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Abstract
The problem of 3D digital object invariability is encountered in image processing, 
especially in pattern classification/recognition. The 3D object should be correctly 
recognized regardless of its particular position and orientation in the scene. This 
paper proposes a new method to extract 3D Charlier moment invariants to transla-
tion and scaling (3DCMITS). These descriptors are extracted directly from discrete 
orthogonal Charlier polynomials without using 3D geometric moment invariants. 
This method is fast and does not require any numerical approximation compared to 
the indirect method based on 3D geometric moment invariants. The results show the 
proposed method’s effectiveness in terms of speed with an improvement exceeding 
99,97%. For validation purposes and as an illustration of the interest of 3DCMITS, 
this paper offers a classification system for 3D objects based on the proposed 
3DCMITS and Support Vector Machine (SVM) classifier. The obtained results are 
verified with K-Nearest Neighbor (KNN) classifier and other existing works in the 
literature.
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1 Introduction

Moments have been used successfully in image processing and pattern classifica-
tion applications for many years, as discriminative descriptors, not only because of 
their simplicity but also for the extraordinary variety of subjects and applications 
where they are enlightened. Moments are used to characterize different types of 2D 
and 3D images in many applications such image analysis [19, 24, 32, 41], pattern 
recognition [1, 8, 11, 17, 27], face recognition [9], image reconstruction [6, 28, 35], 
image watermarking [36, 38, 39], image compression [22], edge detection [2], medi-
cal image analysis [5, 30, 31], stereo image analysis [29, 37, 40].

Among all types of moments, discrete orthogonal moments have considerable 
properties: they are characterized by low information redundancy and high discrimi-
nating power. In addition, they eliminate the need for numerical approximation and 
precisely satisfy the orthogonal property [41]. Discrete orthogonal moments are 
defined by projecting an object/image onto a set of discrete orthogonal polynomials. 
According to the used type of polynomials, various discrete orthogonal moments 
can be obtained, such as Tchebichef [19], Krawtchouk [41], Charlier [16], Meixner 
[25], Hahn [43], and Racah moments [44]. In the classification/recognition field of 
3D objects, the 3D object must be identified regardless of its position (translated or 
rotated) and its size (large or small) [10]. Therefore, invariance to geometric trans-
formations is an essential criterion in these areas. This fundamental requirement 
pushes researchers to extract the invariants of 3D moments. Several works have been 
proposed in this context. The first work on 3D invariants was published by Sadjadi 
and Hall [23]. Their results were later rediscovered (with some modifications) by 
Guo [12]. These authors extracted only the translation, rotation, and scaling invari-
ants from the second order’s geometric moments without any possibility of further 
extension. Many algorithms were later proposed to generalize the computation of 
3D geometric invariant moments [26, 33, 34].

At the beginning of the century, several works have been proposed for computing 
3D discrete invariant moments. These invariants are algebraically derived from the 
invariants of 3D geometric moments. This conventional method (also known as the 
indirect method) has been extended from the 2D case to cover the 3D case. However, 
the numerical approximations used when calculating the invariants of 3D geometric 
moments may cause numerical errors in the computed moments. To solve this problem, 
Hosny [13] calculated the exact values of 2D geometric moments using mathematical 
integration of the monomial terms over digital image pixels. He also offered the pos-
sibility to extend this method to cover the 3D case. This method can be used to reduce 
numerical approximation errors in the calculation of 3D geometric moment invari-
ants. Even if the numerical approximation errors can be reduced by this method, it is 
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limited by the high cost of calculation. This makes invariants of 3D moments derived 
by this method undesirable, especially in real-time systems for which compliance with 
time constraints is a fundamental criterion. As a solution, the authors in [3, 46], and 
[42] developed a method to construct the translation and scaling invariants of 2D Leg-
endre, Tchebichef, and Krawtchouk moments, respectively, directly from their corre-
sponding orthogonal polynomials. Later, the authors in [7, 14], and [1] extended this 
method to derive the translation and scaling invariants of 3D Legendre, Tchebichef, 
and Krawtchouk moments, respectively.

Among 3D discrete orthogonal moments, the 3D Charlier moments (3DCMs) are 
defined as the projection of the 3D image/object onto the Charlier polynomials (CPs). 
The CPs satisfy exactly the orthogonality property in the discrete domain, so the imple-
mentation of these polynomials does not require any numerical approximation. In addi-
tion, these polynomials are discrete, and 3D digital images/objects also, so there is no 
discretization error [18]. CPs are defined by the hypergeometric function 2F0(.) unlike 
the Tchebichef, Krawtchouk, and Hahn polynomials, which are defined by the hyper-
geometric functions 3F2(.) , 2F1(.) and 3F2(.) , respectively, which means that CPs are 
much simpler and contain fewer terms (Pochhammer symbols and factorials) than other 
types of discrete orthogonal polynomials.

Motivated by the interesting properties of CPs, this paper proposes a fast method 
for computing 3D Charlier moment invariants to translation and scaling (3DCMITS) 
directly from CPs. We first develop the translated and scaled CPs by writing them in 
the form of simple summations. Then, we develop the algebraic expressions existing 
between the transformed CPs and the normal CPs. Finally, we use these expressions 
to derive 3DCMITS. This method takes into account the requirements of accuracy and 
calculation time. It considerably reduces the computation time and does not require any 
numerical approximation. The experimental results have shown that the proposed cal-
culation method reduces the calculation time with a rate of more than 99,67% com-
pared to the conventional method.

The proposed descriptors can be applied in applications that require invariance to 
translation and scaling transformations such as 3D object classification, 3D image rec-
ognition, and protection of intellectual property of 3D meshes. For validation purposes 
and as an illustration of the interest of the proposed descriptors, this paper proposes 
a classification system for 3D objects based on the proposed 3DCMITS and Support 
Vector Machine (SVM) classifier. The results are verified with K-Nearest Neighbor 
(KNN) classifier and other existing works in the literature.

The rest of the paper is organized as follows. In Sect. 2, definitions of CPs, 3DCMs 
and conventional invariants of 3DCMs are presented. Section 3 presents the proposed 
method for calculating 3DCMITS. Algorithms for calculating translation and scale 
invariants using the proposed method are also given in this section. Experimental 
results for evaluating the performance of the proposed descriptors are given in Sect. 5. 
Section 6 concludes this paper.
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2  3D Charlier Moments

In this section, we will present the mathematical framework of the theory of 3D 
Charlier moments, including the Charlier polynomials, the 3D Charlier moments 
and the conventional translation and scaling invariants of the 3D Charlier moments.

2.1  Charlier Polynomials

The n th Charlier polynomials (CPs) are defined by using the hypergeometric func-
tion as follows [21]:

where a1 is restricted to a1 > 0 , and 2F0(.) is the hypergeometric function, defined 
as:

and (a)k is the Pochhammer symbol, defined as:

Equation (1) can be rewritten as follows:

where �n,k are the coefficients of the CPs given by:

and ⟨x⟩k is the falling factorial defined as [4]:

where s(k, i) are the Stirling numbers of the first kind.
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The CPs satisfy the following orthogonal condition:

where �(x) and �(n) are the weight function and the squared norm of CPs, respec-
tively, defined as:

The normalized CPs with respect to the norm C̃a1
n (x) are defined as:

To obtain numerical stability, the weighted CPs C
a1

n
(x) are used. They are defined 

as follows:

The CPs satisfy the following recurrence relationship [45]:

where
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Equation (7) leads to the following inverse transform
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where Irec(x, y, z) is the reconstructed 3D image/object.
The difference between the original image/object I(x, y, z) and the reconstructed one 

Irec(x, y, z) is measured by the Mean Square Error (MSE), which is defined as follows:

The 3DCMs presented in this subsection are not invariant under the geometric trans-
formations, such as translation and uniform/non-uniform scaling. In the next subsec-
tion, we present the conventional method for deriving the translation and scaling invari-
ants of 3D Charlier moments.

2.3  Derivation of Translation and Scaling Invariants of 3D Charlier Moments 
Using 3D Geometric Moments

The conventional method to obtain the translation and scaling invariants of 3D Charlier 
moments is to derive them algebraically from the corresponding invariants of 3D geo-
metric moments. This conventional method is called the indirect method. This subsec-
tion provides a brief introduction of this method.

The 3DCMs of a normalized image/object Î(x, y, z) = [𝜔(x)𝜔(y)𝜔(z)]−1∕2I(x, y, z) 
can be developed as follows:

where �n,i are coefficients of CPs, defined as

and mq,l,r are the 3D geometric moments (3DGMs) of order (q + l + r) of the 3D 
image/object I(x, y, z) . The 3DGMs are defined using the discrete approximation as 
follows [10]:
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The 3D geometric moment invariants to translation (3DGMIT) �n,m,k (also 
called the central geometric moments) are defined as follows [10]:

where x , y , and z are the centroid coordinates of the 3D image/object I(x, y, z) , 
defined as:

The 3DGMIT change in case of uniform/non-uniform scaling of the 3D image/
object is expressed as follows:

where a , b , and c are the scaling factors in the x-, y -, and z-direction of the 3D 
image/object, respectively.
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These drawbacks limit the use of the indirect method: The first drawback can influ-
ence the accuracy of the results in all applications where 3DCMITS can be applied such 
as object classification, image recognition, and digital watermarking of 3D meshes. The 
second drawback makes the use of 3DCMITS impossible in real-time systems where 
compliance with time constraints in the execution of processing is very important, as is 
the accuracy of these processing results. This paper proposes a quick method to solve 
these drawbacks, without numerical approximation, to obtain 3DCMITS. This method 
is presented in the following section.

3  Proposed 3D Charlier Moment Invariants to Translation 
and Scaling

In this section, we develop a new method to derive the 3D Charlier moment invariants 
to translation and scaling (3DCMITS). This method uses the particular properties of 
the Charlier polynomials (CPs) to directly derive the 3DCMITS without going through 
the computation of 3D geometric moments (3DGMs). In the first subsection, we pre-
sent the mathematical framework for algebraically deriving the 3D Charlier moment 
invariants to translation (3DCMIT), while in the second subsection, we derive the 3D 
Charlier moment invariants to scaling (3DCMIS). Finally, we offer in the third subsec-
tion the algorithms for calculating these descriptors.

3.1  3D Charlier Moment Invariants to Translation

The 3DCMIT of order ( n + m + k ) are noted ’’ �n,m,k ’’ for abbreviation.
For a normalized 3D image/object Î(x, y, z) = [𝜔(x)𝜔(y)𝜔(z)]−1∕2I(x, y, z) , the 

direct definition of 3DCMIT can be achieved simply by shifting the origin of coordi-
nates at the image/objet centroid, as following:

where x, y and z are given in Eq. (22).
In the following, we will establish the relations between the translated CPs 
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this development, we are only interested in CPs translated in the x-direction, where the 
results found can be obtained in the same way for CPs translated in the y - and z-direc-
tion, respectively.
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where

Using Eq. (26), the CPs translated in the x-direction become:

Substituting the normal CPs into the series of decreasing falling factorials of x , we 
find the following expression:

where

The following relationships can be taken from Eq. (29):
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By examining Eqs. (30–34), we find that the expression vn,n−k(−x) can be written in 
the following form:

where

Since we are interested in the normalized CPs defined by Eq. (10), we will general-
ize Eqs. (35) and (36).

By using Eqs. (4) and (10), the normalized normal CPs C̃a1
n (x) and the normalized 

translated CPs C̃a1
n (x − x) are expressed as follows:
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Finally, the normalized translated CPs can be expressed in terms of normalized nor-
mal CPs as follows:

The result of Eq. (43) can also be generalized for normalized translated CPs in the y 
and z directions as follows:

By substituting Eqs. (43) - (45) in Eq. (24), the 3DCMIT become:

Eq. (46) shows that 3DCMIT are derived directly from 3DCMs.
It should be noted that the expression f̃ (.) in Eq.  (46) is independent of the 3D 

image/object. Therefore, this expression can be pre-computed, stored, recalled when-
ever it is needed to avoid repetitive computation.

3.2  3D Charlier Moment Invariants to Scaling

Either a 3D image/object is scaled non-uniformly with the scaling factors a , b and c in 
the x -, y - and z-direction, respectively, the 3DCMs are changed as follows:

In the following, we will establish the relations between the normalized scaled CPs 
{ ̃Ca1

n (ax) , C̃a1
m (by) , C̃a1

k
(cz) } and the normalized normal CPs { ̃Ca1

n (x) , C̃a1
m (y) , C̃a1

k
(z) }. 

We are interested in this development only in the normalized CPs scaled in the x-direc-
tion, where the results found can be obtained in the same way for the normalized CPs 
scaled in the y - and z-direction, respectively.

The normalized CPs scaled in the x-direction can be expressed as a series of decreas-
ing powers of x , using Eqs. (7) and (5), as follows:

(43)C̃a1
n
(x − x) =

n�

q=0

f̃ (n, k)⟨−x⟩qC̃a1
n−q

(x)

(44)C̃a1
m
(y − y) =

m�

l=0

f̃ (m, l)⟨−y⟩lC̃
a1
m−l

(y)

(45)C̃
a1
k
(z − z) =

k�

r=0

f̃ (k, r)⟨z⟩rC̃
a1
k−r

(z)

(46)𝜑n,m,k =

n�

q=0

m�

l=0

k�

r=0

f̃ (n, q)f̃ (m, l)f̃ (r, k)⟨−x⟩q⟨−y⟩l⟨−z⟩rCMn−q,m−l,k−r

(47)CM�
n,m,k

= abc

N−1∑

x=0

M−1∑

y=0

K−1∑

z=0

C̃a1
n
(ax)C̃a1

m
(by)C̃

a1
k
(cz)I(x, y, z)
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where

It can be easily deduced from Eq. (48) the relationship between C̃a1
n (ax) and C̃a1

n (x) 
as follows:

where

The normalized CPs scaled in the y - and z-direction can also be expressed as a 
function of normalized normal CPs as follows:

From Eqs. (47), (50), (52), (53), we deduce the relationship between scaled 
3DCMs and normal 3DCMs:

The following relationships can be drawn from Eq. (54):

(48)

C̃a1
n
(ax) =

n�

k=0

�̃�n,k⟨ax⟩k =
n�

k=0

�̃�n,k

k�

i=0

s(k, i)aixi

=

n�

k=0

k�

i=0

�̃�n,n−ks(k, i)a
ixi =

n�

i=0

n−i�

k=0

�̃�n,n−ks(n − k, i)aixi

=

n�

i=0

𝜒n,ia
ixi

(49)𝜒n,i =

n−i∑

k=0

�̃�n,n−ks(n − k, i)

(50)
n∑

q=0

𝛾n,qC̃
a1
q
(ax) = an

n∑

q=0

𝛾n,qC̃
a1
q
(x)

(51)

�n,n = 1

�n,q =

n−q−1∑

i=0

−
�n−i,q�n,n−i

�q,q

(52)
m∑

l=0

𝛾m,lC̃
a1
l
(by) = bm

m∑

l=0

𝛾m,lC̃
a1
l
(y)

(53)
k∑

r=0

𝛾k,rC̃
a1
r
(cz) = ck

k∑

r=0

𝛾k,rC̃
a1
r
(z)

(54)

�n,m,k =

n∑

q=0

m∑

l=0

k∑

r=0

�n,q�m,l�k,rCM
�
q,l,r

= an+1bm+1ck+1
n∑

q=0

m∑

l=0

k∑

r=0

�n,q�m,l�k,rCMq,l,r
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The scaling factors ( a , b , and c ) in �n,m,k can be canceled using the following 
normalization:

The �n,m,k are uniform/non-uniform scaling invariants of 3D Charlier moments.

Proof Let �′
n,m,k

 denotes the scaled version of �n,m,k , the relationship between them 
is:

The proof is completed.

Eq. (56) shows that 3DCMIS are directly derived from 3DCM.

3.3  Algorithms

After having calculated 3DCMIT and 3DCMIS by the proposed method, we sum-
marize the steps for calculating these descriptors in the algorithms1 and 2.

Algorithm  1: Computation of 3D Charlier moment invariants to translation 
(3DCMIT).

(55)

1)�0,0,0 = abcCM0,0,0

2)�n,0,0 = an+1bc

n∑

q=0

�n,qCMq,0,0

3)�0,m,0 = abm+1c

m∑

l=0

�m,lCM0,l,0

4)�0,0,k = abck+1
k∑

r=0

�k,rCM0,0,k

(56)�n,m,k =
�n,m,k�

�+2

0,0,0

�(n+�),0,0�0,(m+�),0�0,0,(k+�)

;� = 0, 1, 2, .....

(57)

��
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=
� �
n,m,k

�
��+2

0,0,0

� �
(n+�),0,0

� �
0,(m+�),0

� �
0,0,(k+�)

=
an+1bm+1ck+1�n,m,k a

�+2b�+2c�+2�
�+2

0,0,0
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�c�bm+1+��0,(m+�),0 a
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=
�
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�(n+�),0,0 �0,(m+�),0 �0,0,(k+�)

⋅ �n,m,k

=�n,m,k
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Algorithm  2: Computation of 3D Charlier moment invariants to scaling 
(3DCMIS).

The algorithms 1 and 2 can be combined to obtain the 3D Charlier moment invar-
iants to translation and scaling (3DCMITS). The 3DCMITS of order (n + m + k) are 
noted ’’Φn,m,k ’’ for abbreviation.

4  Experimental Results

In this section, we give experimental results to validate the performance of the pro-
posed descriptors. This section is divided into four subsections. In the first subsec-
tion, we test the ability of 3DCMs to reconstruct 3D images/objects. In the second 
subsection, we evaluate and compare the invariability of 3DCMIT and 3DCMIS 
derived by the proposed method and by the indirect method. In the third subsection, 
we compare the calculation time of 3DCMIT and 3DCMIS by the proposed method 
and the indirect method. In the last subsection, we present a classification system for 
3D objects based on the proposed 3DCMITS and the SVM and KNN classifiers in 
both noise-free and noisy conditions.

4.1  3D object reconstruction using 3D Charlier Moments

The reconstruction of the original image/object from a set of its moments has 
been discussed in the literature quite often, because the reconstruction abilities of 
moments are connected with their classification power. Studying the image/object 
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reconstruction problem provides an insight into moment properties that are impor-
tant for classification without performing classification experiments. That’s why so 
many authors have discussed image reconstruction from different moments in their 
papers [10]. In this subsection, we show the ability of 3DCMs to reconstruct 3D 
images/objects. In the first test, we use three objects "Ant", "Human", and "Teddy-
bear" of size 128 × 128 × 128 (Fig. 1) extracted from the McGill 3D Shape Bench-
mark database [47]. The reconstruction tests are performed using 3DCMs with vari-
ous values of moment order, ranging from 1 up to 125. Figure 2 shows the MSEs 
between the original objects and the reconstructed ones according to the recon-
struction order ranging from 1 to 125. A set of reconstructed objects is shown in 
Fig. 3. Figure 2 show that MSEs decrease with increasing order of reconstruction. 
It is also shown that from order 60 ( n = 20, m = 20, k = 20 ) the MSEs tend toward 
zero, which means that the reconstructed objects are very similar to the original 
ones. This is clearly shown in Fig. 3. These results show the ability of the 3DCMs 
to reconstruct 3D objects from a limited number of moments. Therefore, the lower 
order 3DCMs can replace a 3D object in all applications in order to reduce process-
ing time.

In the second test, we compare the ability of 3DCMs to reconstruct 3D medi-
cal images. For this, we use a 3D Magnetic Resonance Image (3DMRI) of size 
100 × 100 × 100 which is shown in Fig.  4. The capacity of 3DCMs is compared 

Fig. 1  Original 3D objects of size 128 × 128 × 128; a "Ant", b "Human", and c "Teddy-bear "

Fig. 2  MSE of "Ant", "Human", 
and "Teddy-bear" 3D objects 
using 3DCMs
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with that of other types of discrete orthogonal moments, such as 3D Krawtchouk 
moments (3DKMs), 3D Tchebichef moments (3DTMs), and 3D Hahn moments 
(3DHMs). Figure  5 shows the results of this comparison. This figure shows that 
the MSEs of all these moments tend towards zero with the increase in reconstruc-
tion order, which means that these moments are able to reconstruct the 3D medi-
cal images that have a high degree of complexity. It is also shown that the recon-
struction performance of 3DCMs, 3DKMs, 3DTMs, and 3DHMs are very similar to 
each other, with reconstruction errors of the same order of magnitude (10−3) , with 
a relative advantage of 3DCMs and 3DKMs when using low and high reconstruc-
tion orders, respectively. The results of this subsection clearly show that 3DCMs 
can successfully describe 3D images/objects with a limited number of orders, which 
means that these descriptors are desirable in applications that suffer from computa-
tional complexity.

Original objet Reconstruction order
(10, 10, 10) (20, 20, 20) (30, 30, 30)

Fig. 3  Reconstruction of "Ant", "Human", and "Teddy-bear " objects using 3DCMs for different clas-
sification order

Fig. 4  3D Magnetic Reso-
nance Image (3DMRI) of size 
100 × 100 × 100
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4.2  Invariability

In this subsection, we test the invariability of the proposed 3DCMIT and 3DCMIS 
under the geometric transformations of translation and uniform/non-uniform scal-
ing. For this purpose, two 3D objects "Four" and "Airplane" (Fig.  6) of size 
128 × 128 × 128 extracted from the McGill 3D Shape Benchmark database [47], are 
used as test objects. In order to measure the capacity of the proposed invariants to 
remain unchanged under the translation and uniform/non-uniform scaling, we use as 
objective criterion the deviation of the moments, which is defined as follows:

where � and � denotes the standard deviation and the mean of the 3D Charlier 
moment invariants, respectively. The small value of deviation X indicates that the 
invariants of the 3D Charlier moments are robust with respect to the translation 

(58)X =
�

|�| × (100%)

(a) (b)

Fig. 5  a Comparison of the reconstruction errors for 3DMRI by using 3DCMs, 3DKMs, 3DTMs, and 
3DHMs. b Enlarge part of (a)

Fig. 6  The 3D test object in subsection 4.2: a "Four", b "Airplane"
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and uniform/non-uniform scaling. The parameter of CPs a1 is fixed at the value 
(N +M + K)∕3 , where N ×M × K is the size of 3D object, and the invariants of 3D 
Charlier moments are calculated up to order three in this subsection.

In the first test, we check the efficiency of the 3DCMIT descriptors constructed 
via Eq. (46). The original 3D object "Four" shown in Fig. 6a is translated with a 
set of translation vectors in the x-, y -, and z-direction. Fig. 7 shows a set of trans-
lated objects. The values of the 3DCMIT of some orders are presented in Table 1. 
It can be seen from this table that the deviation X of the values of the 3DCMIT 
is equal to zero, which means that the 3DCMIT remain unchanged whatever the 
translation effected to 3D object. Therefore, 3DCMIT are very robust against 3D 
object translation.

In the second test, we check the effectiveness of the proposed 3DCMIS 
descriptors constructed via Eq. (56). The original object "Four" is scaled non-uni-
formly in the x-, y -, and z-direction. Figure 8 shows a set of scaled "Four" object. 
Table 2 shows the values of 3DCMIS. This table clearly shows that the values of 
3DCMIS remain unchanged under different non-uniform scaling transformations 
and that the deviation X is equal to zero, which proves the robustness of 3DCMIS 
with respect to the uniform/non-uniform scaling transformation.

In the last test, we compare the invariability of the 3DCMITS by two methods: 
the indirect method based on Eq.  (23), and the proposed method based on Eqs. 
(46) and (56). The 3D object "Airplane" presented in Fig. 6b is transformed by 
a set of mixed translation and scaling transformations. A set of transformed 3D 
"Airplane" objects is shown in Fig.  9. Table  3 shows the values of 3DCMITS 
obtained by the two methods. From Table 3 we can see that the deviation X of 
the proposed 3DCMITS are very small ( 10−10 ) under the mixed transformations 
of translation and scaling, which shows that the 3DCMITS values of the trans-
formed objects are very similar and almost identical to each other. In addition, the 
proposed 3DCMITS are very robust compared to the 3DCMITS derived from the 
indirect method which gives a deviation X of order 10−4 . Therefore, the proposed 
method offers better robustness against translation and scaling transformations 
than the indirect method. These satisfactory results are obtained thanks to the 
adopted strategy of extracting these invariants which does not require any numer-
ical approximation, thus increasing the computational accuracy of 3DCMITS.

Fig. 7  Set of translated 3D "Four" object
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4.3  The Computational Time of 3DCMITS

In this subsection, we evaluate the computation time of 3DCMIT and 3DCMIS. In 
the first test, we compare the computation time of 3D Charlier moment invariants 
using the proposed method and the indirect method. The Execution Time Improve-
ment Ratio (ETIR) [15] is used as a criterion in this comparison. This ratio is 
defined as ETIR (% ) = (1 − Time1∕Time2) × 100 , where Time1 and Time2 are the 
execution time of the proposed method and the indirect method, respectively. Both 
methods are identical in terms of speed if ETIR = 0% . The three objects of "Ant", 
"Human", and "Teddy-bear" (Fig. 1) are used as test objects. These objects are trans-
formed with translations Δi = Δj = Δk going from − 1 to 2, and scaled in the x, y 
and z directions with scaling factors a = b = c going from 0.5 to 2. The calculation 
process is performed 10 times for moment orders ranging from 1 to 12, from 1 to 24 
and from 1 to 36 for each object. Tables 4 and 5 represent the average calculation 
time and the ETIR(%) of 3DCMIT and 3DCMIS, respectively. These tables show 
that the proposed method is faster than the indirect method with an improvement 
more than 99,67%. It should be noted that the ETIR is 99.67% for the test of transla-
tion invariance and 99,97% for the test of scaling invariance, which proves the effec-
tiveness of the proposed method in terms of speed compared to the indirect method.

In the second test, we evaluate the speed of the proposed 3DCMITS for 3D medi-
cal images. For that, the 3DMRI in Fig.  4 is used as a test image. This image is 
translated with the translation vector ( Δi = −10 , Δj = +6 , Δk = +10 ) and scaled 
with the scaling factors ( a = 1.1 , b = 0.8 , c = 1.4 ). The 3DCMITS based on the pro-
posed method are compared with the 3D Tchebichef moment invariants (3DTMI) 
and the 3D Krawtchouk moment invariants (3DKMI) which are based on the meth-
ods presented in papers [7] and [1], respectively. The speed of these methods is also 
compared with that of indirect methods. The process of calculating these invari-
ants is carried out 10 times for orders ranging from 0 to 12. The average times and 
the average ETIR are presented in Table 6. The results of Table 6 clearly indicate 
that the 3DCMITS based on the proposed method are very fast than those based 
on the indirect method with an improvement of 99,97%. These results also show 
that the computation time of 3DCMITS is less than the computation time of 3DTMI 
and 3DKMI based on the methods presented in [7] and [1], respectively. This may 
be due to the choice of Charlier polynomials as the basic function where they are 
defined by the hypergeometric function 2F0(.) which contain fewer Pochhammer 

Fig. 8  Set of scaled 3D "Four" object
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terms and factorials, unlike the Tchebichef and Krawtchouk polynomials which are 
defined by the hypergeometric functions 3F2(.) and 2F1(.) , respectively.

4.4  3D Object Classification

For validation purposes and as an illustration of the interest of 3DCMITS, this sub-
section proposes a 3D object classification system to evaluate the performance of 
the proposed 3DCMITS. The proposed system is based on the proposed 3DCMITS 
and the Support Vector Machine (SVM) classifier. And to verify the found results, 
the K-Nearest Neighbor (KNN) classifier is also used in this study.

The performances of classification system based on the proposed 3DCMITS are 
compared with classification systems based on 3D Legendre moment invariants 
(3DLMI) [14], 3D Krawtchouk moment invariants (3DKMI) [1], and 3D Tchebichef 
moment Invariants (3DTMI) [7]. It should be noted that the 3DCMITS based on the 
indirect method are not considered in this subsection because of their high computa-
tion time.

The 3D object classification system consists of four main phases: the data pre-
processing phase (training set and test set). Then, the construction phase of the fea-
ture vectors. Then, the data classification phase using the SVM classifier, and finally 
the validation phase and decision-making. The flowchart of the proposed classifier 
system is presented in Fig. 10 and described as follows:

4.4.1  Phase 1: Data Preprocessing

The McGill 3D Shape Benchmark database [47] is used in this paper to validate 
the proposed 3DCMITS-based classification system. This database contains 19 dif-
ferent objects and each object has between 20 and 30 exemplars. For each object, 
the first three samples (Object_1, Object_2, Object_3) of size 128 × 128 × 128 are 
selected in order to create a base of 57 objects ( 19 classes × 3 ). Three datasets were 
constructed for the purpose of this work: (1) Dataset No. 1 includes 1368 objects 
( 57 × 24instances ) and is produced by the non-uniform scaling of the 57 objects 
with the scaling factors a, b, c ∈ {0.5, 0.75, 1.25} , the case of a = b = c is not 
considered. (2) Dataset No. 2 comprises 1539 objects ( 190 × 27instances ) and is 
produced by translating the 57 objects with the translation vectors TV(Tx, Ty, Tz) 
where Tx, Ty, Tz ∈ {−6, +2,+10} . (3) Dataset No. 3 comprises 3078 objects 

Fig. 9  Set of 3D "Airplane" object transformed by a set of mixed translation and scaling transformations
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Table 4  The Average times (s) of the 3DCMIT for the 3D objects using the proposed method and the 
indirect one

Bold indicates the best results obtained in the experimental study

Translation factor Proposed method Indirect method

Order 12 Order 24 Order 36 Order 12 Order 24 Order 36

 − 1 0,05 0,98 1,81 55,77 209,05 751,58
0 0,11 1,1 1,98 56,35 211,55 743,04
1 0,04 1,03 2,04 54,93 208,26 741,79
2 0,04 1,12 2,65 55,86 215,25 742,1
Average time 0,06 1,058 2,12 55,728 211,03 744,63
Total average time 1,08 337,13
ETIR (%) 99,67%

Table 5  The Average times (s) of the 3DCMIS for the 3D objects using the proposed method and the 
indirect one

Bold indicates the best results obtained in the experimental study

Scaling factor Proposed method Indirect method

Order 12 Order 24 Order 36 Order 12 Order 24 Order 36

0.5 0,0075 0,022 0,074 5,27 68,12 364,35
1 0,013 0,099 0,17 54,78 213,05 743,98
1.5 0,034 0,10 0,19 186,47 393,5 913,5
2 0,09 0,22 0,39 306,47 834,13 1528,5
Average time 0,036 0,11 0,206 138,25 377,2 887,58
Total average time 0,117 467,67
ETIR (%) 99,97%

Table 6  Average times (s) 
and reduction percentage 
of invariant moments for 
transformed 3DMRI

Bold indicates the best results obtained in the experimental study

Descriptors Average time computation (s) of 
invariant moments using

Direct method Indirect method ETIR (%)

3DCMITS 0,0135 58,72 99,97%
3DTMI [7] 0,585 67,36 99,13%
3DKMI [1] 0,275 61,50 99,55%

Data 
preprocessing

Features 
extraction

SVM 
classifier Decision

Fig. 10   3D Object recognition process
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( 57 × 54instances ) and is generated with mixed translation and scale trans-
formations of the 57 objects using translation vectors TV(Tx, Ty, Tz) where 
Tx, Ty, Tz ∈ {−6, +6} and scaling factors a, b, c ∈ {0.75, 1.5} , respectively. 
Finally, the salt-and-pepper noise is added in the three datasets mentioned above 
with the densities {1%, 2%, 3%, 4%}. In this paper, we choose 15% of the objects as 
a training set and the remaining 85% as a test set.

4.4.2  Phase 2: Construction of Feature Vector

The choice of an appropriate characteristic vector is a critical factor to have a high 
classification rate. For this, we only take into account the first 64 coefficients of the 
3DCMITS. The lower order moments choice is justified by their ability to represent 
the significant characteristics of 3D objects and by their robustness against noise 
attacks [10]. For each object, the selected coefficients of the 3DCMITS are used to 
construct the following one-dimensional feature vector:

Finally, each data object (the training set) is represented by a pair of {Class label, 
feature vector ��⃗V}.

4.4.3  Phase 3: Classifier

For high correct prediction of test data, the SVM classifier is adopted in this work 
because of their usefulness for data classification. Based on the training data, the 
SVM classifier produces a model that predicts the test data labels based on feature 
vectors of the test data. To avoid the numerical difficulties during computation, the 
feature vectors are first scaled to put their elements in the range [− 1, + 1]. Another 
reason for using this normalization is to avoid that feature vectors in larger numeri-
cal ranges dominate feature vectors in smaller numerical ranges. As the kernel of the 
model, the Radial Basis Function (RBF) is chosen in this classification test because 
of its ability to handle the case where the relationship between class labels and fea-
ture vector attributes is nonlinear. In addition, the RBF presents less numerical dif-
ficulties and it has only two parameters: penalty parameter C and � parameter, which 
does not increase the complexity of the choice of the model unlike other kernels 
which have a high number of parameters. To identify the best parameters C and � , 
cross-validation is first used in our context. Then, the voucher ( C,� ) is used to form 
the training set.

4.4.4  Phase 4: Decision

The accuracy of 3D object recognition is measured by the following Correct Recog-
nition Percentage (CRP):

(59)��⃗V = {V1,V2,V3, .......,V64}

(60)CRP =
Number of correctly classified 3D objects

The total of 3D objects used in the test
× 100
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The classification performance of the proposed 3DCMITS is verified and com-
pared with that of 3DLMI, 3DKMI, and 3DTMI presented in papers [1, 14], and [7], 
respectively. The classification accuracies based on SVM classifier of sets No. 1, No. 
2 and No. 3 are presented in Tables 7, 8 and 9, respectively.

Examining the results of these tables, Table 7 shows that for the case of 3D 
objects transformed by translation (Dataset No. 1), 3DCMITS, 3DTMI, and 
3DKMI lead to high classification rates, with a relative preference for the 3DTMI 
which present the rate of 87,59%, while the proposed 3DCMITS and 3DKMI pre-
sent the rates of 87,40% and 87,29%, respectively. In contrast, 3DLMI have the 
lowest rate with a rate of 79.96%. In Table 8, it is clearly shown that for the case 
of scaled 3D objects (Dataset No. 2), the proposed 3DCMITS result in the high-
est classification rates. The 3DCMITS have the highest rate of 86,64%, followed 
by 3DLMI with 79,12%, while 3DKMI and 3DTMI have the lowest rates of 

Table 7  Classification results of the 3D objects with translation transformations using SVM classifier

Bold indicates the best results obtained in the experimental study

Descriptors Noise-free Salt-and-pepper noise

0% 1% 2% 3% 4% Average CRP

Proposed 3DCMITS 95,72 90,42 87,86 83,55 79,46 87,402
3DLMI [14] 89,46 84,29 79,29 75,14 71,63 79,962
3DKMI [1] 95,63 91,38 87,36 83,07 79,02 87,292
3DTMI [7] 95,52 91,26 87,91 83,72 79,54 87,590

Table 8  Classification results of the 3D objects with scaling transformations using SVM classifier

Bold indicates the best results obtained in the experimental study

Descriptors Noise-free Salt-and-pepper noise

0% 1% 2% 3% 4% Average CRP

Proposed 3DCMITS 94,49 90,25 86,71 83,06 78,69 86,640
3DLMI [14] 87,57 83,86 78,77 74,29 71,11 79,120
3DKMI [1] 83,78 79,50 74,97 70,54 67,59 75,276
3DTMI [7] 76,45 73,83 69,60 66,65 63,07 69,920

Table 9  Classification results of the 3D objects with translation and scaling transformations using SVM 
classifier

Bold indicates the best results obtained in the experimental study

Descriptors Noise-free Salt-and-pepper noise

0% 1% 2% 3% 4% Average CRP

Proposed 3DCMITS 91,85 87,72 84,86 80,70 75,81 84,188
3DLMI [14] 83,33 81,17 77,49 73,57 69,82 77,076
3DKMI [1] 81,25 76,76 73,36 69,07 65,50 73,188
3DTMI [7] 74,73 70,52 67,52 63,94 60,52 67,446
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75,28% and 69,92%, respectively. This is mainly due to the method of extracting 
the scale invariants of 3D moments of Krawtchouk and Tchebichef, respectively. 
The advantages of the proposed descriptors are clearly highlighted when data-
set No. 3 is used: Table 9 shows that for the case of mixed translation and scal-
ing transformations, 84,19% of 3D objects are classified correctly using the pro-
posed 3DCMITS, while 77,08%, 73,19%, and 67,45% for the 3DLMI, 3DKMI, 
and 3DTMI, respectively. It should be noted that recognition accuracy decreases 
with increasing noise. However, the proposed 3DCMITS have recognition rates in 
excess of 84% even at high noise intensities. These results show that the proposed 
Charlier invariant moments are robust to translation and scaling transformations, 
whose recognition rate is higher than those of the 3D invariant moments of Leg-
endre [14], Krawtchouk [1], and Tchebichef [7].

In order to confirm the above discussions and to validate the results found, the 
classification process is redone using the K-Nearest Neighbor (KNN) classifier. 
The Euclidean distance [20] is used for the KNN classifier and the value of the K 
parameter (number of nearest neighbors) is chosen by varying K until the mini-
mum error is reached. The classification results of datasets No. 1, No. 2 and No. 
3, based on the KNN classifier, are presented in Tables 10, 11, and 12, respec-
tively. The results of these tables indicate that the proposed 3DCMITS lead to 
the highest classification rates and are superior to 3DLMI, 3DKMI, and 3DTMI, 
which result in the lowest classification rates. These results confirm the previous 
discussions in terms of the studied descriptors’ effectiveness for the 3D object 
classification. It should also be noted that the results found based on the SVM 

Table 10  Classification results of the 3D objects with translation transformations using KNN classifier

Bold indicates the best results obtained in the experimental study

Descriptors Noise-free Salt-and-pepper noise

0% 1% 2% 3% 4% Average CRP

Proposed 3DCMITS 91,85 87,71 84,16 80,29 75,06 83,814
3DLMI [14] 85,53 79,64 75,25 71,04 67,82 75,856
3DKMI [1] 91,52 87,35 84,03 80,17 74,95 83,604
3DTMI [7] 91,43 87,65 84,27 80,35 75,24 83,788

Table 11  Classification results of the 3D objects with scaling transformations using KNN classifier

Bold indicates the best results obtained in the experimental study

Descriptors Noise-free Salt-and-pepper noise

0% 1% 2% 3% 4% Average CRP

Proposed 3DCMITS 86,47 81,89 76,38 72,70 69,93 77,474
3DLMI [14] 81,53 77,54 73,27 68,02 64,65 73,002
3DKMI [1] 79,62 74,21 70,05 64,85 62,52 70,250
3DTMI [7] 73,48 67,73 65,16 61,28 58,95 65,320
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classifier are higher than those based on the KNN classifier: with the proposed 
3DCMITS, 87,40%, 86,64%, and 84,19% of objects are well classified using SVM 
classifier for dataset No. 1, dataset No. 2, and dataset No. 3, respectively. While 
83,81%, 77,47%, and 75,73% are well classified using KNN classifier. This is due 
to the superiority of the SVM which offers satisfactory results in the field of 3D 
object classification/recognition.

5  Conclusion

In this paper, we have proposed a fast method for calculating the translation and 
scaling invariants of 3D Charlier moment. This method is based on the extraction 
of these invariants directly via the Charlier polynomials without any numerical 
approximation. The calculation of these descriptors using this method allows, on 
the one hand, to considerably reduce the calculation time with an improvement of 
99,97%, and on the other hand, to increase the robustness against translation and 
scale transformations. The interest of the proposed 3DCMITS is shown in the 3D 
object recognition application. The noise robustness and recognition accuracy of 
the proposed 3DCMITS are studied. Experimental results show the efficiency and 
superiority of the proposed 3DCMITS. These descriptors have a desirable capa-
bility for 3D image/object description and can be useful in the image analysis 
field.
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