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Abstract
In this paper, a generalized maximum Versoria criterion algorithm (GMVC) based
on wiener spline adaptive filter, called SAF–GMVC, is proposed. The proposed algo-
rithm is used for nonlinear system identification under non-Gaussian environment. To
improve the convergence performance of the SAF–GMVC, the momentum stochastic
gradient descent (MSGD) is introduced. In order to further reduce the steady-state
error, the variable step-size algorithm is introduced, called as SAF–GMVC–VMSGD.
Simulation results demonstrate that SAF–GMVC–VMSGD achieves better filtering
effective against non-Gaussian noise.

Keywords Spline adaptive filter · Nonlinear system identification · Robust filtering ·
Generalized maximum Versoria criterion · Non-Gaussian noise

1 Introduction

Adaptive filtering (AF) algorithm is widely used in signal processing, which has been
utilized for system identification [20], prediction model [5], interference elimination
[19], inverse modeling [23]. Least mean square (LMS) is one of the most popular AF
algorithms due to its simplicity and good performance [7]. However, it cannot deal
with nonlinear structure. One solution is the spline adaptive filter (SAF), which uses
spline interpolation to interpolate data from known nodes, formed SAF–LMS [14].
Some constructs have been proposed of the SAF algorithm, examples as: Wiener SAF
[10], Hammerstein SAF [15], Sandwich 1 SAF, Sandwich 2 SAF [16].
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However, the SAF–LMS performance degradation in the presence of the non-
Gaussian environment, due to the use of themean square error (MSE) criterion [14]. To
achieve better robuster filtering performance, various nonlinear optimization criteria
have been proposed. Examples include: theLMSadaptive schemehas been extended to
the normalized version, called SAF–NLMS [6]. Peng et al. propose SAF–MCC algo-
rithm, combining SAF with maximum correntropy criterion (MCC), which shown
robust to large outliers [12]. The reference [24] proposed a novel algorithm, under
the impulsive environment. That algorithm through introduce momentum in stochas-
tic gradient descent, called SAF–ARC–MMSGD. The reference [4] proposed a sign
normalised least mean square algorithm (SNLMS) based on Wiener spline adaptive
filter, and the variable step-size scheme is introduced, SAF–VSS–SNLMS. Moreover,
the weight update of the normalized subband spline adaptive filter algorithm is con-
ducted using the principle of minimum disturbance [22]. Referring to [2,8], compared
with the maximum correntropy criterion, the Versoria criterion has faster convergence
speed and stronger robustness when applied to adaptive filtering. Huang et al. applied
the Versoria function to the adaptive filtering to improve the robustness [8]. In order to
further improve the robustness of the system, a robust weight-constraint decorrelation
normalized maximum Versoria algorithm is designed [25]. Jain et al. applied the Ver-
soria function to the research of kernel adaptive filtering [9]. Other researchers applied
themaximumVersoria adaptive filtering algorithm to the study of power energy [1,18].
The filter algorithm based on Generalized maximum Versoria criterion (GMVC) has
strong robustness, so this paper chooses GMVC algorithm as the adaptive strategy.

In this paper, we propose a novel robust wiener type spline adaptive filter algo-
rithm, which is called SAF–GMVC–VMSGD. Through variable step size-momentum
stochastic gradient descent update the loss function weight. Generalized maximum
Versoria criterion as a loss function. Compared with the SAF-MCC algorithm, it
does not require exponential operation. Under non-Gaussian noise, compare with
SAF–MCC, simulation results demonstrate better efficiency of the proposed SAF–
GMVC–VMSGD algorithm.

2 Wiener Spline Adaptive Filter

Wiener spline adaptive filter architecture consists of the cascade of a suitable num-
ber of linear filter, and a memoryless nonlinear function implemented by the spline
interpolation scheme [17].

The input signal of SAF at instant n is x(n), the input signal x(n) passes through
a FIR filter, obtaining an intermediate output s(n). Input signal defined as xn =[
xn xn−1 . . . xn−M+1

]T . M represents the order of tap weights of the FIR filter.
Intermediate output s(n) is defined as

s(n) = wT
n xn (1)

where wn = [
w0 w1 . . . wM−1

]T is the weight vector of FIR filter at instant n.
Interpolation functions are smooth parametric curves that interpolate by collecting

defined control points in a lookup table (LUT). Cubic spline curve mainly includes
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B spline and CR spline [3]. Since CR spline has the characteristic of passing all
control nodes, Therefore, CR splines are the only objects considered in this article. The
interpolation process starts with the calculation of normalized horizontal coordinates
u and interval indexes i based on the LUT.

Let Qi = [
qx,i , qy,i

]T for i = 0, 1, 2, . . . , N represent the N + 1 control points
(knots), where the x − axis value qx, j are uniformly distributed and order to qx,N >

· · · > qx,1 > qx,0. Then we can obtain i and u by the following equations

i =
⌊
s(n)

�x

⌋
+ N

2
(2)

un = s(n)

�x
−

⌊
s(n)

�x

⌋
(3)

where �x = qi+1 − qi is the uniform space between knots, �·� is the floor operator.
To calculate the filter output y(n), suppose that yn = ϕ(xn) is the spline function

to be estimated. Which is a spline interpolation of four adaptive control points of the
i th interval contained in a LUT, which can be expressed

yn = ϕi (un) = uTn Cqi(n) (4)

where the vector un is defined as un = [u3, u2, u, 1]T , the vector qi(n) is defined by
qi(n) = [qi , qi+1, qi+2, qi+3]T , at the instant n. AndC is the basismatrix of CR-spline
defined [6]

C = 1
2

⎡

⎢⎢
⎣

−1 3 −3 1
2 −5 4 −1

−1 0 1 0
0 2 0 0

⎤

⎥⎥
⎦ (5)

The derivative of yn with respect to un is calculated

∂ yn
∂u

= ∂ϕi (u)

∂u
= u̇TCqi(n) (6)

where u̇ = [3u2, 2u, 1, 0]T .
In this work, Wiener spline adaptive filter consists that the cascade of an adaptive

FIR filter and cubic CR-spline. The basic block diagram of SAF is shown in Fig. 1.
With reference to Fig. 1, the priori error en is defined

en = d(n) − yn (7)

Based on the basic framework above, the adaptive strategy of SAF is derived by
minimizing the instantaneous square error which is given [14].
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Fig. 1 Structure of Wiener spline adaptive filter

J (wn,qi(n)) = e2n (8)

Derivative of J (wn,qi(n)) as regardswn andqi(n), andusing the stochastic gradient
descent (SGD) method, the adaptive process of SAF can be expressed

wn+1 = wn + μwen u̇TCqi(n)xn/�x (9)

qi(n + 1) = qi(n) + μqenCTun (10)

whereμw andμq represent the learning rates for theweights and for the control points,
separately. The above traditional SAF method, called SAF–LMS [14].

3 SAF–GMVC–VMSGD Algorithm

In this part, in order to improve the robustness of SAF against non-Gaussian noise, we
introduce the generalized Versoria criterion (GMVC) combines with the SAF, present
the proposed algorithm SAF–GMVC. And then, to further improve the convergence
performance, the variable step-size momentum stochastic gradient descent (VMSGD)
algorithm is introduced, the algorithm called SAF–GMVC–VMSGD.

3.1 GeneralizedVersoria Function

In non-Gaussian noise environment, in order to more effectively use the system output
error information to improve the convergence speed or steady-state error of the fil-
ter. Many error nonlinear adaptive filtering algorithms with saturation characteristics
have been proposed. For example, adaptive filtering algorithm based on maximum
correntropy criterion (MCC). When non-Gaussian noise appears, the system output
error is very large. The error nonlinearity of MCC algorithm approaches the saturation
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Fig. 2 Comparison of steepness of the GPDF, the Versoria function, the Geman–McClure function

value 0. At this time, the weight coefficient vector of MCC algorithm is almost not
updated, thus suppressing the non-Gaussian noise. However, since MCC algorithms
uses Gaussian probability density function (GPDF) as the cost function, it has a large
computational complexity. An adaptive filtering algorithm with stronger robustness
in non-Gaussian noise environment is proposed, namely maximum Versoria criterion
(MVC) algorithm. Compared with MCC algorithm, this algorithm does not contain
exponential operation and has lower steady-state error.

The cost function of the maximum correntropy criterion (MCC) algorithm is the
GPDF, which can be written as[21]

f (en) = exp(− e2n
2� 2 ) (11)

where � > 0 is the kernel width. The GPDF is high calculation cost when it used in
signal processing, especially in adaptive filtering.

For adaptive filtering, designing a suitable and high-efficiency cost framework is an
important issue. In order to draw forth the proposed cost function, we first introduce
the standard Versoria criterion, which is defined as [8,13,25],

f (en) = 8a3

4a2 + e2n
= 2a

1 + ( en
2a

)2 (12)

where en represent error, a > 0 is the radius of the generating circle of Versoria. The
centroid of the generating circle is located at (0, a). A larger value of the radius a leads
to a steeper Versoria [8]. The loss function of Geman–McClure estimator defined as

f (en) = e2n
ϑ2+e2n

, ϑ denotes the positive parameter which modulates the shape of the

loss function [11].
As a comparison, Fig. 2 plots the GPDF (� = 0.5), the Geman–McClure function

(ϑ = 0.5) and the standard Versoria function (a = 0.5). From this figure, we can
observe that the Versoria function is less steep than the two other functions for the error
en . This means that the error along the direction of the gradient ascent of the Versoria is
faster to reach the optimal point than do the GPDF and the Geman–McClure function.
From the perspective of the adaptive filter, the gradient ascent algorithm based on the
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Fig. 3 Slope curves of the cost function with different parameters

Versoria function has a faster convergence rate to reach the same steady-state error
than do the GPDF and the Geman–McClure function algorithm.

Generalized Versoria criterion can be regarded as [1,2,9,18],

f (en) = 2a

1 + ∣∣ en
2a

∣∣p = 2a

1 + τ |en|p (13)

p > 0 is the shape parameter, and τ = (2a)−p. As a special case, it reduced to the
standard Versoria function when p = 2.

3.2 SAF–GMVC

According to the generalized Versoria function in linear adaptive filtering show
stronger robustness, and there is no exponential operation in the formula, thus reduc-
ing the computational complexity of the system. Used Versoria function as the cost
function:

J (en) = J (wn,qi(n)) = E

[
1

1 + τ |en|p
]

(14)

The gradient of Eq. (14) with respect to en , and denoting the result by ed(n),

ed(n) = ∇ J (wn,qi(n)) = τ p

(1 + τ |en|p)2 |en|p−1sign(en) (15)

where E [·] denotes the expectation operator. As can be seen from Eq. (14), when an
non-Gaussian interference corrupted en appears, leads to J (en) → 0, which plays
the role of suppressing non-Gaussian interference. Eliminate the updating of weight
vector based on the non-Gaussian interference.
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Figure 3 shows the derivative curves for different parameters, the slope curves drop-
ping gradually to zero, which will reduce the effect of non-Gaussian noise interference
on cost function.

SAF combine with generalized Versoria cost function. Taking the derivative of Eq.
(14) with respect to wn.

gw(n) = ∂ J (en)

∂wn
= J (wn,qi(n))

∂wn
= −ed(n)

∂ϕi (u)

∂u

∂u

∂s(n)

∂s(n)

∂wn
(16)

Through Eqs. (1), (3), (6), can get

gw(n) = − ed(n)u̇TCqi(n)xn/�x (17)

Taking the derivative of Eq. (14) with respect to qi(n),

gq(n) = ∂ J (en)

∂qi(n)
= J (wn,qi(n))

∂qi(n)
= −ed(n)

∂ϕi (u)

∂qi(n)
(18)

Through Eq. (4), we can get

gq(n) = −ed(n)CTun (19)

Using gradient descent method can be to obtain the iterative learning rules of SAF–
GMVC.

wn+1 =wn + μwed(n)u̇TCqi(n)xn/�x (20)

qi(n + 1) = qi(n) + μqed(n)CTun (21)

where the parameters μw and μq represent the learning rates for the weights and for
the control points, respectively, for simplicity, incorporate the others constant values.

3.3 Variable Step-Size Momentum SGD Algorithm

In order to improve the convergence performance, the momentum term and vari-
able step-size term are introduced. The specific operation is as follows. In order to
increase the convergence speed, the momentum stochastic gradient descent algorithm
is introduced, called SAF–GMVC–MMSGD. In this method, the exponential moving
average value of the historical gradients are defined as the momentum term, and the
actual modification of the weight vector at current instant depends on both the current
gradient and the momentum term [24], which can be expressed

m(n) = σm(n − 1) + μg(n) (22)

wn+1 = wn − m(n) (23)
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wherem(n) represents the momentum term also the actual modification of the weight
vector at instant n,wn and g(n) are the weight vector and gradient vector, respectively,
σ is the momentum parameter, and μ is the learning rate.

In order to further reduce the steady-state error, the variable step-size algorithms is
introduced, named SAF–GMVC–VMSGD. μw(n) and μq(n) represent the learning
rates for the weights and for the control points, respectively.

μw(n) = ρμw(n − 1) + (1 − ρ)min
[
ê2o(n), μw(n − 1)

]
(24)

μq(n) = ρμq(n − 1) + (1 − ρ)min
[
ê2o(n), μq(n − 1)

]
(25)

where ρ is the forgetting factor approaching one. ê2o(n) is the estimate of squared value
of the non-Gaussian noise error [4].

ê2o(n) = λê2o(n − 1) + c1(1 − λ)med(γn) (26)

where λ is forgetting factor close to but smaller than one, c1 = 1.483(1 + 5
Nw−1 ) is a

finite correction factor [4] and Nw is the data window. γn =
[
e2n, e

2
n−1, . . . , e

2
n−Nw+1

]

and med(·) denotes the median operator.
μ(n) bring Eq. (22), we can get

m(n) = σm(n − 1) + μ(n)g(n) (27)

Due to themomentum termwill cause oscillations at the neighborhood ofminimum
value, two algorithms are introduced. First, the decay technique about momentum
factor σ .

σn = c0σn−1 (28)

where c0 is the decay coefficient (0.9995 ∼ 1). When c0 = 1 , the decay technique
will be ineffective.

Second, the direction compare of the momentum term and the current gradient
by their inner product. If the inner product is non-negative, we use the momentum
method. In reverse, itmeans themomentum termand current gradient orient to opposite
directions. We only choose current gradient [24]. Expressed as

mw(n) =
{

μw(n)gw(n), 〈mw(n − 1), gw(n)〉 < 0
σnmw(n − 1) + μw(n)gw(n), 〈mw(n − 1), gw(n)〉 ≥ 0

(29)

mq(n) =
{

μq(n)gq(n),
〈
mq(n − 1), gq(n)

〉
< 0

σnmq(n − 1) + μq(n)gq(n),
〈
mq(n − 1), gq(n)

〉 ≥ 0
(30)

where gw(n) and gq(n) are defined at Eqs. (17), (19),mw(n) andmq(n) represent the
momentum terms at instant n with regard to w and qi .The updating equations can be
rewritten as
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wn+1 = wn − mw(n) (31)

qi(n + 1) = qi(n) − mq(n) (32)

3.4 The Proposed SAF–GMVC–VMSGD Algorithm Brief

The proposed algorithm SAF–GMVC–VMSGD, combine the generalized Versoria
cost function is adopted to increase the robustness against non-Gaussian noises, with
the variable step-size momentum stochastic gradient descent (VMSGD) is introduced
to further improve the convergence performance. The proposed algorithm is summa-
rized in Algorithm 1.

Algorithm 1 Summary of the SAF–GMVC–VMSGD algorithm

1: Initialize: w0, q0, μw(0), μq (0), τ, p, a, σ0, c0,mw(0),mq (0), Nw, e20(0), λ, ρ

2: for n = 1, 2, . . . do
3: s(n) = wT

n xn

4: i =
⌊
s(n)
�x

⌋
+ N

2

5: un = s(n)
�x −

⌊
s(n)
�x

⌋

6: un =
[
u3, u2, u, 1

]T

7: qi(n) = [
qi , qi+1, qi+2, qi+3

]T

8: yn = ϕi (un) = uTnCqi(n)

9: en = dn − yn
10: ed (n) = τ p 1

(1+τ |en |p)2 |en |p−1sign(en)

11: gw(n) = − ed (n)u̇TCqi(n)xn/�x
12: gq(n) = −ed (n)CTun
13: σn = c0σn−1
14: ê2o(n) = λê2o(n − 1) + c1(1 − λ)med(γn)

15: μw(n) = ρμw(n − 1) + (1 − ρ)min
[
ê2o(n), μw(n − 1)

]

16: μq (n) = ρμq (n − 1) + (1 − ρ)min
[
ê2o(n), μq (n − 1)

]

17: if 〈mw(n − 1), gw(n)〉 < 0 then mw(n) = μw(n)gw(n)

18: else mw(n) = σnmw(n − 1) + μw(n)gw(n)

19: wn+1 = wn − mw(n)

20: if
〈
mq(n − 1), gq(n)

〉
< 0 then mq(n) = μq (n)gq(n)

21: else mq(n) = σnmq(n − 1) + μq (n)gq(n)

22: qi(n + 1) = qi(n) − mq(n)

4 Convergence Analysis

In this section, we analyzed the convergence property of the proposed algorithm in
nonlinear identification system.As shown inFig. 4,w∗ is theweight vector andq∗ is the
control point, of real system.We take |en+1| < |en| as a condition for judging whether



588 Circuits, Systems, and Signal Processing (2022) 41:579–596

Fig. 4 Block diagram of the system identification using Wiener SAF

the algorithm convergence. The convergence analysis of the proposed algorithm can
be implemented in two separate phases with regard to w and qi.

4.1 Convergence Analysis of w

Taking a first-order Taylor series expansion of the error en+1 at instant n.

en+1 = en + ∂en
∂wT

n
�wn + h.o.t (33)

where h.o.t. represents the high-order term of Taylor series. The second term can be
expressed as

∂en
∂wT

n
= − ∂ yn

∂u

∂u

∂s(n)

∂s(n)

∂wT
n

= − u̇nTCqi(n)xnT /�x (34)

�wn = wn+1 − wn (35)

Then reference to Eqs. (29), (31), (35) can be expressed as

�wn =
{−μw(n)gw(n), 〈mw(n − 1), gw(n)〉 < 0

−σnmw(n − 1) − μw(n)gw(n), 〈mw(n − 1), gw(n)〉 ≥ 0
(36)

Consider the case of 〈mw(n − 1), gw(n)〉 ≥ 0, substituting Eqs. (34), (36) into Eq.
(33) and ignoring the higher order terms, then we can get

en+1 = en + [
σnmw(n − 1) + μw(n)gw(n)

]
u̇nTCqi(n)xnT /�x (37)

Bring Eq. (17) into Eq. (37),
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en+1 = en

[
1 − σngTw(n)mw(n − 1) + μw(n)gTw(n)gw(n)

ed(n)en

]
(38)

|en+1| < |en| ensure the convergence of the algorithm. The following relation holds

∣∣∣∣1 − σngTw(n)mw(n − 1) + μw(n)gTw(n)gw(n)

ed(n)en

∣∣∣∣ < 1 (39)

It is derive that

0 <
σngTw(n)mw(n − 1) + μw(n)gTw(n)gw(n)

ed(n)en
< 2 (40)

gTw(n)mw(n − 1) and gTw(n)gw(n) is non-negative, en and ed(n) are of the same
sign, the bound of the learning rate under convergence condition is

0 < μw(n) <
2ed(n)en − σngTw(n)mw(n − 1)

gTw(n)gw(n)
(41)

Consider the case of 〈mw(n − 1), gw(n)〉 < 0, substituting Eqs. (34), (36) into Eq.
(33) and ignoring the higher order terms, then we can get.

en+1 =en + μw(n)gw(n)u̇nTCqi(n)xnT /�x (42)

Bring Eq. (17) into Eq. (42), i.e.,

en+1 = en

[
1 − μw(n)gTw(n)gw(n)

ed(n)en

]
(43)

The bound of the learning rate is

0 < μw(n) <
2ed(n)en

gTw(n)gw(n)
(44)

The learning rate should satisfy

0 < μw(n) < min(
2ed(n)en

gTw(n)gw(n)
,
2ed(n)en − σngTw(n)mw(n − 1)

gTw(n)gw(n)
) (45)

4.2 Convergence Analysis of qi

The convergence analysis of qi is similar to convergence analysis of w. Taking a
first-order Taylor series expansion of the error en+1 at instant n, we can get

en+1 = en + ∂en
∂qTi (n)

�qi(n) + h.o.t (46)

where h.o.t. represents the high order terms of the first-order Tylor series expansion.
The second term can be expressed as
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∂en
∂qTi (n)

= − ∂ yn
∂qTi (n)

= −uTnC (47)

�qi(n) = qi(n + 1) − qi(n) (48)

Then, reference to Eqs. (30), (32), (48) can be expressed as

�qi(n) =
{−μq(n)gq(n),

〈
mq(n − 1), gq(n)

〉
< 0

−σnmq(n − 1) − μq(n)gq(n),
〈
mq(n − 1), gq(n)

〉 ≥ 0
(49)

Consider the case of
〈
mq(n − 1), gq(n)

〉
< 0, substituting Eqs. (47), (49) and (19)

into Eq. (46) and ignoring the higher order terms, then we can get

en+1 = en

[

1 − μq(n)gTq (n)gq(n)

ed(n)en

]

(50)

Satisfy the convergence condition |en+1| < |en|, obtained
∣∣
∣∣∣
1 − μq(n)gTq (n)gq(n)

ed(n)en

∣∣
∣∣∣
< 1 (51)

The other case is similar to the above w convergence analysis process, the conver-
gence condition of the learning rate qi,

0 < μq(n) < min

(
2ed(n)en
gTq (n)gq(n)

,
2ed(n)en − σngTq (n)mq(n − 1)

gTq (n)gq(n)

)

(52)

5 Numerical Simulations

Several numerical simulations are performed, observing the convergence speed and
the steady-state error, to verify the effectiveness of the proposed algorithm. The input
signal xn is generated by the following relationship.

xn = r xn−1 +
√
1 − r2ξ(n) (53)

where ξ(n) is a zero mean white Gaussian noise with unitary variance, and r ∈ [0, 1)
is a correlation factor that determines the correlation between adjacent input signal xn
values.

The algorithm performance is measured by use of mean square error (MSE),

MSE = 10 lg [en]
2 (54)

In this paper, the weight vectors of the FIR filter in all SAF type related algorithms
are typically initialized to w0 = [1, 0, . . . , 0]T . In addition, an independent white
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Table 1 Parameters of three kinds of algorithms in simulation

Algorithm Parameters

SAF–GMVC M = 5, r = 0.1, c0 = 0.99

SAF–GMVC–MMSGD M = 5, r = 0.1, c0 = 0.99, σ0 = 0.9

SAF–GMVC–VMSGD M = 5, r = 0.1, c0 = 0.99, σ0 = 0.9, ρ = λ = 0.99

Fig. 5 The profiles curve of
nonlinearity using
SAF–GMVC–VMSGD (SNR =
30 dB) (Color figure online)

Gaussian noise v(n) with different signal to noise ratio (SNR), that is added to the
output of the real unknown system. In the simulation, according to the theoretical
boundary of the step size and the simulation experiment value, the step size range of the
experiment simulation is obtained 0 < μw < 0.056, 0 < μq < 1.65. The initialized
learning rate μw = μq = 0.01. The control points of CR-spline are initialized as
a straight line with unitary slope, which is the same as [14] [6] [24]. The following
experiment results are obtained by 100 independent Monte Carlo trials.

5.1 WithWhite Gaussian Noise

Assuming that the wiener system to be identified consists of a FIR filter with w∗ =
[0.6,−0.4, 0.25. − 0.15, 0.1], with a uniform interval �x = 0.2, a nonlinear spline
function interpolated by a 23 knots vector [6]. Set q∗ = [−2.2,−2.0, . . . ,−0.8,
−0.91, 0.42,−0.01,−0.1, 0.1,−0.15, . . . , 2.0, 2.2], Nw = 11, a = 1.6, p = 1.9.
The parameters of all kinds of algorithms are listed in Table 1.

The profiles curve of nonlinearity using the proposed algorithm are shown in
Fig. 5. It can be seen that the proposed algorithm (the red dashed line) can accu-
rately converge to profiles of nonlinearity (the solid blue line) of the system to be
identified. Figure 6 shows the MSE curves of SAF–GMVC–VMSGD under differ-
ent correlation factors r = 0.1, r = 0.3, r = 0.5, r = 0.8, r = 0.9, r = 0.98.
When the input signal under different correlation factors r = 0.1, r = 0.3, r =
0.5, r = 0.8, r = 0.9, show the better performance of the convergence speed and the
steady-state error. When r = 0.98, the steady-state error not better than other fac-
tors. Figure 7 the proposed algorithms are compared with each other (SAF–GMVC,
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Fig. 6 MSE of
SAF–GMVC–VMSGD under
different correlation factors r
(SNR = 30 dB)

Fig. 7 MSE curves of proposed
algorithms compared with each
other (SNR = 30 dB)

Fig. 8 Compare the three
proposed algorithms with the
different SNR (Color figure
online)

SAF–GMVC–MMSGD, SAF–GMVC–VMSGD). SAF–GMVC–MMSGD compare
with SAF–GMVC improved the convergence speed, which much the same steady-
state error. SAF–GMVC–VMSGD compare with SAF–GMVC–MMSGD reduced
the steady-state error, which have the same convergence speed. The experiment is
performed to verify the performance of the proposed algorithms with the different
signal-to-noise ratio (SNR) of 30 dB, 20 dB, 15 dB, 10 dB. In Fig. 8 the proposed
algorithms are compared with each other under different SNR, a = 0.32, p = 2.5, the
blue curve represents the SAF–GMVC, the red curve represents the SAF–GMVC–
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Fig. 9 The simulation of the step size boundary

MMSGD, the black curve represents the SAF–GMVC–VMSGD.With different SNR,
the proposed SAF–GMVC–VMSGD algorithms shown the convergence performance
better under different SNR, especially SNR=30 dB.When SNR=30 dB,μw = 0.056,
μq = 1.65, the simulation results of the step size theoretical boundary are shown in
Fig. 9. (a) Represents the tracking of filter weight value. Slight deviation appears in
the tracking of the first and second weight values. The filtering of the other weights
is consistent with the desired. (b) Represents the tracking of control points. Deviation
in the front and back of the control points. The filtering of the middle section control
points is consistent with the desired. (c) The system identifies the MSE curve of the
test. The convergence value of MSE curve is far from the level line of noise. The tail
of the MSE curve shows an upward trend.

5.2 With Non-Gaussian Noise

The experiment is performed to further verify the performance of the proposed
algorithm under non-Gaussian noise environment. The experiment include two non-
Gaussian noises types, impulse noise andCauchy noise. The impulse noise is generated
by an alpha-stable distribution, with α ∈ (0, 2] is a characteristic exponent represent-
ing the stability index which determines the strength of impulse, β ∈ [−1, 1] is a
symmetry parameter, ι > 0 is a dispersion parameter, and � is a location parameter
[12]. which can be expressed as

f (t) = exp
{
j�t − ι|t |α[

1 + jβsign(t)S(t, α)
]}

(55)

where

S(t, α) =
{
tan

(
απ
2

)
, α �= 1( 2

π

)
log |t | , α = 1

(56)

The parameters of alpha-stable distribution are set as follows, α = 1.6, β = 0,
ι = 0.05, � = 0.

The experimental parameters are the same as those in Table 1, a = 0.32, p = 2.5,
Nw = 11, SNR = 30 dB. Figure 10 shows the MSE curves of different algorithms
under impulsive noise environment. Specially, the proposed algorithm SAF–GMVC–
VMSGD performs better than other algorithms due to the fast convergence speed
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Fig. 10 MSE curves of six
different algorithms with
impulsive noises

Fig. 11 MSE curves of
SAF–GMVC–VMSGD with
different p, a under impulsive
noise

and small steady-state error. Figure 11 MSE curves of SAF–GMVC–VMSGD with
different factors p, a under impulsive noise. In the same shape factor p = 2.5, which
is shown that the larger parameter a, the steady-state error worse. However, p = 4,
which is shown that the steady-state error not better with the factor a smaller. To
sum up, when the parameter p is selected suitable, the steady-state error will vary
with factor a. No matter how the steady-state error changes, the convergence speed
is faster. In the above experiment simulations, using different parameters also getting
the better performance, show the robustness of the nonlinearity identified system.

TheCauchy noise also described by an alpha-stable distribution,withα = 1,β = 0,
r = 0.9, other parameters are same to the impulsive noise. This experiment result is
obtained by 150 independent Monte Carlo trials. Figure 12 shows the MSE curves of
different algorithms under Cauchy noise environments. The proposed SAF–GMVC–
VMSGD algorithm shows better convergence performance. The experimental results
show that the proposed SAF–GMVC–VMSGD algorithm performs well in the above
two non-Gaussian noise type.
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Fig. 12 MSE curves of proposed
algorithms under Cauchy noise
environments

6 Conclusion

This paper proposed a novel Wiener SAF type robust adaptive filtering algorithm,
named SAF–GMVC–VMSGD, for nonlinear system identification. The algorithm
substitutes a generalized Versoria as cost function, improving the robustness against
non-Gaussian noises. Meanwhile, it adopts the variable step-size momentum SGD to
further improve the convergence performance. It can be concluded from the numer-
ical simulations that: (1) Compared with the other Wiener SAF type algorithm, the
proposed algorithm has the fastest convergence speed and the smallest steady-state
error both in the with and without of non-Gaussian noise. (2) The suitable factors lead
to stronger robustness in nonlinear identification system. (3) The proposed algorithm
not only suitable for Wiener SAF type, but also suitable for other kinds of SAF type.
The future work may be devoted to giving the steady-state analysis of the proposed
algorithm.
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21. W. Wang, H. Zhao, X. Zeng, K. Doğançay, Steady-state performance analysis of nonlinear spline
adaptive filter under maximum correntropy criterion. IEEE Trans. Circuits Syst. II Express Briefs
67(6), 1154–1158 (2019). https://doi.org/10.1109/TCSII.2019.2929536

22. P. Wen, J. Zhang, S. Zhang, B. Qu, Normalized subband spline adaptive filter: algorithm derivation
and analysis. Circuits Syst. Signal Process. 40(5), 2400–2418 (2021)

23. B. Widrow, Adaptive inverse control. In Adaptive Systems in Control and Signal Processing (Elsevier,
1987), pp. 1–5

24. L.Yang, J. Liu,R.Yan,X.Chen, Spline adaptivefilterwith arctangent-momentumstrategy for nonlinear
system identification. Signal Process. 164, 99–109 (2019)

25. Z. Zhang, S. Zhang, J. Zhang, Robust weight-constraint decorrelation normalized maximum Versoria
algorithm. In 2019 Ninth International Workshop on Signal Design and its Applications in Communi-
cations (IWSDA) (IEEE, 2019), pp. 1–4. https://doi.org/10.1109/IWSDA46143.2019.8966128

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/ChiCC.2014.6895470
https://doi.org/10.1109/ChiCC.2014.6895470
https://doi.org/10.1109/ANTS.2018.8710152
https://doi.org/10.1109/ACCESS.2020.2969219
https://doi.org/10.1109/TCSII.2020.3032089
https://doi.org/10.1016/B978-0-12-812976-0.00004-X
https://doi.org/10.1016/B978-0-12-812976-0.00004-X
https://doi.org/10.1109/PIICON49524.2020.9112943
https://doi.org/10.1109/ACSSC.1992.269150
https://doi.org/10.1109/ACSSC.1992.269150
https://doi.org/10.1109/EMRTW.2005.195681
https://doi.org/10.1109/TCSII.2019.2929536
https://doi.org/10.1109/IWSDA46143.2019.8966128

	Nonlinear Spline Adaptive Filtering Against Non-Gaussian Noise
	Abstract
	1 Introduction
	2 Wiener Spline Adaptive Filter
	3 SAF–GMVC–VMSGD Algorithm
	3.1 Generalized Versoria Function
	3.2 SAF–GMVC
	3.3 Variable Step-Size Momentum SGD Algorithm
	3.4 The Proposed SAF–GMVC–VMSGD Algorithm Brief

	4 Convergence Analysis
	4.1 Convergence Analysis of w
	4.2 Convergence Analysis of qi

	5 Numerical Simulations
	5.1 With White Gaussian Noise
	5.2 With Non-Gaussian Noise

	6 Conclusion
	Acknowledgements
	References




