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Abstract
In this paper, we propose a computationally faster yet conceptually simple method-
ology to estimate the parameters of a two-dimensional (2-D) sinusoidal model in
the presence of additive white noise. We develop the large sample properties like
consistency and asymptotic normality of these low-complexity estimators, and they
are observed to be theoretically as efficient as the ordinary least squares estimators.
To assess the numerical performance, we conduct extensive simulation studies. The
results indicate that the proposed estimators can successfully replace the least squares
estimators for sample size as small as 20 × 20 and for signal-to-noise ratio (SNR) as
small as 12 dB.

Keywords Two-dimensional · Sinusoidal model · Additive white noise ·
Consistency · Asymptotic normality · Least squares · Simulations

1 Introduction

The problem of estimation of two-dimensional (2-D) sinusoidal signals is of impor-
tance in a wide range of applications such as analysis of geophysical data [5], image
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restoration [2], array processing [9], radio astronomy [23], synthetic aperture radar
imaging [17], nuclear magnetic resonance spectroscopy [16], medical imaging [18],
wireless communications [24], health assessment of living trees [3], source localisation
[1], to name a few.

Due to its extensive applicability, numerous techniques have been proposed for the
parameter estimation of this signal model. Some of the prominent works are by Bansal
et al. [4], Chen et al. [6], Clark and Scharf [7], Cohen and Francos [8], Francos et al.
[10], Hua [12], Kundu and Gupta [13], Kundu and Nandi [14], Prasad et al. [21], Rao
et al. [22], Zhang and Mandrekar [26] and the list does not end here. A more thorough
overview of references in this area can be found in Peng et al. [19].

This paper addresses the problem of parameter estimation of a 2-D model, mathe-
matically expressed as follows:

y(m, n) =
p∑

k=1

{A0
k cos(μ

0
km + λ0kn) + B0

k sin(μ
0
km + λ0kn)}

+ X(m, n); m = 1, . . . , M; n = 1, . . . , N .

(1)

Here, y(m, n) is the observed signal characterised by amplitude parameters, A0
ks and

B0
k s, and frequency parameters μ0

ks and λ0ks. The random error component X(m, n) is
a 2-D sequence of independently and identically distributed random variables (i.i.d.)
with mean 0 and variance σ 2. The fundamental problem here is to estimate the non-
linear parameters and the frequencies μ0

ks and λ0ks from a finite set of observations of
length M × N corrupted with additive noise.

The objective is to introduce an algorithm that is computationally feasible to imple-
ment in practice as well as one that provides statistically optimal estimators. In this
paper, we show that the accuracy of the proposed estimators is as good as that of the
usual least squares estimators (LSEs). This effectiveness of the algorithm is demon-
strated through extensive numerical simulations along with an in-depth theoretical
analysis.

It is important to note that the usual least squares estimator is one of the most
conventional methods of parameter estimation of a postulated model embedded with
noise. For a 2-D sinusoidal model with multiple components as described in Eq. (1)
of the paper, the LSEs are obtained by minimising the error sum of squares:

N∑

n=1

M∑

m=1

(
y(m, n) −

p∑

k=1

{A0
k cos(μ

0
km + λ0kn) + B0

k sin(μ
0
km + λ0kn)}

)2

,

with respect to the unknown parameters. It has been proved that the LSEs of the
parameters of this model are strongly consistent and asymptotically normally dis-
tributed. Moreover, if the errors are assumed to be normally distributed, the LSEs are
asymptotically optimal. For reference, one may look at the paper by Kundu and Gupta
[13].

For the purpose of numerical comparison, in Sect. 4, along with the proposed
efficient estimators and LSEs, we also compute approximate least squares estima-
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tors (ALSEs). The ALSEs are a popular alternative to the LSEs and are obtained by
maximising the following 2-D periodogram function defined as follows:

1

M N

∣∣∣∣
N∑

n=1

M∑

m=1

y(m, n)e−i(μm+λn)

∣∣∣∣
2

with respect to the nonlinear parameters μ and λ. Once the nonlinear parameters are
obtained, one can use simple linear regression to obtain the linear parameter estimates.
Kundu and Nandi [14] show that the performance of the ALSEs is almost identical to
that of the LSEs. Moreover, they provide theoretical proofs of their strong consistency
and asymptotic equivalence to the LSEs.

The rest of the paper is organised as follows. In the next section, we first explain
the proposed methodology for a one-component 2-D sinusoidal model. A sequential
algorithm for a multiple sinusoidal model is provided subsequently. In Sect. 3, we
provide the model assumptions and derive the large sample properties of the proposed
estimators. The numerical results are presented in Sect. 4. The paper is concluded
in Sect. 5, and thereafter the proofs of the asymptotic results are provided in the
appendices.

2 ProposedMethodology

Here, we describe the proposed algorithm for the estimation of frequencies of the
following 2-D sinusoidal model:

y(m, n) = A0 cos(μ0m + λ0n) + B0 sin(μ0m + λ0n) + X(m, n). (2)

Let us first fix n = 1, then the model Eq. (2) reduces to the following:

y(m, 1) = A0 cos(μ0m + λ0) + B0 sin(μ0m + λ0) + X(m, 1).

Using elementary trigonometric formulae, the above equation can be rewritten as:

y(m, 1) = A0(1) cos(μ0m) + B0(1) sin(μ0m) + X(m, 1),

where A0(1) and B0(1) are functions of A0, B0 and λ0. It is worth noting that the
reducedmodel equation is that of a one-dimensional sinusoidal model with amplitudes
A0(1) and B0(1) and frequency parameter μ0. In general, we fix n = n0, n0 ∈
{1, . . . , N } and we have the corresponding 1-D model equation:

y(m, n0) = A0(n0) cos(μ
0m) + B0(n0) sin(μ

0m) + X(m, n0).

Thus, for each n0, we have a 1-D sinusoidal model with different amplitudes but
same frequency parameter. We can now estimate this frequency parameter by fitting
N 1-D models to the corresponding columns of the data matrix. In the absence of a
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distributional assumption, the most natural choice of estimation method seems to be
the least squares method. Thus, the estimator of μ0 can be obtained by minimising
the following function:

QM (A(n0), B(n0), μ) =
M∑

m=1

(
y(m, n0) − A(n0) cos(μm) − B(n0) sin(μm)

)2

for each n0 ∈ {1, . . . , N }. Note that this is a 1-D minimization problem as the linear
parameters A(n0) and B(n0) can first be separated out using linear regression. This
brings down the problem to minimising the reduced functions:

RM (μ, n0) = QM ( Â(n0), B̂(n0), μ)

=
M∑

m=1

(
y(m, n0) − Â(n0) cos(μm) − B̂(n0) sin(μm)

)2

with respect to μ. However, this process involves solving N such problems and since
the underlying errors are assumed to independently and identically distributed; instead
ofminimising N different objective functions,we propose tominimise the sumof these
objective functions, expressed as follows:

R(1)
M N (μ) =

N∑

n0=1

{ M∑

m=1

(
y(m, n0) − Â(n0) cos(μm) − B̂(n0) sin(μm)

)2}
,

with respect to μ and get an estimate μ̂ of μ0. A similar estimate of λ0, say λ̂, can be
obtained by minimising the following function with respect to λ:

R(2)
M N (λ) =

M∑

m0=1

{ N∑

n=1

(
y(m0, n) − Â(m0) cos(λn) − B̂(m0) sin(λn)

)2}
.

It is important to note that the optimisation problem is nonlinear and to solve such a
problem an iterative algorithm has to be employed. We use Nelder–Mead algorithm
to optimise this function for our simulations. The function has the problem of several
local minima. Therefore, for the algorithm to converge to global minimum rather
than a local minimum, we need precise initial values. To find these initial guesses in
practice when the true values are unknown, we minimise this function at the Fourier
frequencies, that is at the points π j

M ; j = 1, . . . , M . or πk
N ; k = 1, . . . , N .

The proposed method is not only computationally efficient than the usual least
squares method but is also conceptually simple. This method can be easily extended
to a more general model with multiple sinusoids as described in (1). The idea is based
on modifying the sequential method proposed by Prasad et al. [21] and uses the fact
that any two sinusoidal components present in the model are orthogonal to each other.
We describe the sequential algorithm below.
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Algorithm 1: Sequential algorithm for parameter estimation of multiple compo-
nent 2-D sinusoidal model (1)

1: Obtain μ̂1 by minimising: R(1)
1,M N (μ) =

N∑
n0=1

Y�
n0 (I − PZM (μ))Yn0 . Here, Y�

n0 =

(y(1, n0), . . . , y(M, n0))
� and PZM (μ) = ZM (μ)[ZM (μ)�ZM (μ)]−1ZM (μ)� is the pro-

jection matrix on the column space of the matrix ZM (μ).

2: Obtain λ̂1 by minimising: R(2)
1,M N (λ) =

M∑
m0=1

Y�
m0

(I − PZN (λ))Ym0 . Here, Y�
m0

=

(y(m0, 1), . . . , y(m0, N ))� and PZN (λ) is the projection matrix on the column space of the
matrix ZN (λ).

3: Estimate the linear parameters using simple linear regression:

(
Â1
B̂1

)
= [W(μ̂1, λ̂1)W(μ̂1, λ̂1)]−1W�(μ̂1, λ̂1)Y

Here,

W(μ̂1, λ̂1) =
(
cos(μ̂1 + λ̂1) . . . cos(Mμ̂1 + λ̂1) . . . cos(μ̂1 + N λ̂1) . . . cos(μ̂1 + N λ̂1) . . . cos(Mμ̂1 + N λ̂1)

sin(μ̂1 + λ̂1) . . . sin(Mμ̂1 + λ̂1) . . . sin(μ̂1 + N λ̂1) . . . sin(μ̂1 + N λ̂1) . . . sin(Mμ̂1 + N λ̂1)

)�

and Y = y(1, 1), . . . , y(M, 1), . . . , y(1, N ), . . . , y(M, N )) is the observed data vector.
4: Eliminate the effect of the estimated first component:

Y1 = Y − W(μ̂1, λ̂1)

(
Â1
B̂1

)
.

5: Obtain μ̂2 by minimising: R(1)
2,M N (μ) =

N∑
n0=1

Y�
1n0

(I − PZM (μ))Y1n0 . Here, Y1n0

= (y1(1, n0), . . . , y1(M, n0))
� is the n0th column of matrix Y1.

6: Obtain λ̂2 by minimising: R(2)
2,M N (λ) =

M∑
m0=1

Y�
1m0

(I − PZN (λ))Y1m0 . Here, Y1m0

= (y1(m0, 1), . . . , y1(m0, N ))� is the m0th row of matrix Y1.
7: Estimate the linear parameters using simple linear regression:

(
Â2
B̂2

)
= [W�(μ̂2, λ̂2)W(μ̂2, λ̂2)]−1W�(μ̂2, λ̂2)Y.

The matrix W(μ̂2, λ̂2) can be obtained by replacing μ̂2 by μ̂1 and λ̂2 by λ̂1 in W(μ̂1, λ̂1) as
defined above.

8: Repeat and continue the process up to p steps till all the component parameters are estimated.

3 Asymptotic Results

In this section, we investigate large-sample properties of the proposed estimators under
the following assumption on the structure of the error component, X(m, n):

Assumption 1 X(m,n) is a double array sequence of i.i.d. random variables with mean
0 and finite variance σ 2 > 0.
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Also, the true parameter vector (A0, B0, μ0, λ0) satisfies the following assumption:

Assumption 2 The true parameter vector (A0, B0, μ0, λ0) is an interior point of the
parameter space � = [−K , K ] × [−K , K ] × [0, π ] × [0, π ] and A02 + B02 > 0.
Here K > 0 is any real number.

The results are stated in the following theorems.

Theorem 1 The proposed frequencies’ estimators are strongly consistent if the
assumptions 1 and 2 hold true, that is,

(a) μ̂
a.s.−−→ μ0 as M → ∞,

(b) λ̂
a.s.−−→ λ0 as N → ∞.

Proof See Appendix A. ��
Theorem 2 The proposed frequencies’ estimators are asymptotically normally dis-

tributed with mean 0 and variance 6σ 2

A02+B02
if the assumptions 1 and 2 hold true, that

is,

(a) M3/2N 1/2(μ̂ − μ0)
d−→ N (0, 6σ 2

A02+B02
),

(b) M1/2N 3/2(λ̂ − λ0)
d−→ N (0, 6σ 2

A02+B02
),

as min{M, N } → ∞.

Proof See Appendix B. ��
It is evident that the proposedmethodyields frequency estimatorswith cubic conver-

gence rates which is extremely fast. Also, the accuracy of these estimators is inversely
proportional to the sum of squares of the amplitudes, that is, A02 + B02, which is not
very surprising. As a matter of fact, the asymptotic distribution of the proposed esti-
mators coincides with that of the usual LSEs. Moreover, if the errors are assumed to be
normally distributed, the derived asymptotic variances are same as the Cramer–Rao
lower bounds (CRLBs).

We now prove the strong consistency and derive the asymptotic distribution of the
proposed sequential estimators of the frequencies of multiple component sinusoidal
model. These asymptotic properties are derived under Assumption 1 on the error
component and the following assumptions on the parameters of the model:

Assumption 3 The true parameter vector for each component, that is, (A0
k , B0

k , μ0
k, λ

0
k)

is an interior point of the parameter space � ∀ k = 1, . . . , p. Also the frequencies are
such that μ0

i 	= μ0
j and λ0i 	= λ0j ∀ i 	= j, i, j = 1, . . . , p.

Assumption 4 The linear parameters A0
ks and B0

k s satisfy the following relationship:

K 2 > A0
1
2 + B0

1
2

> A0
2
2 + B0

2
2

> . . . > A0
p
2 + B0

p
2
.

The results are stated in the subsequent theorems.
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Theorem 3 Under the assumptions 1, 3 and 4, the frequency estimates μ̂k and λ̂k are
strongly consistent estimators of μ0

k and λ0k , respectively, that is ∀ k = 1, . . . , p,

(a) μ̂k
a.s.−−→ μ0

k as M → ∞,

(b) λ̂k
a.s.−−→ λ0k as N → ∞.

Proof See Appendix C. ��
Theorem 4 Under the assumptions 1, 3 and 4, the following results hold true:
∀ k = 1, . . . , p

(a) Âk
a.s.−−→ A0

k as min{M, N } → ∞,

(b) B̂k
a.s.−−→ B0

k as min{M, N } → ∞,

∀ k > p

(a) Âk
a.s.−−→ 0 as min{M, N } → ∞,

(b) B̂k
a.s.−−→ 0 as min{M, N } → ∞.

Proof See Appendix C. ��
Theorem 5 The proposed sequential estimators of the frequencies are asymptotically
normally distributed if the assumptions 1, 3 and 4 hold true, that is,

(a) M3/2N 1/2(μ̂k − μ0
k)

d−→ N (0, 6σ 2

A0
k
2+B0

k
2 ),

(b) M1/2N 3/2(λ̂k − λ0k)
d−→ N (0, 6σ 2

A0
k
2+B0

k
2 ),

as min{M, N } → ∞.

Proof See Appendix D. ��
It is evident that like the estimators for the one component model, the sequential

estimators are strongly consistent and asymptotically normally distributed aswell. The
algorithm produces estimators ofμ0

k and λ0k with convergence rates Op(M−3/2N−1/2)

and Op(N−3/2M−1/2), respectively, same as those of the usual LSEs. Another inter-
esting property of the proposed algorithm is that depicted in Theorem 4, when the
algorithm is continued beyond p number of components, the corresponding ampli-
tudes converge to zero. This feature can help one to estimate the number of components
in practice. It is important to note that these asymptotic results can be further exploited
to construct confidence intervals as well as to devise testing of hypotheses and prob-
lems of practical significance.

4 Numerical Experiments

In this section, we present the simulation results. These simulation experiments were
designed to assess the performance of the proposed methodology in comparison with
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Fig. 1 MSEs of the efficient estimators along with those of LSEs and ALSEs and the corresponding
theoretical asymptotic variances versus the data size (M = N )

the conventional least squares estimation method. The data matrix is generated using
the following one-component 2-D sinusoidal model:

y(m, n) =2 cos(1.5m + 0.75n) + 3 sin(1.5m + 0.75n)

+ X(m, n); m = 1, . . . , M, n = 1, . . . , N .

The error random variables are generated from Gaussian distribution with mean 0 and
variance σ 2. For the first set of experiments, we fix the error variance at σ 2 = 0.01
and vary the sample size from 20 to 200. We compute the estimates of λ0 and μ0

for 1000 independent replications using different error sequences for all cases. Figure
1 illustrates the MSEs of the resulting parameter estimates along with the derived
asymptotic variances.1 In the next set of experiments, we fix the sample size. For a
100 × 100 data matrix, we compute the MSEs of the nonlinear parameter estimates
for varying signal-to-noise ratio. The results are shown in Fig. 2. In these experiments,
the initial values are taken as the true values. From the figure, it is apparent that the
MSEs of the proposed estimates are well-matched with those of LSEs and lower than
that of ALSEs. These almost coincide with the asymptotic variances for all sample
sizes and for SNR above 10 dB. These results validate the theoretical claim that the
accuracy of the efficient estimators is as good as that of LSEs. The results in all the
figures are reported in the log scale.

Next, we evaluate the performance of the proposed sequential estimators for a
multiple component model. We generate the data from a 2-D sinusoidal model with
two components using the following model equation:

1 Note that these asymptotic variances are actually CRLBs as the distribution under consideration is Gaus-
sian.
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Fig. 2 MSEs of the efficient estimators along with those of LSEs and ALSEs and the corresponding
theoretical asymptotic variances versus SNR

Fig. 3 MSEs of the sequential efficient estimators along with those of sequential LSEs and sequential
ALSEs and the corresponding theoretical asymptotic variances versus the data size (M = N )

y(m, n) = 5 cos(1.5m + 0.75n) + 4 sin(1.5m + 0.75n) + 2 cos(1.0m

+ 0.25n) + 3 sin(1.0m + 0.25n)

+ X(m, n); m = 1, . . . , M, n = 1, . . . , N .

The same error structure and simulation set-up as described above for the one compo-
nent model were used. Moreover, the accuracy of the proposed estimators is compared
with that of the sequential LSEs and sequential ALSEs. Figure 3 shows the MSEs of
the proposed estimators, sequential LSEs and sequential ALSEs of the first compo-
nent parameters with respect to varying sample sizes. We also plot the CRLBs to
benchmark the performance of these estimators. The MSEs of the second component
parameter estimates are shown in Fig. 4. In Figs. 5 and 6 these results are investigated
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Fig. 4 MSEs of the sequential efficient estimators along with those of sequential LSEs and sequential
ALSEs and the corresponding theoretical asymptotic variances versus the data size (M = N )

Fig. 5 MSEs of the sequential efficient estimators along with those of sequential LSEs and sequential
ALSEs and the corresponding theoretical asymptotic variances versus SNR

for varying SNRs. It can be seen that the performance of the proposed sequential esti-
mators is at par with that of sequential LSEs and sequential ALSEs. Moreover, for the
second component parameters, the MSEs of all the three estimators coincide with the
corresponding CRLBs for increasing M(N ). For varying SNR, the results of all the
estimators concur with CRLBs for both the component parameters.

In order to exemplify the advantage of the proposed estimators, we compare the
computational complexity of bothmethods, the proposed and the least squaresmethod.
The complexity is measured in terms of number of function evaluations needed to find
the initial values of the parameter estimates of a one component model.2 Figure 7
demonstrates the complexity of both the estimators as the sample size, M = N varies.
It is evident that there is a significant difference between the computational involve-
ment for the two types of estimates under consideration. This implies that calculating

2 Objective function.
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Fig. 6 MSEs of the sequential efficient estimators along with those of sequential LSEs and sequential
ALSEs and the corresponding theoretical asymptotic variances versus SNR

Fig. 7 Comparison of computational complexity involved in the proposed efficient method and the least
squares estimation method

the proposed estimators ismuch faster than calculating the LSEs. Figure 8 corroborates
the faster implementation of the proposed algorithmas compared to the traditional least
squares estimation method. Note that the number of function evaluations needed to
compute ALSEs is same as that required for LSEs and hence the ALSEs are omitted
from this comparison.

5 Conclusion

In this paper, we have proposed a novel method of estimation of the frequencies of a
2-D sinusoidal model. Although the LSEs have optimal statistical properties, due to
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0

Fig. 8 Comparison of time taken for computation of proposed efficient estimators and the least squares
estimators

considerable computation burden finding them is practically infeasible. The proposed
method reduces this burden of computability to a great extent and provides efficient
estimators with accuracy on an equal footing with that of the LSEs. Statistical analysis
of the proposed estimators shows that they are strongly consistent and asymptotically
equivalent to the corresponding LSEs. Simulation experiments demonstrate the ability
of the approach to estimate the frequencies accurately. These results are presented in
comparisonwith the LSEs as well as in comparison to the CRLBs and the performance
is at par with both.
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A Proof of Consistency of Proposed Estimators of Model (2)

We need the following lemma to prove Theorem 1 (a):

Lemma 1 Consider the set Sc = {μ : |μ − μ0| ≥ c}. If for any c > 0,

lim inf inf
μ∈Sc

1

M N

[
R(1)

M N (μ) − R(1)
M N (μ0)

]
> 0 a.s.,

then μ̂ is a strongly consistent estimator of μ0.

Proof This proof follows along the same lines as that of Lemma 1 of Wu [25].
��
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Proof of Theorem 1 (a). Consider

lim inf inf
μ∈Sc

1

M N

[
R(1)

M N (μ) − R(1)
M N (μ0)

]

= lim inf inf
μ∈Sc

1

M N

[ N∑

n0=1

RM (μ, n0) −
N∑

n0=1

RM (μ0, n0)

]

= lim inf inf
μ∈Sc

1

M N
[ N∑

n0=1

QM ( Â(1)(n0), B̂(1)(n0), μ) −
N∑

n0=1

QM ( Â(1)(n0), B̂(1)(n0), μ
0)

]

≥ lim inf inf
μ∈Sc

1

M N

[ N∑

n0=1

QM ( Â(1)(n0), B̂(1)(n0), μ)

−
N∑

n0=1

QM (A0(n0), B0(n0), μ
0)

]

≥ lim inf inf
(A(n0),B(n0),μ)∈M

n0
c

1

M N
[ N∑

n0=1

QM (A(n0), B(n0), μ) −
N∑

n0=1

QM (A0(n0), B0(n0), μ
0)

]

The set Mn0
c = {(A(n0), B(n0), μ) : |A(n0) − A0(n0)| ≥ c or |B(n0) − B0(n0)| ≥

c or |μ − μ0| ≥ c}. Clearly, Sc ⊂ Mn0
c ∀ n0 = 1, . . . , N .

Also,

lim inf inf
(A(n0),B(n0),μ)∈M

n0
c

1

M N
[ N∑

n0=1

QM (A(n0), B(n0), μ) −
N∑

n0=1

QM (A0(n0), B0(n0), μ
0)

]

≥ 1

N

N∑

n0=1

lim inf inf
(A(n0),B(n0),μ)∈M

n0
c

1

M
[

QM (A(n0), B(n0), μ) − QM (A0(n0), B0(n0), μ
0)

]
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Using the following result, which follows from the proof of Theorem 4.1 of Kundu
and Nandi [15]:

∀ n0 = 1, . . . , N ,

lim inf inf
(A(n0),B(n0),μ)∈M

n0
c

1

M
×

[
QM (A(n0), B(n0), μ) − QM (A0(n0), B0(n0), μ

0)

]
> 0

we get:

lim inf inf
μ∈Sc

1

M N

[
R(1)

M N (μ) − R(1)
M N (μ0)

]
> 0.

Therefore, by Lemma 1, μ̂
a.s.−−→ μ0 as M → ∞. Following similar pattern, one can

show that λ̂
a.s.−−→ λ0 as N → ∞, which proves part (b) of the theorem. ��

B Proof of Asymptotic Normality of Proposed Estimators of Model (2)

Proof of Theorem 2(a). Let us denote R(1)
M N

′
(μ) as the first derivative and R(1)

M N

′′
(μ)

as the second derivative of the function R(1)
M N (μ).

Using Taylor series, we expand R(1)
M N

′
(μ̂) around the point μ0 and get:

R(1)
M N

′
(μ̂) − R(1)

M N

′
(μ0) = (μ̂ − μ0)R(1)

M N

′′
(μ̄),

where μ̄ is a point between μ̂ and μ0. Since R(1)
M N

′
(μ̂) = 0, the above equation can

be rewritten as:

μ̂ − μ0 = −R(1)
M N

′
(μ0)[R(1)

M N

′′
(μ̄)]−1,

Multiplying both sides of the above equation by M3/2N 1/2, we get:

M3/2N 1/2(μ̂ − μ0) = −M−3/2N−1/2R(1)
M N

′
(μ0)[M−3N−1R(1)

M N

′′
(μ̄)]−1, (3)

We compute the left-hand side of the above equation below. Consider

1

M3/2N 1/2 R(1)
M N

′
(μ0) = 1

M3/2N 1/2

N∑

n0=1

∂ RM (μ, n0)

∂μ

= 1

N 1/2

N∑

n0=1

{
2

M3/2

M∑

m=1

m

(
y(m, n0)

− Â(n0) cos(μ
0m) − B̂(n0) sin(μ

0m)

)
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×
(

Â(n0) sin(μ0m) − B̂(n0) cos(μ
0m)

)}

= 1

N 1/2

N∑

n0=1

{
2

M3/2

M∑

m=1

m X(m, n0)

(
Â(n0) sin(μ0m) − B̂(n0) cos(μ

0m)

)}
+ o(1).

The last equality is obtained using the following results:

Â(n0) − A0(n0) = o(1),

B̂(n0) − B0(n0) = o(1),
(4)

where o(1) denotes a function f that goes to zero almost surely as M → ∞ for each
n0 ∈ {1, . . . , N }. These results follow from proof of Theorem 2 of Prasad et al. [20].
Now using central limit theorem (CLT) of the stochastic processes (Fuller [11]),

2

M3/2

M∑

m=1

m X(m, n0)

(
Â(n0) sin(μ0m) − B̂(n0) cos(μ

0m)

)

d−→ N
(
0, 4σ 2

(
A0(n0)

2 + B0(n0)
2

6

))
,

as M → ∞ and ∀n0 ∈ {1, . . . , N }. This implies that

1

M3/2N 1/2 R(1)
M N

′
(μ0)

d−→ N
(
0, 4σ 2

(
A02 + B02

6

))
as min{M, N } → ∞. (5)

Since lim
M,N→∞ R(1)

M N

′′
(μ̄) = lim

M,N→∞ R(1)
M N

′′
(μ0), we next compute the second deriva-

tive:

1

M3N

∂2R(1)
M N (mu0)

∂μ2 = 1

N

N∑

n0=1

1

M3

∂2RM (mu0, n0)

∂μ2

With some routine calculations and the following results:

lim
M→∞

1

M3

M∑

m=1

m2 cos2(αm) = 1

6
,

lim
M→∞

1

M3

M∑

m=1

m2 sin2(αm) = 1

6
,
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lim
M→∞

1

M3

M∑

m=1

m2 sin(αm) cos(αm) = 0,

lim
M→∞

1

M3

M∑

m=1

m2X(m) cos(αm) = 0,

lim
M→∞

1

M3

M∑

m=1

m2X(m) sin(αm) = 0,

and (4), we get:

lim
M,N→∞

1

M3N
R(1)

M N

′′
(μ0) = 2

(
A02 + B02

6

)
(6)

Using the limits in (5) and (6) in (3), we get the desired result, that is,

M3/2N 1/2(μ̂ − μ0)
d−→ N

(
0,

6σ 2

A02 + B02

)
.

Similarly, part (b) of Theorem 2 can be proved.

C Proof of Consistency of Proposed Estimators of Model (1)

To prove Theorem 3, we need the following lemmas:

Lemma 2 Consider the set S1
c = {μ1 : |μ1 − μ0

1| ≥ c}. If for any c > 0,

lim inf inf
μ1∈S1c

1

M N

[
R(1)
1,M N (μ1) − R(1)

1,M N (μ0
1)

]
> 0 a.s.

then μ̂1
a.s.−−→ μ0

1 as M → ∞.

Proof This proof follows along the same lines as that of Lemma 1 of Wu [25].
��

Lemma 3 If assumptions 1, 3 and 4 are satisfied, then

M(μ̂1 − μ0
1)

a.s.−−→ 0 as M → ∞.

Proof Let us use the following notations: R(1)
1,M N

′
(μ1) as the first derivative and

R(1)
1,M N

′′
(μ1) as the second derivative of the objective function R(1)

1,M N (μ1).
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Weexpand the function R(1)
1,M N

′
(μ̂1) around the pointμ0

1 using Taylor series expansion
as follows:

R(1)
1,M N

′
(μ̂1) − R(1)

1,M N

′
(μ0

1) = (μ̂1 − μ0
1)R(1)

1,M N

′′
(μ̄1),

where μ̄1 is a point between μ̂1 and μ0
1.

Since R(1)
1,M N

′
(μ̂1) = 0,

− R(1)
1,M N

′
(μ0

1) = (μ̂1 − μ0
1)R(1)

1,M N

′′
(μ̄1)

⇒ (μ̂1 − μ0
1) = −R(1)

1,M N

′
(μ0

1)[R(1)
1,M N

′′
(μ̄1)]−1

⇒ M3/2N 1/2(μ̂1 − μ0
1) = −M−3/2N−1/2R(1)

1,M N

′
(μ0

1)

× [M−3/2N−1/2R(1)
1,M N

′′
(μ̄1)M−3/2N−1/2]−1

(7)

Multiplying both sides by 1√
M N

, we have:

M(μ̂1 − μ0
1) = −M−2N−1R(1)

1,M N

′
(μ0

1)[M−3N−1R(1)
1,M N

′′
(μ̄1)]−1. (8)

Now we will compute the limits of both the components of the right-hand side of the
above equation. We have:

R(1)
1,M N (μ1) =

N∑

n0=1

R1,M (μ1, n0)

where

R1,M (μ1, n0) =
M∑

m=1

(
y(m, n0) − Â(1)

1 (n0) cos(μ1m) − B̂(1)
1 (n0)sin(μ1m)

)2

Now let us compute the first derivative:

∂ R(1)
1,M N (μ1)

∂μ1
=

N∑

n0=1

∂ R1,M (μ1, n0)

∂μ1

=
N∑

n0=1

{
2

M∑

m=1

m

(
y(m, n0) − Â(1)

1 (n0) cos(μ1m) − B̂(1)
1 (n0) sin(μ1m)

)

×
(

Â(1)
1 (n0) sin(μ1m)) − B̂(1)

1 (n0) cos(μ1m)

)}
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=
N∑

n0=1

{
2

M∑

m=1

m

( p∑

k=1

A0
k(n0) cos(μ

0
km)

+B0
k (n0) sin(μ

0
km) + X(m, n0) − Â(1)

1 (n0) cos(μ1m)

−B̂(1)
1 (n0) sin(μ1m)

)
×

(
Â(1)
1 (n0) sin(μ1m)) − B̂(1)

1 (n0) cos(μ1m)

)}

At μ1 = μ0
1,

∂ R(1)
1,M N (μ1)

∂μ1
=

N∑

n0=1

{
2

M∑

m=1

m

(
(A0

1(n0) − Â(1)
1 (n0)) cos(μ

0
1m)

+(B0
1 (n0) − B̂(1)

1 (n0)) sin(μ
0
1m)

+
p∑

k=2

A0
k(n0) cos(μ

0
km) + B0

k (n0) sin(μ
0
km) + X(m, n0)

)

×
(

Â(1)
1 (n0) sin(μ

0
1m)) − B̂(1)

1 (n0) cos(μ
0
1m)

)}

Since for α ∈ (0, π),

lim
M→∞

1

M2

M∑

m=1

m cos2(αm) = 1

4
,

lim
M→∞

1

M2

M∑

m=1

m sin2(αm) = 1

4
,

lim
M→∞

1

M2

M∑

m=1

m sin(αm) cos(αm) = 0,

lim
M→∞

1

M2

M∑

m=1

m X(m) cos(αm) = 0,

lim
M→∞

1

M2

M∑

m=1

m X(m) sin(αm) = 0,
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and for α 	= β, α, β ∈ (0, π),

lim
M→∞

1

M2

M∑

m=1

m cos(αm) cos(βm) = 0,

lim
M→∞

1

M2

M∑

m=1

m cos(αm) sin(βm) = 0,

lim
M→∞

1

M2

M∑

m=1

m sin(αm) sin(βm) = 0,

and ∀ n0 = 1, . . . , N

Â(1)
1 (n0)

a.s.−−→ A0
1(n0) as M → ∞,

B̂(1)
1 (n0)

a.s.−−→ B0
1 (n0) as M → ∞,

we have,

lim
M→∞

1

M2N
R(1)
1,M N

′
(μ0

1) = 0 (9)

Now we compute the second derivative

∂2R(1)
1,M N (μ0

1)

∂μ2
1

=
N∑

n0=1

∂2R1,M (μ1, n0)

∂μ2
1

=
N∑

n0=1

{
2

M∑

m=1

m2
(

y(m, n0) − Â(1)
1 (n0) cos(μ

0
1m) − B̂(1)

1 (n0) sin(μ
0
1m)

)

×
(

Â(1)
1 (n0) cos(μ

0
1m) + B̂(1)

1 (n0) sin(μ
0
1m)

)

+2
M∑

m=1

m2
(

Â(1)
1 (n0) sin(μ

0
1m) − B̂(1)

1 (n0) cos(μ
0
1m)

)2}

Using the model equation:

y(m, n0) =
p∑

k=1

Ak(n0) cos(μ
0
km) + Bk(n0) sin(μ

0
km) + X(m, n0)

and the following results: ∀ α, β ∈ (0, π), α 	= β
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lim
M→∞

1

M3

M∑

m=1

m2 cos2(αm) = 1

6
,

lim
M→∞

1

M3

M∑

m=1

m2 sin2(αm) = 1

6
,

lim
M→∞

1

M3

M∑

m=1

m2 sin(αm) cos(αm) = 0,

lim
M→∞

1

M3

M∑

m=1

m2X(m) cos(αm) = 0,

lim
M→∞

1

M3

M∑

m=1

m2X(m) sin(αm) = 0,

lim
M→∞

1

M3

M∑

m=1

m2 cos(αm) cos(βm) = 0,

lim
M→∞

1

M3

M∑

m=1

m2 cos(αm) sin(βm) = 0,

lim
M→∞

1

M3

M∑

m=1

m2 sin(αm) sin(βm) = 0,

and ∀ n0 = 1, . . . , N

Â(1)
1 (n0)

a.s.−−→ A0
1(n0) as M → ∞,

B̂(1)
1 (n0)

a.s.−−→ B0
1 (n0) as M → ∞,

we get:

lim
M→∞

1

M3N

∂2R(1)
1,M N (μ0

1)

∂μ2
1

= 1

N

N∑

n0=1

A0
1
2
(n0) + B0

1
2
(n0)

3
(10)

Substituting the limits obtained in (9) and (10) in (8), we get the desired result, that is
M(μ̂1 − μ0

1)
a.s.−−→ 0 as M → ∞.

��
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Proof of Theorem 3 (a) Consider the difference:

lim inf inf
μ1∈S1c

1

M N

[
R(1)
1,M N (μ1) − R(1)

1,M N (μ0
1)

]

= lim inf inf
μ1∈S1c

1

M N

[ N∑

n0=1

R1,M (μ1, n0) −
N∑

n0=1

R1,M (μ0
1, n0)

]

= lim inf inf
μ1∈S1c

1

M N

[ N∑

n0=1

Q1,M ( Â1(n0), B̂1(n0), μ1)

−
N∑

n0=1

Q1,M ( Â1(n0), B̂1(n0), μ
0
1)

]

≥ lim inf inf
μ1∈S1c

1

M N

[ N∑

n0=1

Q1,M ( Â1(n0), B̂1(n0), μ1)

−
N∑

n0=1

Q1,M (A0
1(n0), B0

1 (n0), μ
0
1)

]

≥ lim inf inf
(A1(n0),B1(n0),μ1)∈M

1,n0
c

1

M N

[ N∑

n0=1

Q1,M (A1(n0), B1(n0), μ1)

−
N∑

n0=1

Q1,M (A0
1(n0), B0

1 (n0), μ
0
1)

]

≥ 1

N

N∑

n0=1

lim inf inf
(A1(n0),B1(n0),μ1)∈M

1,n0
c

1

M

[
Q1,M (A1(n0), B1(n0), μ1)

− Q1,M (A0
1(n0), B0

1 (n0), μ
0
1)

]
> 0

The last inequality follows from proof of Theorem 1 of Prasad et al. [20]. Now using
Lemma 1, we have μ̂1

a.s.−−→ μ0
1 as M → ∞.

Similarly, one can show that λ̂1
a.s.−−→ λ01 as N → ∞. Also, from Theorem 4, we

have:

Â1
a.s.−−→ A0

1 as min{M, N } → ∞
B̂1

a.s.−−→ B0
1 as min{M, N } → ∞

Thus, we have the following relationship between the first component of the model 1
and its estimate:
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Â1 cos(μ̂1m + λ̂1n) + B̂1 sin(μ̂1m + λ̂1n)

= A0
1 cos(μ

0
1m + λ01n) + B0

1 sin(μ
0
1m + λ01n) + o(1),

(11)

where a function f iso(1) if f
a.s.−−→ 0 asmin{M, N }→ ∞.Nowusing this relationship

(11) and following the same arguments as for the proof of consistency of μ̂1 and λ̂1,
one can extend the result for the frequencies’ estimates of the second component and
extend the result further for each k ≤ p. ��
Proof of Theorem 4 We first consider the following linear parameter estimators (see
Step 3 of the sequential algorithm):

(
Â1

B̂1

)
= [W�(μ̂1, λ̂1)W(μ̂1, λ̂1)]−1W�(μ̂1, λ̂1)Y. (12)

where

W�(μ̂1, λ̂1)W(μ̂1, λ̂1) =
(

w11 w12
w21 w22

)

and

w11 =
M∑

m=1

N∑

n=1

cos2(μ̂1m + λ̂1n)

w12 = w21 =
M∑

m=1

N∑

n=1

cos(μ̂1m + λ̂1n) sin(μ̂1m + λ̂1n)

w22 =
M∑

m=1

N∑

n=1

sin2(μ̂1m + λ̂1n)

Since

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

cos2(μ̂1m + λ̂1n) = 1

2
,

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

sin2(μ̂1m + λ̂1n) = 1

2
,

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

cos(μ̂1m + λ̂1n) sin(μ̂1m + λ̂1n) = 0,

lim
M,N→∞W�(μ̂1, λ̂1)W(μ̂1, λ̂1) = 1

2
I2×2,
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where I2×2 is an identity matrix of order 2. Using this in (12), we get:

(
Â1

B̂1

)
= 2

M N
W�(μ̂1, λ̂1)Y + o(1)

=

⎛

⎜⎜⎝

2
M N

M∑
m=1

N∑
n=1

y(m, n) cos(μ̂1m + λ̂1n) + o(1)

2
M N

M∑
m=1

N∑
n=1

y(m, n) sin(μ̂1m + λ̂1n) + o(1)

⎞

⎟⎟⎠ .

Now let us consider, the estimate Â1 and expand the function cos(μ̂1 + λ̂1) around
the point (μ0

1, λ
0
1), then we have:

Â1 = 2

M N

M∑

m=1

N∑

n=1

y(m, n) cos(μ̂1m + λ̂1n) + o(1)

= 2

M N

M∑

m=1

N∑

n=1

y(m, n){cos(μ0
1m + λ01n) − m(μ̂1 − μ0

1) sin(μ
0
1m + λ01n)

− n(λ̂1 − λ01) sin(μ
0
1m + λ01n)} + o(1)

Since for (αi , βi ) ∈ (0, π)

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

cos2(α1m + β1n) = 1

2
,

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

sin2(α1m + β1n) = 1

2
,

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

cos(α1m + β1n) sin(α1m + β1n) = 0,

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

X(m, n) cos(α1m + β1n) = 0,

lim
M,N→∞

1

M N
d

M∑

m=1

N∑

n=1

X(m, n) sin(α1m + β1n) = 0,

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

cos(α1m + β1n) cos(α2m + β2n) = 0,

lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

sin(α1m + β1n) sin(α2m + β2n) = 0,
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lim
M,N→∞

1

M N

M∑

m=1

N∑

n=1

cos(α1m + β1n) sin(α2m + β2n) = 0,

it can be seen that:

Â1 → A0
1 as min{M, N } → ∞.

Following a similar pattern, one can prove the strong consistency of B̂1.
Let us consider:

(
Â2

B̂2

)
=

⎛

⎜⎜⎝

2
M N

M∑
m=1

N∑
n=1

y1(m, n) cos(μ̂2m + λ̂2n) + o(1)

2
M N

M∑
m=1

N∑
n=1

y1(m, n) sin(μ̂2m + λ̂2n) + o(1)

⎞

⎟⎟⎠

Now to prove the strong consistency of the amplitudes of the second component,
we use the relationship established between the first component and its estimate in
Eq. (11) and following the sameprocedure as that for consistency of thefirst component
amplitudes, it can be seen that

Â2 → A0
2 as min{M, N } → ∞,

B̂2 → B0
2 as min{M, N } → ∞.

On similar lines, the result can be extended for any integer k ≤ p.

For k = p + 1,

(
Â p+1

B̂p+1

)
=

⎛

⎜⎜⎝

2
M N

M∑
m=1

N∑
n=1

yp(m, n) cos(μ̂p+1m + λ̂p+1n) + o(1)

2
M N

M∑
m=1

N∑
n=1

yp(m, n) sin(μ̂p+1m + λ̂p+1n) + o(1)

⎞

⎟⎟⎠ ,

where

yp(m, n) = y(m, n) −
p∑

j=1

{
Â j cos(μ̂ j m + λ̂ j n) + B̂ j sin(μ̂ j m + λ̂ j n)

}

= X(m, n) + o(1).

Since

A0
j cos(μ

0
j m + λ0j n) + B0

j sin(μ
0
j m + λ0j n)

= Â j cos(μ̂ j m + λ̂ j n) + B̂ j sin(μ̂ j m + λ̂ j n) + o(1),
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we can see that

Â p+1
a.s.−−→ 0 as min{M, N } → ∞,

B̂p+1
a.s.−−→ 0 as min{M, N } → ∞,

From here, it is immediate that the result can be extended for any integer k > p + 1.
Hence, the result. ��

D Proof of Asymptotic Normality of Proposed Estimators of Model (1)

Proof of Theorem 5 (a) Consider the Taylor series expansion in (7) as follows:

M3/2N 1/2(μ̂1 − μ0
1) = −M−3/2N−1/2R(1)

1,M N

′
(μ0

1)

× [M−3/2N−1/2R(1)
1,M N

′′
(μ̄1)M−3/2N−1/2]−1

Computing the first derivative on the left-hand side of the above equation and similar
to the proof of Theorem 2, it can be shown that:

− 1

M3/2N 1/2 R(1)
1,M N

′
(μ0

1)
d−→ N

(
0, 4σ 2

(
A0
1
2 + B0

1
2

6

))
.

Since μ̄1 is a point between μ̂ and μ0
1 and μ̂1

a.s.−−→ μ0
1,

lim
M,N→∞

1

M3N
R(1)
1,M N

′′
(μ̄1) = lim

M,N→∞
1

M3N
R(1)
1,M N

′′
(μ0

1)

Also, (10) implies that:

lim
M,N→∞

1

M3N
R(1)
1,M N

′′
(μ0

1) = 2

(
A0
1
2 + B0

1
2

6

)
.

Thus, on combining the above results, we have:

M3/2N 1/2
(

μ̂1 − μ0
1

)
d−→ N

(
0,

6σ 2

A0
1
2 + B0

1
2

)
.

Hence, the result. ��
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