̂l−1(tk), tk)grad[J3(ω̂l−1(tk))]

= ω̂l−1(tk) − H−1
ω (p, a, ω̂l−1(tk), tk)grad[J1(a, ω̂l−1(tk))]

= ω̂l−1(tk) + H−1
ω (p, a, ω̂l−1(tk), tk)

×�T
ω(p, a, ω̂l−1(tk), tk)V (p, a, ω̂l−1(tk), tk), (7)

�̂ω(p, tk) := �ω(p, a, ω̂l−1(tk), tk)

= [ϕω(a, ω̂l−1(tk), tk),ϕω(a, ω̂l−1(tk), tk−1), . . . ,

ϕω(a, ω̂l−1(tk), tk−p+1)]T, (8)

ϕ̂a,ω(tk) = ϕω(a, ω̂l−1(tk), tk)

= [a1tk cos(ω̂1,l−1(tk)tk), a2tk cos(ω̂2,l−1(tk)tk), . . . ,

antk cos(ω̂n,l−1(tk)tk)]T, (9)

V̂ (p, tk) = V (p, a, ω̂l−1(tk), tk)
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= [v(a, ω̂l−1(tk), tk), v(a, ω̂l−1(tk), tk−1), . . . ,

v(a, ω̂l−1(tk), tk−p+1)]T, (10)

v̂(a, tk) = v(a, ω̂l−1(tk), tk)

= y(tk) −
n∑

i=1

ai sin(ω̂i,l−1(tk)tk), (11)

Ĥω(p, tk) = Hω(p, a, ω̂l−1(tk), tk)

= [h jr (a, ω̂l−1(tk), tk)], j, r = 1, 2, . . . , n, (12)

ĥ jr (tk) = h jr (a, ω̂l−1(tk), tk)

=
k∑

m=k−p+1

a jar t
2
m cos(ω̂ j,l−1(tk)tm) cos(ω̂r ,l−1(tk)tm), j �= r ,(13)

ĥ j j (tk) = h j j (a, ω̂l−1(tk), tk)

=
k∑

m=k−p+1

a2j t
2
m +

[
y(tm) −

n∑

i �= j

ai sin(ω̂i,l−1(tk)tm)

]
a j t

2
m

sin(ω̂ j,l−1(tk)tm), (14)

ω̂l(tk) := [ω̂1,l(tk), ω̂2,l(tk), . . . , ω̂n,l(tk)]T. (15)

Remark 3 The multi-innovation Newton iterative sub-algorithm in (7)–(15) for esti-
mating the angular frequency parameter vectorω is proposed under the hypothesis that
the amplitude vector a is known. If the amplitude vector a is unknown, the proposed
multi-innovation Newton iterative algorithm in (7)–(15) cannot estimate the angular
frequency parameter vector ω.

5 Separable Multi-innovation Newton Iterative Parameter Estimation
Algorithm

In practice, for modeling the multi-frequency sine signal, all of the signal parame-
ters are unknown. In order to develop the signal modeling method for estimating the
whole signal parameters, the proposed two sub-algorithms for estimating parameter
vector a in (2)–(6) and ω in (7)–(15) are combined to construct an interactive estima-
tion algorithm. It is noted that the combination of these two sub-algorithms contains
unknown related parameters, i.e., the unknown parameters lie in the sub-algorithms.
Therefore, we present a separable algorithm to remove the related parameter terms
by interactive estimation. Jointing the MINI sub-algorithm in (2)–(6) for estimating
parameter vector a and the MINI sub-algorithm in (7)–(15) for estimating parameter
vector ω and replacing the unknown parameter vectors ω and a with their previous
iterative estimates ω̂l−1(tk) and âl−1(tk) yield the separable multi-innovation Newton
iterative (SMINI) parameter estimating algorithm for estimating all parameters of the
multi-frequency sine signal as follows:
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âl(tk) = âl−1(tk) − H−1
a (p, ω̂l−1(tk), tk)grad[J1(âl−1(tk), ω̂l−1(tk))]

= [�T
a(p, ω̂l−1(tk), tk)�a(p, ω̂l−1(tk), tk)]−1

�T
a(p, ω̂l−1(tk), tk)Y(p, tk)

= [�̂T

a,l(p, tk)�̂a,l(p, tk)]−1�̂
T

a,l(p, tk)Y(p, tk), (16)

Y(p, tk) = [y(tk), y(tk−1), . . . , y(tk−p+1)]T, (17)

�̂a,l(p, tk) := �a(p, ω̂l−1(tk), tk)

= [ϕa(ω̂l−1(tk), tk),ϕa(ω̂l−1(tk), tk−1), . . . ,ϕa(ω̂l−1(tk), tk−p+1)]T
= [ϕ̂a,l(tk), ϕ̂a,l(tk−1), . . . , ϕ̂a,l(tk−p+1)]T, (18)

ϕ̂a,l(tk− j ) := ϕa(ω̂l−1(tk), tk− j )

= [sin(ω̂1,l−1(tk)tk− j ), sin(ω̂2,l−1(tk)tk− j ), . . . , sin(ω̂n,l−1(tk)tk− j )]T,
(19)

ω̂l(tk) = ω̂l−1(tk) − H−1
ω (p, âl−1(tk), ω̂l−1(tk), tk)

grad[J1(âl−1(tk), ω̂l−1(tk))]
= ω̂l−1(tk) + H−1

ω (p, âl−1(tk), ω̂l−1(tk), tk)�
T
ω(p, âl−1(tk),

ω̂l−1(tk), tk)V (p, âl−1(tk), ω̂l−1(tk), tk)

= ω̂l−1(tk) + Ĥ−1
ω,l (p, tk)�̂

T

ω,l(p, tk)V̂l(p, tk), (20)

�̂ω,l(p, tk) := �ω(p, âl−1(tk), ω̂l−1(tk), tk)

= [ϕω(âl−1(tk), ω̂l−1(tk), tk),ϕω(âl−1(tk),

ω̂l−1(tk), tk−1), . . . ,ϕω(âl−1(tk), ω̂l−1(tk), tk−p+1)]T
= [ϕ̂ω,l(tk), ϕ̂ω,l(tk−1), . . . , ϕ̂ω,l(tk−p+1)]T, (21)

ϕ̂ω,l(tk− j ) := ϕω(âl−1(tk), ω̂l−1(tk), tk− j )

= [â1,l−1(tk)tk− j cos(ω̂1,l−1(tk)tk− j ), . . . ,

ân,l−1(tk)tk− j cos(ω̂n,l−1(tk)tk− j )]T, (22)

V̂l(p, tk) := V (p, âl−1(tk), ω̂l−1(tk), tk)

= [v(âl−1(tk), ω̂l−1(tk), tk), v(âl−1(tk),

ω̂l−1(tk), tk−1), . . . , v(âl−1(tk), ω̂l−1(tk), tk−p+1)]T
= [v̂l(tk), v̂l(tk−1), . . . , v̂l(tk−p+1)]T, (23)

v̂l(tk− j ) := v(âl−1(tk), ω̂l−1(tk), tk− j )

= y(tk− j ) −
n∑

i=1

âi,l−1(tk) sin(ω̂i,l−1(tk)tk− j ), (24)

Ĥω,l(p, tk) := Hω(p, âl−1(tk), ω̂l−1(tk), tk)

= [h jr (âl−1(tk), ω̂l−1(tk), tk)]
= [ĥ jr ,l(tk)], j, r = 1, 2, . . . , n, (25)

ĥ jr ,l(tk) := h jr (âl−1(tk), ω̂l−1(tk), tk)
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=
k∑

m=k−p+1

â j,l−1(tk)âr ,l−1(tk)t
2
m cos(ω̂ j,l−1(tk)tm)

cos(ω̂r ,l−1(tk)tm), j �= r , (26)

ĥ j j,l(tk) := h j j (âl−1(tk), ω̂l−1(tk), tk)

=
k∑

m=k−p+1

â2j,l−1(tk)t
2
m

+
[
y(tm) −

n∑

i=1

âi,l−1(tk) sin(ω̂i,l−1(tk)tm)

]

â j,l−1(tk)t
2
m sin(ω̂ j,l−1(tk)tm), (27)

âl(tk) = [â1,l(tk), â2,l(tk), · · · , ân,l(tk)]T, (28)

ω̂l(tk) = [ω̂1,l(tk), ω̂2,l(tk), . . . , ω̂n,l(tk)]T. (29)

The computing procedure of the proposed SMINI algorithm in (16)–(29) is shown
in Fig. 2. The steps for computing the parameter estimation vectors âl(tk) and ω̂l(tk)
are as follows:

(1) Initialize: Set the innovation length p � n and let k = p. Give the maximal
iterative length lmax and the parameter estimation accuracy ε. Set the initial values
â0(tk) = [â1,0(tk), â2,0(tk), · · · , ân,0(tk)]T as a random real vector, ω̂0(tk) =
[ω̂1,0(tk), ω̂2,0(tk), · · · , ω̂n,0(tk)]T as a random real vector. Collect the observations
y(tm), m = 0, 1, . . . , p − 1.

(2) Let l = 1. Collect the observed data y(tk), construct the output vector Y(p, tk) in
accordance with (17).

(3) Compute the information vector ϕ̂a,l(tk− j ) by (19), compute the information vec-
tor ϕ̂ω,l(tk− j ) by (22), and compute the residual v̂l(tk− j ), j = 0, 1, . . . , p − 1 by
(24).

(4) Construct the stacked informationmatrix �̂a,l(p, tk) by (18), construct the stacked
information matrix �̂ω,l(p, tk) by (21), and construct the residual vector V̂l(p, tk)
by (23).

(5) Compute each element ĥ jr ,l(tk) and ĥ j j,l(tk), j, r = 1, 2, . . . , n of the Hessian
matrix in accordance with (26)–(27) and construct the Hessian matrix Ĥω,l(p, tk)
by (25).

(6) Update the amplitude parameter estimation vector âl(tk) by (16); update the angu-
lar frequency parameter estimation vector ω̂l(tk) by (20). Read the amplitude
parameter estimate âi,l(tk) from (28) and read the angular frequency parameter
estimate ω̂i,l(tk) from (29), i = 1, 2, . . . , n.

(7) If l < lmax, then l := l + 1 and go to Step 3); otherwise, jump to the next step.
(8) If ‖âl(tk) − âl−1(tk)‖ + ‖ω̂l(tk) − ω̂l−1(tk)‖ > ε, then â0(tk+1) = âl(tk),

ω̂0(tk+1) = ω̂l(tk) and increase k by 1 and go to Step 2); otherwise, obtain the
parameter estimates âl(tk) and ω̂l(tk) and terminate the iterative procedure.
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Fig. 2 Flowchart of the SMINI estimation algorithm

Remark 4 The proposed SMINI algorithm in (16)–(29) is composed of twoMINI sub-
algorithms. For the linear parameter identification, the MINI sub-algorithm reduces to
the least squares algorithm for estimating the linear parameter set a.Moreover, because
the SMINI algorithm uses the sliding window data, the iterative procedure alternates
with the real-time datum collection. However, the sub-algorithm for estimating the
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nonlinear parameters cannot be realized by the linear least squares optimization, i.e.,
the least squares method for estimating the whole parameters of the multi-frequency
sine signal cannot exist.

Remark 5 The goal of the proposed separable multi-innovation Newton iterative
parameter estimation method is to reduce the computational burden compared with
the inseparable multi-innovation Newton iterative parameter estimation method. In
this study, an obvious problem is the parameter vector θ := [a1, . . . , an, ω1, . . . , ωn]T
is separated into two parameter vectors a and b. Because the Newton search needs to
compute the Hessian matrix and its inverse matrix, the computation burden is reduced
obviously after the parameter separation, in which the dimension of theHessianmatrix
with respect to θ is 2n and the dimension of the Hessian matrix with respect to a andω

is n. Comparing the proposed algorithmwith the gradient-basedmethod, the computa-
tion burden of the SMINI algorithm is heavier than the gradient-basedmethod because
of the Hessian matrix and its inverse. Therefore, in order to obtain better estimation
accuracy, the algorithm needs more computational burden in some cases. Themethods
proposed in this paper can combine other estimation approaches [14,50,57,80–83] to
study the parameter estimation problems of linear systems [52,53,59–61] and bilinear
systems [43–48] and nonlinear systems [25,36,37,39,49] and can be applied to some
engineering application systems.

6 Numerical Scenarios

This section presents two parameter estimation examples of a power signal and a
periodic signal to illustrate the performance of the proposedmethod. In the simulation,
a comparison is provided under different noise levels. The parameter estimation error
is defined as

δ(tk) :=
√

‖a − âl(tk)‖2 + ‖ω − ω̂l(tk)‖2
‖a‖2 + ‖ω‖2 × 100%.

Example 1 The parameter vector of the power signal to be estimated involves the
amplitudes and phases

a = [10, 14, 20]T, ω = [3, 1.5, 2.5]T.

In the simulations, the noise v(t) corresponds to a normal distributed noise signal
with zero mean and constant variance, i.e., N (0, σ 2), where the noise variance σ 2 =
0.502 is evaluated.Moreover, the data length is 200 and thewindow lengths are p = 10
and p = 30; the samplingperiod is 2s.Themaximumiteration is lmax = 20 at eachdata
window. The collected observations with noise are shown in Fig. 3. The parameter
estimates and their estimation errors obtained by the proposed SMINI method are
illustrated in Table 1 and the estimation errors versun l is shown in Fig. 4.
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Fig. 3 Discrete observations

Fig. 4 Parameter estimation errors versus l under different innovation length

In accordance with the estimated parameters when p = 30 and k = 3000, we
obtain the following estimated multi-frequency sine signal:

f (t) = 9.93201 sin 3.01483t + 13.86639 sin 1.44152t + 20.04096 sin 2.48655t .

In order to test the accuracy of the estimated signal, the power spectrum density of
the true signal and the estimated signal is shown in Fig. 5, where the blue line is the
estimated signal and the black line is the true signal.

Example 2 In order to evaluate the performance of the proposed SMINI algorithm for
estimating other periodic signals, a triangular wave is provided to test the proposed
method which is shown in Fig. 6.
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Fig. 5 Power spectrum density of the estimated and true signals with box window

Fig. 6 Triangular wave

The mathematical description of the above triangular wave is illustrated as follows:

f (t) =
{

4A
T t, − T

4 ≤ t ≤ T
4 ,

− 4A
T t + 2A, T

4 ≤ t ≤ 3T
4 .

(30)

As we all know, any periodic function f (t) can be expanded the combination of
sine and cosine terms according to the Fourier series, i.e.,

f (t) = a0
2

+
∞∑

n=1

[an cos nωt + bn sin nωt],

where a0/2 is the direct current component, ω is the angular frequency of the basic
wave, an and bn are the coefficients of each fundamental and harmonic waves.

Because f (t) is an odd function, coefficients of the Fourier series are as zero, i.e.,
a0
2 = 0, an = 0, n = 1, 2, . . .. The coefficients bn are determined in accordance
with

bn = 2

T

∫ t0+T

t0
f (t) sin nwtdt
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= 2

T

∫ T
4

− T
4

4A

T
sin(nωt)tdt + 2

T

∫ 3T
4

T
4

(A − 4A

T
) sin(nωt)tdt

=
{

8A
n2π2 , n = 1, 5, 9, . . . ,

− 8A
n2π2 , n = 3, 7, 11, . . . .

As a result, the triangular wave in (30) can be described by the following Fourier
series:

f (t) = 8A

π2 sinωt − 8A

9π2 sin 3ωt + 8A

25π2 sin 5ωt − 8A

47π2 sin 7ωt · · · . (31)

The first three terms in (31) can be used to represent the original triangular wave in
(30) because of the fast attenuation of the higher harmonic, i.e.,

f (t) = 8A

π2 sinωt − 8A

9π2 sin 3ωt + 8A

25π2 sin 5ωt . (32)

Define a1 = 8A
π2 , a2 = − 8A

9π2 , a3 = 8A
25π2 , ω1 = ω, ω2 = 3ω and ω3 = 5ω. Then, f (t)

in (32) becomes

f (t) = a1 sinω1t + a2 sinω2t + a3 sinω3t .

Therefore, the proposed signal modeling methods can be used to estimate the param-
eters of the triangular wave in (30). In the simulation, the parameters of the triangular
wave are A = 6, T = 0.4ω. The simulation conditions are set as follows: (1) Thewhite
noise is σ 2 = 0.052, σ 2 = 0.302, σ 2 = 0.602 and σ 2 = 1.002; (2) The data length is
L = 150; (3) The frequency sampling period is hω = 0.15; (4) The innovation length
p = 10; (5) The maximum iteration at each data window is lmax = 5. The discrete
measurements of the triangular wave contained different white noise in this example
are shown in Fig. 7.

Employing the proposed SMINI algorithm tomodel the triangular wave, the param-
eter estimates and the estimation errors under different noise are listed in Table 2 and
the estimation errors versus iteration l is shown in Fig. 8.

Based on the estimated parameters inTable 2,we get four estimated signals obtained
under different noise variance as follows:

f1(t) = 4.88676 sin 0.19128t − 0.56693 sin 0.54267t + 0.19162 sin 1.15690t,

f2(t) = 5.00346 sin 0.19769t − 0.69971 sin 0.54497t + 0.17703 sin 1.19952t,

f3(t) = 5.14350 sin 0.20546t − 0.85904 sin 0.54298t + 0.15953 sin 1.47889t,

f4(t) = 5.33022 sin 0.21595t − 1.07147 sin 0.53344t + 0.13620 sin 1.25569t .

The Fourier series with three terms of the original triangular waves is

f (t) = 4.86342 sin 0.2t − 0.54038 sin 0.6t + 0.19454 sin 1.0t .
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Fig. 7 Measurements of the triangular wave of Example 2
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Fig. 8 Parameter estimation errors versus iteration l of Example 2

In order to test the accuracy of the estimated signals, we compare the signal waves and
the power spectrum density between the estimated signals and the original signals.
The signal waves are shown in Fig. 9, where the blue dot line denotes the estimated
signal waves and the black dash line denotes the original signals. The power spectral
density curves of the signals are shown in Fig. 10, where the blue solid line denotes
the original signal and the green dot line denotes the estimated signals.

From the simulation results of Examples 1 and 2, we can conclude the following
remarks.
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Fig. 9 Parameter estimation errors versus iteration l of Example 2
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Fig. 10 Power spectral density curves of the estimated and original signals

– Example 1 shows a multi-sine signal with three different angular frequencies, in
which the signal parameters are estimated by the proposed SMINI method. From
the obtained parameter estimates, we can see that the parameter estimates are
obtained when the innovation length p = 30 is more accurate than those when
the innovation length p = 10. Because the multi-innovation method dynamically
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uses sliding window measurements, the larger innovation length p means more
dynamical data can be absorbed to the iterative estimation computation. Therefore,
the SMINImethod using larger innovation length can adequately use the dynamical
information of the signal to be modeled and obtain higher estimation accuracy.

– Example 2 shows a triangular wave signal to test the performance of the proposed
SMINI method for modeling periodic signals. Figure 8 shows parameter estima-
tion errors versus iteration l under different noise. An obvious phenomenon is that
the parameter estimation errors are lager when the noise variance is larger. More-
over, with the increasing of iteration l, the parameter estimation errors become
smaller in general confirming the effectiveness of the SMINI algorithm. When
the observation data contain large disturbance, the parameter estimation errors
fluctuate greatly.

– Figures 9 and 10 show the signal waves and power spectral density curves of
the estimated signals and original signals. From them, we can see that the signal
waves and power spectral density curves of the estimated signals and original
signals are close, which means the estimated signals can seize the characteristic
of the original signal. In other words, the proposed SMINI method is effective for
signal modeling.

7 Conclusions

This paper studies the modeling problem for the sine multi-frequency signals or peri-
odic signals. A parameter decomposition method is presented in terms of different
characteristics between the signal output and the signal parameters. Based on a sepa-
rated linear parameter set and a nonlinear parameter set, a full nonlinear optimization
problem is converted into a combination of linear and nonlinear optimization prob-
lems. Then, a separable multi-innovation Newton iterative signal modeling method is
derived and implemented to estimate the sine multi-frequency signals and periodic
signals, in which the measurements are sampled and used dynamically. By test-
ing the performance of the proposed SMINI algorithm to a multi-sine signal and a
periodic signal via the simulation experiments, the results are found to be effective
of modeling dynamic signals. For the reason that the proposed method is based on
dynamic sliding measurement window, it can be used for online estimation applica-
tions. The proposed separable multi-innovation Newton iterative modeling algorithm
for multi-frequency signals based on the sliding measurement window can combine
other techniques and strategies [24,31,32,51,63,84,93,94,98] to explore new identi-
fication methods of some linear and nonlinear systems [7,73,74] and can be applied
to other fields [38,40,41,71,72,77,92,95,97,100] such as information processing and
communication.
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