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Abstract
Estimation in a cooperative and distributed manner in wireless sensor networks
(WSNs) has considered much attention in recent years. When this distributed esti-
mation is performed adaptively, the concept of adaptive networks will develop. In
such networks, proper selection of the unknown parameter length is an issue in itself.
A deficient filter length results in an additional steady-state errorwhile selecting a large
length will impose a more computational load on the nodes, which is critical in sensor
networks due to the lack of energy resources. This motivates the use of variable tap-
length adaptive filters in the context of the adaptive networks. This has been achieved
in adaptive networks using the distributed fractional tap-length (FT) algorithm. This
algorithm requires proper selection of the length adaptation parameters, such as error
width and length adaptation step-size. This paper proposes an automatic method for
selecting these parameters. In the proposedmethod, these parameters are adapted based
on the estimated gradient vector. The proposed method is fully distributed and pre-
sented in a diffusion strategy. Simulation results show that the proposed algorithm has
both the advantage of fast length convergence and an unbiased steady-state tap-length.

Keywords Wireless sensor networks · Variable tap-length · Variable error width ·
Variable step-size · Diffusion strategy

1 Introduction

In most applications of wireless sensor networks (WSNs), we are encountered with
estimating the desired parameter. In some scenarios, to perform the processing required
for this estimate, sensors send their information to a central processing unit (e.g., clus-
ter head or fusion center). Then, the processing of these gathered data,which inherently
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have temporal and spatial correlations, are performed in a centralized manner in this
central unit [2,3]. This amount of communication between the sensors and the central
processor consumes a significant amount of bandwidth and energy, which is critical
for a network of limited power sensors. Therefore, the need for a distributed solution
to prolong the network lifetime is undeniable. In a distributed method, the amount of
data exchanges is significantly reduced, so that each sensor communicates only with
a subset of its one-hop neighbors. It is dictated by the network topology, that each
sensor is permitted to communicate with which of its neighbors. Two useful topolo-
gies that enable learning and adaptation over networks in real-time are the diffusion
and incremental topologies [13]. In an incremental structure, each node communicates
with only one adjacent node. So, in this structure, data flows sequentially from one
sensor to a neighboring sensor [32]. This form of cooperation requires a cyclic design
of cooperation between the sensors, which is an NP-hard problem. Also, cyclic paths
are not robust to link or node failures. Therefore, a diffusion strategy can be preferred
in which each sensor has access to data of all its neighbors. In this scheme, each sensor
can communicate with all its neighbors as dictated by the network structure. So, in
this strategy, no cyclic path is required; this scheme is scalable, robust to link or node
failures, and is more flexible to distributed implementation. This form of cooperation
usually involves two stages: an adaption stage where sensors use their measurements
to update their estimation. A combination stage where sensors combine the estimates
from their neighbors to make a new estimate [7,8,16,24,33]. Diffusion recursive least
square (RLS) algorithm [14,30], diffusion least mean square (LMS) algorithm[34],
diffusion affine projection-based adaptive (APA) algorithm [1], diffusion distributed
conjugate gradient-based algorithms [36], jointly sparse single-task[11] and multi-
task [12,20] recovery algorithms are examples of widely used algorithms employing
diffusion strategy.

With the advent of adaptive networks based on incremental and diffusion strate-
gies, extensive research has been conducted in this field. For example, paper [17]
investigates the implementation of ActiveNoise Control (ANC) systems over an incre-
mental adaptive network, using the distributed version of theMultiple Error Filtered-x
Least Mean Square (MEFxLMS) algorithm. In [5], the constrained stability approach
is applied for distributed ANC systems employing an incremental communication
topology.

In the mentioned algorithms, the length of the unknown vector is assumed to be
fixed and known a priori at each node. However, this assumption is not suitable for
many applications where the optimum filter length is unknown or variable. The tap-
length, or the size of the unknown parameter, significantly affects the performance of
the distributed networks. If the number of filter coefficients is kept fix at a smaller value
due to motives such as reduced computational load, which is a necessity for WSNs,
the mean-square error (MSE) will increase as a result of this length deficiency [9,10],
whereas a larger tap-length increases the computational cost and the excess MSE
(EMSE). Therefore, there exists an optimal length that best balances the conflicting
necessities of performance and complexity. Based on this, structure adaptation algo-
rithms were proposed, with the idea that although the minimum MSE is a monotonic
non-increasing function of the filter length, it decreases slightly as the filter length
increases when the tap-length is sufficiently large. On the other hand, having a large
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tap-length is not suitable as it not only undesirably increases computational complexity
but also provides more adaption noise. In the stand-alone adaptive filter context, sev-
eral algorithms have been proposed[31,38] to find such an optimal tap-length. These
algorithms have finally advanced into the FT variable-length algorithm [37]. The FT
algorithm has the required conditions to be considered as a popular variable-length
algorithm. This algorithm is very similar to the LMS technique, so it is often called
an LMS style variable tap-length algorithm. This algorithm is as simple as the LMS
algorithm, and at the same time, it has a good performance[19,29]. Therefore, it is not
unexpected that in the context of the adaptive networks, among all variable tap-length
algorithms, only this algorithm is considered for structure adaptation. This algorithm
is presented in the distributed context in both incremental [22] and diffusion strategies
[21].

Note that the concept of variable tap-length algorithms is different from the variable
step-size algorithms proposed to satisfy the conflicting requirements of low misad-
justment and fast convergence rate [6,28].

FTalgorithmcontains several parameters that influence the performance of the algo-
rithm. Therefore, the proper selection of these parameters is very critical in achieving
acceptable performance. One of these parameters is the error width, which controls the
trade-off between the convergence rate and the steady-state tap-length bias. Another
critical parameter is the tap-length adaptation step-size. This parameter provides a
trade-off between steady-state tap-length fluctuation and the convergence rate of the
tap-length. Therefore, selecting a fixed value for these parameters cannot provide the
superior performance of this algorithm comprehensively. Therefore, to eliminate these
trade-offs, a variable approach is proposed for the selection of these parameters. In the
proposed method, these parameters are adjusted to achieve a fast convergence in the
initial stages of the algorithm, and a less tap-length fluctuation and accurate tap-length
estimation in the steady-state.

There are several works for error-width adaptation [18,23,27], and tap-length step-
size adaptation [4,25,35].

In [23], the error width is adapted based on the mean squared error estimation.
But, this algorithm affects by the interference of system error and could not indicate
the accurate state of iteration at the same time. The reported method in [27] could
eliminate the system noise interference and enhance the convergence performance.
But, in this method, the error width is affected by the previous instant error value. So
this approach may not accurately indicate the current changes and may have a specific
passive influence on tap-length updating in the initial iterations. On this basis, [18]
proposed an approach that adjusts error width using fragment-full error (FE) to solve
the challenges associated with [23] and [27].

In [25], the tap-length adjustment error (TAE) is served as a criterion to adapt the tap-
length step-size. To be robust against independent noise disturbance, the authors in [25]
have used the estimation of the TAE correlation between two consecutive iterations to
adjust the tap-length step-size. By arguing that in a time-varying scenario, the changes
in the variance of input signal or the tap-coefficients will require the retuning of tap-
length step-size, paper [4] exploited a normalized tap-length step-size in length update
procedure. In [35], a variable tap-length step-size method is proposed, where the tap-
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length step-size is adjusted by the difference between squared output error and squared
segmented estimation error, and is limited by a sigmoid function.

The presented methods in [4,18,23,25,27,35] are all in the context of stand-alone
adaptive filters, but, in the context of diffusion adaptive networks, this matter has been
left out of consideration. It motivates us to consider the variable parameter concept in
the diffusion fractional tap-length scenario.

Note that, in the proposed method, the adaptation of the parameters is performed
in a cooperative and distributed manner. This distributed adaptation will result in the
superior performance of the proposed algorithm.

The roadmap of the remainder of this paper is as follows. The preliminaries on
the FT algorithm is provided in Sect. 2. In Sect. 3, we present a variable tap-length
algorithmwith adaptive error width and adaptive tap-length adaptation step-size based
on the gradient vector norm. Section 4 provides the steady-state analysis. In Sect. 5,
computer simulations are conducted, and finally, in Section 6, we conclude this paper.

2 Preliminaries

Suppose a network consists of N nodes. Here, the purpose of this network is to obtain
an estimate of the desired parameter wo

Lopt
and its length Lopt . It is to be highlighted

that the estimation of both the tap-weights and tap-length of the unknown parameter
wo

Lopt
is considered here. However, the adaption criterion for weights and length could

be separated, and the selection criterion for one does not depend on the selection
criterion of the other. First, we assume that the tap-length is L , which is searched by
the length search solution discussed later. We also assume that at every time i > 0,
each node k has access to a scalar measurement dk(i),and a 1 × L regression vector
uk,i , where they are assumed to be time realizations of zero-mean random processes
{dk,uk}. These measurements are related to the unknown parameter by

dk(i) = uLopt k,iw
o
Lopt

+ vk(i) (1)

where vk(i) accounts for the zero-mean noise and modeling error with variance σ 2
v,k

which is assumed independent over space and time and independent of the regressors.
In (1)the subscript Lopt implies that the length of the vector uLopt k,i is Lopt . Collecting
the signals into global matrices result in:

U Δ= col{u1,u2, ...,uN } (N × L)

d Δ= col{d1,d2, ...,dN } (N × 1) (2)

where col{· · ·} stands for a vector resulted by stacking the specified vectors. By
considering the linear least-mean-squares estimation problem:

argmin
w

JL(w) wi th JL(w) = E{‖d − Uw‖2} (3)
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reference [26] proposed a diffusion distributed LMS strategy as:

⎧
⎪⎨

⎪⎩

φ
(i−1)
k = ∑

�∈ℵk

ck,�ψ
(i−1)
�

ψ
(i)
� = φ

(i−1)
k + μku∗

k,i

(
dk(i) − uk,iφ

(i−1)
k

) (4)

where ℵk accounts for the neighborhood of node k, which is defined as the collection
of all sensors topologically connecting to node k, including itself. According to (4),
the diffusion strategy is implemented in two steps: In the first step, each node linearly
combines the local estimates gathered from its neighbors. This step fuses data from
sensors across the network into node k. In the second step, the resulting aggregate at
node k is fed into the local adaptive filter to adapt the local data measured at sensor k.

In (4) the local combiners {ck,�} satisfy ∑

�∈ℵk

ck,� = 1. The combiners {ck,�} give
rise to a matrix C = [ck,�] that contains the network topology information. There are
several rules for choosing these combiners. In this paper, we utilize the Metropolis
rule as [26]:

ck,� =

⎧
⎪⎨

⎪⎩

1/max(nk, n�) i f k �= � are linked
0 i f k and � are not linked
1 − ∑

m∈ℵk\{k}
ck,m i f k = �

(5)

where nk and n�, respectively, denote the degree of node k and �, i.e., the cardinality
of ℵk and ℵ�.

Now we consider the tap-length estimation problem. It is common to use the seg-
mented cost function to find the optimal tap-length. Because the tap-length is unknown,
we temporarily assume that to be equal to L.With this assumption, the segmented cost
function is defined as:

J (L)
M (w)

Δ= E{‖d − UMwM‖2} (6)

where 1 ≤ M ≤ L ,wM andUM are vectors consisting of the firstM elements/columns
ofw andU, respectively. The underlying principle of the FT algorithm is to determine
the length L such that:

min{L|J (L)
(L−Δ)(w) − J (L)

L (w) ≤ ε} (7)

where ε is a small positive specified by the system requirements, and Δ is a positive
integer to avoid the local minima tap-length.

Reference [21] presents a distributed solution based on diffusion strategy to solve
(9):

lk, f (i − 1) = ∑

�∈ℵk

b�,k L�, f (i − 1)

Lk, f (i) = lk, f (i − 1) − αk + γk

(
e2Lk (i)−Δk

(
ψk,i−1

) − e2Lk (i)

(
ψk,i−1

)) (8)
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where

eLk (i)
(
ψk,i−1

) = dk(i) − uk,iψk,i−1
eLk (i)−Δk

(
ψk,i−1

) = dk(i) − uk,i (1 : Lk(i) − Δk)ψk,i−1(1 : Lk(i) − Δk)
(9)

where uk,i (1 : Lk(i) − Δk) and ψk,i−1(1 : Lk(i) − Δk) are vectors consisting of the
first Lk(i) − Δk elements of uk,i and ψk,i−1, respectively. In (8), the parameters αk

and γk are small positive values. The parameter αk is the leakage factor of node k and
is used to prevent an increase in length to a large undesirable value. The parameter
γk is the length adaption step-size of node k. In (8) the local combiners {bk,�} satisfy∑

�∈ℵk

bk,� = 1. There are several rules for choosing these combiners. In this paper, we

utilize the relative-degree rule as [15]:

bk,� =
{
n�

/ ∑

m∈ℵk

nm i f � ∈ ℵk

0 otherwise
(10)

In (8), L�, f (i) and lk, f (i) are the local and integrated fractional tap-length estimates,
and the integer tap-length is adjusted by

Lk(i) =
{⌊

Lk, f (i)
⌋

, i f
∣
∣Lk(i − 1) − Lk, f (i)

∣
∣ > δk

Lk(i − 1) otherwise
(11)

where �.	 rounds the embraced value to the nearest integer. Here, δk is the small local
integer and is usually set to one.

3 ProposedMethod

The given LMS style algorithm in (8) is a powerful approach to estimate the fractional
tap-length in a diffusion strategy. However, the fact that its performance is affected
by several parameters challenges the effectiveness of this algorithm. The value of
the leakage factor αk in (8) must be small enough so that the steady-state tap-length
is not reduced too much, and large enough to prevent the “wandering” issue during
the learning stage. Generally, the choice of this parameter was not critical, and values
between 0.001 and 0.01 are good choices for the leakage factor in each node. Therefore,
in this paper, we do not want to impose an additional computational burden on the
nodes by updating the leakage factor, because the power limitation in wireless sensor
networks is a critical issue. Instead, we will focus on the two key parameters, length
adaptation step-size γk , and error width Δk . The error width controls the trade-off
between the convergence rate and the steady-state tap-length bias. The tap-length
adaptation step-size controls the trade-off between the tap-length convergence rate
and steady-state tap-length fluctuation. A large Δk accelerates the convergence rate
of the tap-length learning and equips the algorithm with the ability to escape from
the possible suboptimal tap-lengths. Besides, a smaller Δk than the estimation of the
optimal tap-lengthwill result in a steady-state tap-length that is not significantly biased.
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About the role of γk in the algorithm, a large γk accelerates the convergence rate of
the tap-length learning but results in high steady-state fluctuation of the tap-length.
Besides, a smaller γk , although, leads to a low steady-state tap length fluctuation
but results in a slow convergence rate. So, this motivates us to propose a diffusion
variable tap-length method with variable parameters rather than fixed, where the tap-
length adaptation step-size and the error width are set in the large values during the
initial iterations, and they reduce step by step to approach the smaller values in the
steady-state. For this purpose, we need a measure to control these variations. Various
criteria can be used for this purpose, among which the gradient vector is a suitable
measure. It is well-known that the squared norm of the smoothed gradient vector
tracks the variation of the mean square deviation. Hence, it is an excellent candidate to
control the tap-length adaptation step-size and error width. In this paper, we propose
a diffusion tap-length update with variable parameters method based on the gradient
vector in which the tap length adaptation step-size and error width are adjusted to
be proportional to the estimated smoothed gradient vector norm square. Since the
Euclidean norm of the gradient vector is large in initial iterations and approaches to a
small amount at steady-state, so by proportionate the parameters with it, all the goals
we pursue will be met. In the sense that, since the proposed measure provides large
Δk and γk at initial iterations, the fast convergence rate of the tap-length learning is
achieved, and also this large Δk for each node prevents the tap-length from trapping
in the sub-optimal value. On the other hand, the proposed measure provides a small
Δk and γk at steady-state, which leads to the unbiased estimated tap-length and low
steady-state fluctuation of the tap-length. Another point to consider is the strategy
used to update these parameters. These parameters can be updated independently in
each node without the cooperation of other nodes. However, we can take advantage
of the spatial diversity to update these parameters. In the proposed method, we use
the diffusion strategy for the adaptation of these parameters. So, these parameters are
updated in a distributed manner with the cooperation of all nodes.

Accordingly, in the proposed method, first, each node linearly combines the local
estimated smoothed instantaneous gradient vector gathered from its neighbors as

ρ
(a)
k (i) =

∑

�∈ℵk

ck,�ρ�(i − 1) (12)

where the vector ρk(i) is the smoothed gradient vector, and ρ
(a)
k (i) is the aggregated

gradient vector at node k. Thanks to this step, the estimation of the smoothed gradient
vector enjoys spatial diversity. Then, the resulting aggregate at node k is updated as

ρk(i) = βkρ
(a)
k (i) + (1 − βk)eLk (i)

(
ψk,i−1

)
uk,i (13)

where the smoothing parameter βk is selected very close to the unit. Thus, (13) cor-
responds to a low pass filtering, which decreases the noise influence on the gradient
vector estimation and leads to a more stable parameter adaptation. Note that the length
of the vector ρ(a)

k (i) is adjusted in each iteration according to the estimated tap-length.
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We also implement the strategy of aggregating neighbors’ local estimates for updat-
ing the parameters Δk and γk . On this basis, each node first calculates the aggregated
estimations

Δ
(a)
k (i) =

∑

�∈ℵk

ck,�Δ�(i − 1) (14)

and
γ

(a)
k (i) =

∑

�∈ℵk

ck,�γ�(i − 1) (15)

where Δk(i) and γk(i) are the estimated error width and tap-length adaptation step-
size at node k and iteration i , respectively. The parameters Δ

(a)
k (i) and γ

(a)
k (i) are the

aggregated error width and tap-length adaptation step-size at node k and iteration i ,
respectively. Using the resulted aggregates, Δk(i) and γk(i) are updated, respectively,
as

Δk(i) =
⌊
θkΔ

(a)
k (i) + κk

∥
∥ρk(i)

∥
∥
⌋

(16)

and
γk(i) = τkγ

(a)
k (i) + ηk

∥
∥ρk(i)

∥
∥ (17)

where 0 < τk < 1, 0 < θk < 1, ηk and κk are positive constants.
As is clear from (12)–(17), the proposed algorithm is fully distributed and is per-

formed with the cooperation of all nodes. So that each node first takes the neighbors’
local estimates, aggregates them as (12), (14), and (15) and then updates the aggregated
results as (13), (16), and (17). Note that both Δk(i) and γk(i) are updated with the
same measure according to the above relations, and no separate measures are consid-
ered for each. The reason for this is to avoid additional calculations, and consequently,
to avoid extra power consumption. This common measure, the Euclidean norm of
the smoothed gradient vector, will provide large initial and small steady-state values
for both Δk(i) and γk(i) . As a result, fast tap-length convergence, low steady-state
fluctuations, and unbiased steady-state tap-length estimation will be provided.

The proposed diffusion variable tap-length method with variable parameters is
summarized as follows:

φ
(i−1)
k =

∑

�∈ℵk

ck,�ψ
(i−1)
� (18a)

lk, f (i − 1) =
∑

�∈ℵk

b�,k L�, f (i − 1) (18b)

ρ
(a)
k (i) =

∑

�∈ℵk

ck,�ρ�(i − 1) (18c)

Δ
(a)
k (i) =

∑

�∈ℵk

ck,�Δ�(i − 1) (18d)

γ
(a)
k (i) =

∑

�∈ℵk

ck,�γ�(i − 1) (18e)

ψ
(i)
k = φ

(i−1)
k + μku∗

k,i

(
dk(i) − uk,iφ

(i−1)
k

)
(18f)
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eLk (i)
(
ψk,i

) = dk(i) − uk,iψk,i (18g)

ρk(i) = βkρ
(a)
k (i) + (1 − βk)eLk (i)

(
ψk,i

)
uk,i (18h)

Δk(i) =
⌊
θkΔ

(a)
k (i) + κk

∥
∥ρk(i)

∥
∥
⌋

(18i)

γk(i) = τkγ
(a)
k (i) + ηk

∥
∥ρk(i)

∥
∥ (18j)

eLk (i)−Δk

(
ψk,i−1

)=dk(i)−uk,i (1 : Lk(i)−Δk)ψk,i (1 : Lk(i) − Δk) (18k)

Lk, f (i) = lk, f (i − 1) − αk + γk

(
e2Lk (i)−Δk

(
ψk,i

) − e2Lk (i)

(
ψk,i

))
(18l)

Lk(i) =
{⌊

Lk, f (i)
⌋

, i f
∣
∣Lk(i − 1) − Lk, f (i)

∣
∣ > δk

Lk(i − 1) otherwise
(18m)

This proposed algorithmproceeds as follows. Each node k, at each iteration i , performs
the following steps:

1) Receives the estimates ψ
(i−1)
� , L�, f (i − 1), ρ�(i − 1), Δ�(i − 1), and γ�(i − 1)

from its neighbors {� ∈ ℵk}.
2) Computes the convex combination of estimates received from its neighbors

according to (18a)-(18e).
3) Adapts its current aggregate weight estimate φ

(i−1)
k using its local data available

at the time i , to obtain a new tap-weight estimate ψ
(i)
k .

4) Using the estimated weight vector ψ
(i)
k , this node updates the error estimation

according to (18g), which is used to estimate the smoothed gradient vector according
to (18h).

5) The Euclidean norm of the estimated gradient vector is used alongside with the
aggregate estimates Δ

(a)
k (i) and γ

(a)
k (i) in (18i) and (18j) to update the error width

Δk(i) and the tap-length adaptation step-size γk(i).
6) Using the updatedΔk(i) andψ

(i)
k , this node updates the segmented error accord-

ing to (18k).
7) Finally, the local tap-length is computed according to (18l) and (18m), and the

length of the vectors are adjusted accordingly.
This iteration is concluded when node k exchangesψ

(i)
k , Lk, f (i), ρk(i),Δk(i), and

γk(i) with its neighbors {� ∈ ℵk}.

4 Steady-State Analysis

This section provides a steady-state analysis. This approximate analysis is intended to
give an insight into the effect of the parameters on the steady-state tap-length adaptation
step-size and error width. This analysis is convincing to put the boundaries on error
width and tap-length step-size. For the convenience of the analysis, we consider several
assumptions as
A1) uLopt k,i is independent of uLopt�, j for k �= �, and i �= j .
A2) The regressors uLopt k,i are Gaussian with the eigendecomposition Ru,k =
QkΛk Q∗

k , where Qk is unitary and Λk is a diagonal matrix with the eigenvalues
of Ru,k .
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A3) The steady-state excess mean squared error is enough smaller than the noise
variance, and consequently, the error eLk (i)

(
ψk,i

)
in each node is approximately equal

to the noise vk(i). Note that this assumption is only feasible when the step size is so
small. Nevertheless, it provides the insight we investigate

Equations (18h)-(18j) combine the updates of several interconnected algorithms and
also the network topology. Therefore, subsequent analysis tends to be challenging. To
proceed with this analysis, we define the following global quantities.

Γ i � col {γ1 (i) , γ2 (i) , . . . , γN (i)}
Δi � col {Δ1 (i) , Δ2 (i) , . . . , ΔN (i)}
Pi � col

{
ρ1 (i) , ρ2 (i) , . . . , ρN (i)

}

B � diag
{
β1 IL(∞), β2 IL(∞), . . . , βN IL(∞)

}

ei � col
{
eL1(i)

(
ψ1,i

)
, eL2(i)

(
ψ2,i

)
, . . . , eLN (i)

(
ψN ,i

)}

Θ � diag {θ1, θ2, . . . , θN }
T � diag {τ1, τ2, . . . , τN }

Γ (a),i � col
{
γ

(a)
1 (i) , γ

(a)
2 (i) , . . . , γ

(a)
N (i)

}

Δ(a),i � col
{
Δ

(a)
1 (i) , Δ

(a)
2 (i) , . . . , Δ

(a)
N (i)

}

P(a),i � col
{
ρ

(a)
1 (i) , ρ

(a)
2 (i) , . . . , ρ

(a)
N (i)

}

Ui � diag
{
u1,i , u2,i , . . . , uN ,i

}

vi � col {v1 (i) , v2 (i) , . . . , vN (i)}
Kκ � diag {κ1, κ2, . . . , κN }
Hη � diag {η1, η2, . . . , ηN }

(19)

With these definitions, relations (18c) and (18h) admit the global description as
follow:

P(a),i = GPi−1

Pi = BP(a),i + (I − B)UT
i e

i (20)

or, in an equivalent compact form: c

Pi = BGPi−1 + (I − B)UT
i ei (21)

withG � C⊗ IL(∞), where⊗ stands for the Kronecker product. By assuming P0 = 0,
(21) can be written as

Pi =
i∑

n=0

(BG)i−n (I − B)UT
n e

n (22)

The mean squared norm of the smoothed gradient is obtained as

E

{∥
∥
∥Pi

∥
∥
∥
2
}

=
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m=0

i∑

n=0

E
{(
em

)T
Um (I − B) (GB)i−m(BG)i−n (I − B)UT

n e
n
}

(23)
The subsequent analysis considers the summand at the steady-state. So, by assuming
that the algorithm has converged, we have:

E
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∥Pi

∥
∥
∥
2
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=
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i∑

n=0

E
{(
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}
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n=0

E
{
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{(
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)T
Um (I − B) (GB)i−m(BG)i−n (I − B)UT

n v
n
}}
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=
i∑

m=0

i∑

n=0

E
{
tr

{
vn

(
vm

)T
Um (I − B) (GB)i−m(BG)i−n (I − B)UT

n

}}

=
i∑

m=0

i∑

n=0

tr
{
E
{
vn

(
vm

)T
}
E
{
Um (I − B) (GB)i−m(BG)i−n (I − B)UT

n

}}

(24)

and since the noise signal is independent over time

E

{∥
∥
∥Pi

∥
∥
∥
2
}

=
i∑

n=0

tr
{
ΛvE

{
Un (I − B) (GB)i−n(BG)i−n (I − B)UT

n

}}
(25)

where Λv = diag
{
σ 2

v,1, σ
2
v,2, . . . , σ

2
v,N

}
. By defining Hi−n = (GB)i−n(BG)i−n ,

(25) can be written as

E

{∥
∥
∥Pi

∥
∥
∥
2
}

=
i∑

n=0

tr
{
ΛvE

{
Un (I − B) Hi−n (I − B)UT

n

}}
(26)

Considering assumption (A2), let to define:

Ui = UiQ

H
i−n = QT Hi−nQ

(I − B) = QT (I − B)Q = (I − B)

(27)

where Q = diag {Q1, Q2, . . . , QN }. Due to the unitary property of Q, i.e., QTQ =
QQT = I , the expectation in (26) can be written as

E
{
UnQQT (I − B)QQT Hi−nQQT (I − B)QQTUT

n

}

= E
{
Un (I − B) H

i−n
(I − B)U

T
n

} (28)

The k� entry of this expectation is given by

(
E
{
Un (I − B) H

i−n
(I − B)U

T
n

})

k�
=

{
0 k �= �

(1 − βk)
2tr

{
Λk H

i−n
kk

}
k = �

(29)
where H

i−n
k� is the k� -block of H

i−n
. So that the summand in (26) gives

tr
{
ΛvE

{
Un (I − B) Hi−n (I − B)UT

n

}}
= zTh

i−n
(30)

withh
i−n = bvec

{
H

i−n
}
, z = bvec

{
Rv(I − B)2Λ

}
,Λ = diag {Λ1,Λ2, . . . , ΛN }

and Rv = Λv � IL(∞). Here,� denotes the block Kronecker product, and bvec stands
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for block vector operator which is defined for a given matrix

X =

⎡

⎢
⎢
⎢
⎣

X11 X12 · · · X1N
X21 X22 · · · X2N
...

...
. . .

...

XN1 XN2 · · · XNN

⎤

⎥
⎥
⎥
⎦

(31)

as

bvec {X} =

⎡

⎢
⎢
⎢
⎣

X1
X2
...

XN

⎤

⎥
⎥
⎥
⎦

(32)

with X� = col {vec {X1�} , vec {X2�} , . . . , vec {XN�}}, where vec stands for the
standard vector operator. vector operator (30) in (26) results in

E
{∥
∥Pi

∥
∥2

}
= ∑i

n=0 z
Th

i−n = zT
∑i

n=0 h
i−n = zT bvec

{∑i
n=0 H

i−n
}

(33)

If all nodes use the same value for βk = β, the matrix B can be replaced by B=β I
which gives rise to

H
i−n = QT Hi−nQ = QT

[
(βG)2

]i−n
Q (34)

From (33) and (34), the steady-state mean squared norm of the smoothed gradient
results as

E
{∥
∥P∞∥

∥2
}

= zT bvec

{

QT
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n=0

[
(βG)2

]i−n
Q

}

= zT bvec
{

QT
(
I − (βG)2

)−1
Q

}

(35)
Using the global description for (18i) and (18j), and tacking expectations of both
sides of them at steady-state, and assuming that the steady-state Pi be a vector of (not
necessarily independent) Gaussian random variables, leads to

E{Δi } = ΘCE{Δi−1} + √
2
Γ ((Lopt + 1)/2)

Γ (Lopt/2)

√
1

NLopt
E
{∥
∥Pi

∥
∥2

}
Kκ1 (36)

and

E{Γ i } = TCE{Γ i−1} + √
2
Γ ((Lopt + 1)/2)

Γ (Lopt/2)

√
1

NLopt
E
{∥
∥Pi

∥
∥2

}
Hη1 (37)

In which we have used Δ(a),i = CΔi−1 and Γ (a),i = CΓ i−1. Here,1 denotes an
N ×1 vector whose entries are all unity. By substituting (35) in (36), and (37) we will
have
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Δ∞ = √
2
Γ ((Lopt + 1)/2)

Γ (Lopt/2)

√
1

NLopt
zT bvec

{
QT

(
I − (βG)2
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Q
}
(I − ΘC)−1Kκ1 (38)

Γ ∞ = √
2
Γ ((Lopt + 1)/2)

Γ (Lopt/2)

√
1

NLopt
zT bvec

{
QT

(
I − (βG)2

)−1
Q
}
(I − TC)−1Hη1 (39)

Let to define global error width and global tap-length adaptation step-size as the
average of these quantities over all nodes:

ΔNet (∞) = 1

N

N∑

k=1

Δk (∞) = 1

N
1TΔ∞ (40)

ΓNet (∞) = 1

N

N∑

k=1

γk (∞) = 1

N
1TΓ ∞ (41)

Therefore, (38)- (41) lead to

ΔNet (∞) = 1

N

√
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Γ (Lopt/2)
√

1

NLopt
zT bvec

{
QT

(
I − (βG)2

)−1
Q
}
1T (I − ΘC)−1Kκ1 (42)

ΓNet (∞) = 1

N

√
2
Γ ((Lopt + 1)/2)

Γ (Lopt/2)
√

1

NLopt
zT bvec

{
QT

(
I − (βG)2

)−1
Q
}
1T (I − TC)−1Hη1 (43)

Considering Eq.(42) and Eq.(43), several parameters need to be selected suitably
to ensure a large Δk (i) and γk (i) at initial iterations of adaptation and after imme-
diate variations, which accelerates the tap-length convergence. Also, these proper
choice of parameters should ensure a small Δk (i) and γk (i) for each node at steady-
state to guarantee a small bias and small fluctuations, but not too small to make the
tap-length update insensitive to instantaneous changes. The proposed algorithm is
presented here to solve the problem of selecting two parameters Δk (i) and γk (i).
But now their selection depends on several other parameters, the simultaneous choice
of them affects the steady-state values and, of course, the transient conditions of
the algorithm. One way to overcome this problem is to constraint this parame-
ter as Δk (i) = max (min (Δk (i) ,Δmax) ,Δmin), where 0 < Δmin < Δmax and
γk (i) = max (min (γk (i) , γmax) , γmin), where 0 < γmin < γmax. The upper bands
are selected to guarantee that the algorithm does not fail, and the lower bands are
chosen to ensure the feasibility of the algorithm. As the simulations will show in the
next section, this restriction solves the problem of selecting different parameters. At
the same time, the expected performance of the algorithm is obtained.
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(a) (b)

Fig. 1 Network topology (a), and regressor variances (b) for N = 20 nodes

5 Simulation Results

To show the performance of the proposed method, we perform several simulations in
this section. First, the performance of the proposed method is tested under the low
noise condition for two different optimal tap-length cases. Then, the performance of
the proposed method under high noise conditions is tested. The last experiment is
conducted to test the tracking behavior of the proposed algorithm, where the optimal
tap-length changes unpredictably. The network topology with N = 20 sensors is
shown in Fig 1a. The measurement noises and regressors are considered uncorrelated
Gaussian processeswith zero-mean, independent in space and time across the network.
The regressor variances are depicted in Fig 1b.

Low noise condition with Lopt = 200: First we consider the low noise condition,
where the noise variances in each node are scaled to realize high signal-to-noise ratios
(SNRs) as is shown in Fig2a. The unknown vectorwo

Lopt
of length Lopt = 200 is drawn

from a zero-mean white Gaussian sequence with variance 0.003. The parameters are
set as μk = 0.008, αk = 0.006, βk = 0.995, θk = 0.94, κk = 60, τk = 0.95, ηk =
50, γmin = 5, γmax = 35,Δmin = 2,Δmax = 30.

Figure 3 depicts the evolution curves for different methods over diffusion adap-
tive networks, including the proposed algorithm, and conventional FT algorithm with
(Δk = Δmin, γk = γmin), (Δk = Δmin, γk = γmax), (Δk = Δmax, γk = γmin), and
(Δk = Δmax, γk = γmax). The results are averaged over 100 independentMonte Carlo
experiments. The global average fractional tap-length and global averagemean-square
deviation (MSD) are defined, respectively, as

LNet
f (i) = 1

N

N∑

k=1

Lk, f (i) (44)

MSDNet (i) = 1

N

N∑

k=1

E

{∥
∥
∥w

o
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− ψk,i

∥
∥
∥
2
}

(45)
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(a)

(b)

Fig. 2 The SNRs across the sensors in the network for (a) low-noise case, and (b) high-noise case
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As we can see from Figure 3, the proposed algorithm converges as fast as the
diffusion FT method with the fixed-parameter (Δk = Δmax, γk = γmax), while the
steady-state tap-length in the proposed method does not have the same bias as the
fixed-parameter (Δk = Δmax, γk = γmax). By reducing the Δk and γk from the Δmax
and γmax in the fixed-parameter diffusion FT, the convergence slows down, and as can
be seen from Fig. 3 it converges slowly, and of course, the length of the steady-state
is biased due to the large Δk . In order not to have a steady-state bias, the Δk must be
reduced to the Δmin, but in the meantime, if γk is selected as the γmin, convergence
will not occur. For the case (Δk = Δmin, γk = γmax), although the steady-state bias
is not expected, the convergence will be greatly reduced. Therefore, the proposed
algorithm enjoys fast convergence similar to the diffusion FT with fixed-parameters
(Δk = Δmax, γk = γmax) and has less steady-state bias similar to the diffusion FT
with Δk = Δmin.

Figure 4 compares the performance of the proposed method with the algorithms
presented in [18] and [35]. For the algorithm presented in [18], the parameters are set
as λ = 0.95,Δmax = 30,Δ(∞) = 2,C = 1, γ = 35, λ1 = 0.9, λ2 = 0.95. For the
algorithm presented in [35], the parameters are set as γM = 35, γm = 5, τ = 1, β =
0.99,Δ = 30. For a fair comparison, the other parameters are considered the same
for all algorithms. As can be seen, compared to the other algorithms, the proposed
method shows better performance in terms of both convergence rate and steady-state
error.

Figure 5 shows the evolution curves of Δk(i) and γk(i). These parameters initiate
from large values, and with the convergence of the algorithm, they end in smaller
values which are suitable for steady-state condition. Note that, since both Δk(i) and
γk(i) are updated with the same measure, they follow the same path of convergence.

Note that, by increasing τk or ηk the width of γk in Fig.4 increases. By decreasing
these parameters, we will have a narrower γk with a smaller peak, such that the peak
will not reach its maximum. Also, θk and κk have a similar effect on Δk . As the βk

increases, the peaks of γk and Δk become narrower, and they will converge slowly.
Low noise condition with Lopt = 100:

In the second simulation, the unknown parameter length is considered to be Lopt =
100. The setup of this simulation is the same as those in the previous simulation
except for μk = 0.01, αk = 0.01, βk = 0.95, and Δmax = 20. The evolution curves
for the proposed algorithm, and conventional FT with (Δk = Δmin, γk = γmin),
(Δk = Δmin, γk = γmax), (Δk = Δmax, γk = γmin), and (Δk = Δmax, γk = γmax)

are depicted in Fig 5 . The definition for the global average fractional tap-length follows
that in (44), and the global average MSE is defined as

MSENet (i) = 1

N

N∑

k=1

(

E

{∣
∣
∣uLopt ,k,i

(
wo

Lopt
− ψk,i

)∣
∣
∣
2
}

+ σ 2
v,k

)

(46)

This simulation shows that the proposed algorithm outperforms the fixed-parameters
diffusion FT regardless of the unknown vector length.

High-noise condition:
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(a)

(b)

Fig. 3 The evolution curves of global tap-length (a) and MSD (b) under the low-noise condition, where
Lopt = 200
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(a)

(b)

Fig. 4 The evolution curves of global tap-length (a) and MSD (b) for different algorithms
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Fig. 5 Evolution curves of γk (i) and Δk (i) of the proposed method

In the third simulation, a high-noise setting is employed, where noise variances are
scaled to realize low SNRs, as is shown in Fig.2b. The setup of this simulation is
the same as those in the first simulation except for μk = 0.006, αk = 0.04, and
βk = 0.997. The evolution curves for the proposed algorithm, and conventional FT
with (Δk = Δmin, γk = γmin), (Δk = Δmin, γk = γmax), (Δk = Δmax, γk = γmin),
and (Δk = Δmax, γk = γmax) are depicted in Fig 7. This simulation shows the effect of
large γk on the steady-state performance. As is clear from Fig 7, the fixed parameters
diffusion FT algorithm with (Δk = Δmax, γk = γmax) exhibits large fluctuations for
steady-state tap-length under high noise condition. On the other hand, reducing the
parameter γk slows down the convergence rate. However, the proposed algorithm has
a high convergence thanks to the large γk in the initial iterations and will stay away
from the steady-state fluctuations by tending the γk to a smaller value.

Evaluating the tracking behavior of the algorithm:
In the last experiment, we test the tracking behavior of the proposed method. The
unknown vector is the same as that in the first simulation, which is drawn from a
zero-mean white Gaussian signal with variance of 0.003, but the tap-length changes
at the 7000th time instant from 150 to 250, and at the 14000th time instant from 250
to 150, and 81 coefficients of wo

Lopt
are set to zero to model a sparse system, i.e.,

wo
250(150 : 230) = 0. The setup of this simulation is the same as those in the first

simulation except for μk = 0.005, αk = 0.05 and βk = 0.96. The evolution curves
for the proposed algorithm, and conventional FT with (Δk = Δmin, γk = γmin),
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(a)

(b)

Fig. 6 The evolution curves of global tap-length (a) and MSE (b) under the low-noise condition, where
Lopt = 100
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(a)

(b)

Fig. 7 The evolution curves of global tap-length (a) and MSD (b) under the high-noise condition
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Fig. 8 The evolution curves of global tap-length (a) and MSD (b), where the optimal tap-length changes
unpredictably
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(Δk = Δmin, γk = γmax), (Δk = Δmax, γk = γmin), and (Δk = Δmax, γk = γmax)

are depicted in Fig. 8.
As can be seen, to converge, track the time-varying scenario and deal with the

sparsity, both large parameters for Δk and γk must be selected. But, the diffusion
FT with fixed- parameters (Δk = Δmax, γk = γmax) leads to large steady-state
bias. The proposed algorithm similar to the diffusion FT with fixed- parameters
(Δk = Δmax, γk = γmax) converges fast and similar to the diffusion FT with fixed-
parameters (Δk = Δmin, γk = γmin) enjoys from low steady-state bias. This indicates
the outstanding performance of the proposed method compared to the diffusion FT
with fixed- parameters.

6 Conclusions

This paper proposed an automatic scheme for selecting the parameters of the dis-
tributed fractional tap-length algorithm for adaptive wireless networks with diffusion
strategy. In the proposed algorithm, error width and length adaptation step-size param-
eters are adjusted based on the estimated gradient vector. The error width controls
the trade-off between the convergence and the steady-state tap-length bias, and the
tap-length adaptation step-size provides a trade-off between tap-length fluctuation
in steady-state and the convergence of the tap-length. Hence, taking a fixed value for
these parameters cannot provide better performance for this algorithm.On this basis, to
eliminate these trade-offs, a variable strategy is proposed for determining these param-
eters. In the proposed approach, these parameters are adapted to obtain an accelerated
convergence in the initial iterations of the algorithm, and a less tap-length fluctuation
and accurate tap-length estimation in the steady-state. The proposed method is fully
distributed and implemented in diffusion cooperation. This distributed adaptation will
result in the superior performance of the proposed algorithm.
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