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Abstract
In this paper, an adaptive S-transform with chirp-modulated window (ASTCMW) is
proposed to improve the energy concentration of the S-transform using the rotation of a
function which is the inverse fractional Fourier transform of the chirp-modulated win-
dow. The window contains two parameters, the chirp rate parameter and the frequency
parameter. The chirp rate parameter varying over time and frequency can control the
rotation of the function in the time–frequency plane, and it can be determined by max-
imizing the amplitude of the ASTCMW. The frequency parameter assists the chirp
rate parameter to rotate the function at high frequencies, and it is analyzed by the
match between the input signal and the chirp-modulated window. The ASTCMW
improves greatly the energy concentration in the instantaneous frequency in noiseless
and noisy environments. Furthermore, the instantaneous frequency equation based
upon the ASTCMW is developed, and then, a synchroextracting transform is pro-
posed. By extracting the time–frequency points satisfying the equation, the proposed
synchroextracting transform sharpens theASTCMWresult and gives a high-resolution
time–frequency representation. The experiment results demonstrate the effectiveness
of the ASTCMW and the proposed synchroextracting transform.
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1 Introduction

In many applications, such as mechanical engineering [24,38,45], seismic [42], and
biomedicine [32], it is important to obtain the features of a non-stationary signal. The
time-varying information, especially the instantaneous frequency (IF) which describes
the significant physical parameter of the input signal, plays a prominent role in these
features. The time–frequency analysis (TFA) method is an efficient tool for the rep-
resentation of the IF. Accordingly, many various TFA methods have been developed
in the last few decades. Some widely used methods of them are classical TFA meth-
ods. Ordinarily, they are separated into two categories: the quadratic TFA methods
and the linear TFA methods. In classical quadratic TFA methods, such as the Wigner–
Ville distribution (WVD), the cross-terms reduce the readability of the time–frequency
representation (TFR) of the input signal containing more than one component. In clas-
sical linear TFA methods, such as the short-time Fourier transform (STFT) and the
continuous wavelet transform (CWT), a high time and frequency resolution cannot
be achieved simultaneously in the time–frequency plane because of the Heisenberg
uncertainty principle.

The S-transform (ST) [34] can be considered as a hybrid between the STFT and the
CWT [39] (i.e., the phase-corrected CWT or the STFT with a window width varying
over frequency). It is widely employed inmany scientific applications [4,21,30,33,47].
However, the width of the STwindowwill decrease as the frequency increases. It leads
to a poor time resolution at low frequencies and a poor frequency resolution at high
frequencies in the time–frequency plane [49]. To overcome the drawback, several
modifications were proposed. Some of them are based on the fact that the ST win-
dow can be interpreted as the Gaussian window with the standard deviation varying
over frequency. To permit users to specify time and frequency resolution [19], the
frequency in the standard deviation was modified as the product of the frequency and
the inverse of a parameter [27]. In [31], a different parameter controlling the win-
dow width was introduced in the original standard deviation. In [41], Wang proposed
the adaptive Generalized S-transform combining the above two modifications. To get
better progressive control of the window width, the parameter in [27] was modified
as the form varying linearly over frequency [2]. In 2015, Moukadem generalized the
abovemodifications [2,19,27,31,41] by introducing a new standard deviationwith four
parameters [20], and the optimal parameters of this method are acquired by solving an
optimization problem. In [49], Zidelmal proposed the S-transform based on compact
support kernel (CSK-ST) that contained a compact support kernel instead of the Gaus-
sian window in the ST, and the parameters in the kernel are selected by optimizing the
energy concentration. It is worth noting that metaheuristic algorithms [29,36] (nature
inspired) are very powerful for an optimization problem. Consequently, a combina-
tion of metaheuristic algorithms and parameter selection is promising. Besides, some
complex windows were applied to the ST [25,28], and Pinnegar in [26] presented
the bi-Gaussian S-transform (bi-Gaussian ST) which contains an asymmetric window
composed of two half Gaussians. To preserve the amplitude and frequency, Wang
proposed an amplitude- and frequency-preserving S transform [40]. Nevertheless, all
of the above methods are based on the width modification of the ST window varying
over frequency. In this paper, an adaptive S-transform with chirp-modulated window
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(ASTCMW) is proposed, and it is based on a rotation window rather than the width
modification of the ST window to match the input signal. The proposed ASTCMW
achieves more concentrated energy representation around the IF track than most of
the modified methods above.

On the other hand, to enhance the energy concentration in the time–frequency plane,
many post-processing methods based upon existing TFA methods have been devel-
oped. The reassignment method [12,15,16], first introduced in the 1970s, shifts the
location of the energy in eachwindow from the result generated by the STFTorCWT to
the barycenter of the window. In 2011, a post-processing method, the synchrosqueez-
ing transform (SST) [10], was presented. It can not only concentrate the energy but also
reconstruct the input signal. Subsequently, the synchrosqueezing S-transform (SSST)
[14], the Fourier-based synchrosqueezing transform [23], the synchrosqueezing gen-
eralized S-transform (SSGST) [42], and the second-order synchrosqueezing transform
(Second-SST) [22] were proposed. Inspired by the SST, the synchroextracting trans-
form (SET) [43]was developed. The SET retains the information of the IF and removes
most smeared energy in the time–frequency plane. Compared with the SST, the SET
gives a more concentrated energy representation for the input signals that have fast
varying IF [17]. Following the idea of the SET, in this paper, a new synchroextract-
ing transform based upon the ASTCMW (SET-ASTCMW) is proposed for strongly
modulated signals, and it is a post-processing method. The proposed SET-ASTCMW
provides a better result than the frequently used post-processing methods.

In practical application, external disturbances, modeling errors, and uncertainties
are common, and they can affect the energy concentration and the stability of the
solution. To cope with the problem, some methods have been proposed [11,35,37,46].
In particular, for removing noise interference, some methods have been developed
[3,13,18]. So robustness of TFA methods is an important property in practice. In this
regard, the proposed SET-ASTCMW can give a more robust result.

The rest of the paper is organized as follows. After a brief revisit of the subsistent
ST, the ASTCMW is introduced in Sect. 2. Two parameters of the chirp-modulated
window, i.e., the chirp rate parameter and the frequency parameter, are discussed in this
section. To acquire a clearer TFR for strongly modulated signals, the SET-ASTCMW
is developed in Sect. 3. Experimental validations are presented in Sect. 4 followed by
drawing the conclusions in Sect. 5.

2 Adaptive S-Transformwith Chirp-ModulatedWindow

In this section, the ASTCMW is introduced first, and then, the estimation of the chirp
rate parameter and selection of the frequency parameter are discussed, respectively.
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2.1 The Proposed Adaptive S-Transform

The ST of a signal f (t) ∈ L2(R) is defined by

F(t, ω) =
∫ +∞

−∞
f (τ )g∗(t − τ, ω)e− j2πωτdτ, (1)

where the superscript asterisk ∗ denotes the complex conjugate and g(t, ω) is the
analysis window, which is chosen as Gaussian function

g(t, ω) = |ω|√
2π

e− t2ω2
2 . (2)

Therefore, the ST (1) can be rewritten as [34]

F(t, ω) =
∫ +∞

−∞
f (τ )

|ω|√
2π

e− (t−τ )2ω2
2 e− j2πωτdτ. (3)

The ST (3) shows that its analysis window varies over frequency. For any input
signal, the width of the window is wider at low frequencies and narrower at high
frequencies, and it does not take the time–frequency characteristics of the signal into
consideration. This leads the ST to suffer from poor time–frequency resolution for
many applications. Hence, many modified methods of the ST have been proposed.
Most of the studies in the existing literature focus on adapting the width of the window
to the signal in order to achieve the TFR of high energy concentration. In this paper, we
proposed an adaptive S-transform with chirp-modulated window (ASTCMW), which
is defined as follows

S(t, ω, c(t, ω)) =
∫ +∞

−∞
f (τ )(g(t − τ,

ω

α
)e j2π

c(t,ω)(t−τ )2
2 )∗e− j2πωτdτ, (4)

where g(t, ω) is Gaussian function, as defined in (2), α > 0 is a frequency parameter
and c(t, ω) is chirp rate parameter. Particularly, if c(t, ω) takes a constant and α = 1,
the ASTCMW is similar to formula (19) in [28]. The proposed transform is adaptive,
and its window function can be given as

w(t, ω) = g(t,
ω

α
)e j2π

c(t,ω)t2
2 . (5)

The parameters α and c(t, ω) of the window are signal dependent. The parameter α

controls the width of window g(t, ω
α
). The selection of α is analyzed by the fractional

Fourier transform (FrFT). The parameter c(t, ω) is time–frequency-varying and con-
trols the rotation of the function whose FrFT is w(t, ω). The optimal c(t, ω) can be
achieved by maximizing the amplitude of ASTCMW. It is easy to show that the chirp-
modulated window w(t, ω) satisfied the fourth condition of complex window design
in [28], and it makes the TFR of the analyzed signal concentrate on the IF track of the
signal in the time–frequency plane.
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To further demonstrate the performance of the windoww(t, ω), a linear frequency-
modulated (LFM) signal f (t) = e j2π t

2
is considered. For this signal, the optimal

c(t, ω) can be taken as c(t, ω) = 2, the chirp rate of the signal. In Fig. 1, the WVDs of
the signal f (t), thewindow g(t, ω), and thewindoww(t, ω)with the same c(t, ω) = 2
and different frequency parameters are shown. The WVD of f (t) is a straight line in
the time–frequency plane and the WVD of the window w(t, ω) is a 2D Gaussian
function with shape depending on the chirp rate c(t, ω) and the frequency parameter
α. Figure 1b presents the result of the chirp-modulated window w(t, ω) with α = 1
at low frequency. Compared with Fig. 1a, the window yields less blurring effect on
the signal f (t) than ST window g(t, ω). Figure 1d provides the WVD of the window
w(t, ω) with α = 1 at high frequency. By comparison with the ST window in Fig. 1c,
the chirp-modulated window has a limited effect. In this case, the ASTCMW gives a
poor resolution at high frequency. To ameliorate this situation, α is set to 8 in w(t, ω),
and the WVD of w(t, ω) is displayed in Fig. 1e. Obviously, the chirp-modulated
window can match well with the LFM signal overall the time–frequency plane if α is
properly adjusted.

For a more general mono-component signal f (t) = A(t)e j2πφ(t), its chirp rate
varies over time. Hence, the optimal c(t, ω) should also vary over time and be taken
as the chirp rate.

2.2 Estimation of the Chirp Rate Parameter

Acrucial question in the proposedASTCMWis how to determine the time–frequency-
varying parameter c(t, ω) in order to well match the true chirp rate of the input signal.
In this subsection, a discrete algorithm is given, and it gets the estimation of the optimal
c(t, ω), i.e., the chirp rate.

Consider a mono-component signal f (t) modeled as

f (t) = A(t)e j2πφ(t), (6)

where A(t) > 0 and φ(t) are the instantaneous amplitude and instantaneous phase,
respectively. φ′(t) is the IF of f (t) and φ′′(t) is the chirp rate of f (t).

By inserting (6) into (4), it is easy to show that

S(t, ω, c(t, ω))

=
∫ +∞

−∞
f (τ )

|ω|√
2πα

e
− ω2(t−τ )2

2α2 e− j2π c(t,ω)(t−τ )2
2 e− j2πωτdτ

=
∫ +∞

−∞
f (t + τ)

|ω|√
2πα

e
− ω2τ2

2α2 e− j2π c(t,ω)τ2
2 e− j2πω(t+τ)dτ

=
∫ +∞

−∞
A(t + τ)e j2πφ(t+τ) |ω|√

2πα
e
− ω2τ2

2α2 e− j2π c(t,ω)τ2
2 e− j2πω(t+τ)dτ.

(7)
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Fig. 1 WVDs of the LFM signal and the window functions. a The ST window at (t, ω) = (0.5, 1), b
the chirp-modulated window with c(t, ω) = 2 and α = 1 at (t, ω) = (0.5, 1), c the ST window at
(t, ω) = (3, 6), d the chirp-modulated window with c(t, ω) = 2 and α = 1 at (t, ω) = (3, 6), e the
chirp-modulated window with c(t, ω) = 2 and α = 8 at (t, ω) = (3, 6)

For a small constant ε > 0 and all t ∈ (−∞,∞), if |φ′′′(t)| < ε, then the signal
f (t + τ) = A(t + τ)e j2πφ(t+τ) around the point t can be expressed approximately as

A(t + τ)e j2πφ(t+τ) ≈ A(t + τ)e j2π(φ(t)+φ′(t)τ+ φ′′(t)
2 τ 2). (8)

By substituting (8) in (7), the amplitude of the ASTCMW in the IF ω = φ′(t) satisfies
that
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|S(t, φ′(t), c(t, ω))|
≈ | φ′(t)√

2πα

∫ +∞

−∞
A(t + τ)e

− (φ′(t))2τ2

2α2 e− j2π (c(t,ω)−φ′′(t))
2 τ 2dτ |

≤ | φ′(t)√
2πα

∫ +∞

−∞
A(t + τ)e

− (φ′(t))2τ2

2α2 dτ |.
(9)

The inequality (9) shows that the ASTCMW amplitude in the IF will take the
maximum under a certain condition when c(t, ω), which can be seen as a constant
for each (t, ω), is consistent with the chirp rate of the input. According to this fact,
c(t, ω) can be approximated using a method similar to the one in [44]. For each
time–frequency point (t, ω), the best argument c(t, ω) is obtained by

c̃(t, ω) ≈ argmax
η

|S(t, ω, η)|, (10)

where η denotes a constant. Like the approach in [44,48], η is considered as

η = W f

2T f
tan(θ), θ ∈

(
−π

2
,
π

2

)
, (11)

where W f is the sampling frequency of the input signal and T f is the sampling time
of the input.

In the discrete case, suppose that θ has Nθ values, and then, θn can be given by

θn = −π

2
+ nπ

Nθ + 1
, n = 1, 2, . . . , Nθ . (12)

For each time–frequency point (t, ω), the ASTCMWwith respect to parameter θn can
be rewritten as

S(t, ω, θn) =
∫ +∞

−∞
|ω|√
2πα

f (τ + t)e
−τ 2( ω2

2α2
+ jπ

W f
2T f

tan(θn))
e− j2πω(τ+t)dτ. (13)

By inserting (13) into (10), the discrete approximate value of c(t, ω) can be achieved.
In theory, the chirp rate φ′′(t) of a mono-component signal can take only one value

when t is fixed, and c̃(t, ω)may takemore values for the fixed t because of the variation
of ω. In the experiment, the multiple values of c̃(t, ω) have a little change, which can
be ignored, around the IF for the fixed t . Consequently, c̃(t, ω) can be seen as an
approximation of the chirp rate of a mono-component signal.

It is noteworthy that the above technique also can be utilized to deal with a multi-

component signal f (t) =
N∑

n=1
An(t)e j2πφn(t) if the IFs of the components are separable

[22].
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Fig. 2 FrFT rotation in the
time–frequency plane
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2.3 Analysis for the Frequency Parameter

In this subsection, the selection of parameter α in the chirp-modulated window will
be discussed using the FrFT, which is a generalization of the Fourier transform.

Firstly, the FrFT of a signal or function x(t) ∈ L2(R) is defined as [1,5]

Xβ(u) =
∫ +∞

−∞
x(t)Kβ(t, u)dt (14)

with the transform kernel

Kβ(t, u) =

⎧⎪⎨
⎪⎩

√
1 − j cot β e j2π

(t2+u2)
2 cot β− j2π tu cscβ β 	= mπ,

δ(t − u) β = 2mπ,

δ(t + u) β = (2m − 1)π,

(15)

wherem ∈ Z . The FrFT corresponds to the counterclockwise rotation by an angle β in
the time–frequency plane, as displayed in Fig. 2. When β = π

2 , the FrFT is the Fourier
transform, and when β takes a negative value, the FrFT corresponds to a clockwise
rotation. Without loss of generality, −π

2 ≤ β ≤ π
2 is considered here. It is not hard to

see that the transform kernel has the following properties [1]:

K−β(t, u) = K ∗
β(t, u),

Kβ(t, u) = Kβ(u, t).
(16)

The inverse FrFT of Xβ(u) can be written as

x(t) =
∫ +∞

−∞
Xβ(u)K−β(u, t)du =

∫ +∞

−∞
Xβ(u)K ∗

β(t, u)du. (17)

For an LFM signal with a constant chirp rate c 	= 0, the chirp-modulated window of
its ASTCMW satisfies c(t, ω) = c. According to (17), the inverse FrFT of the above
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chirp-modulated window is calculated as follows:

h(u) =
∫ +∞

−∞
g(t,

ω

α
)e j2π

ct2
2 K ∗

β(t, u)dt

=
∫ +∞

−∞
|ω|

α
√
2π

e
− t2ω2

2α2 e j2π
ct2
2 K ∗

β(t, u)dt

=
√

|ω|2(1 + j cot β)

ω2 − j2πα2(c − cot β)
e− jπu2 cot βe

− 2π2α2 csc2 β

ω2− j2πα2(c−cot β)
u2

,

(18)

where ω is considered as a constant. If the angle satisfies β = arctan 1
c , h(u) can be

rewritten to

h(u) =
√

|ω|2(1 + j cot β)

ω2 e− jπu2 cot βe
−2π2 α2 csc2 β

ω2
u2

=
√

|ω|2(1 + jc)

ω2 e− jπu2ce
−2π2 α2(c2+1)

ω2
u2

.

(19)

Equation (19) implies that the chirp-modulated window can be regarded as the
FrFT of the function h(u) when a signal with a constant chirp rate is dealt with. In
other words, the chirp-modulated window should be considered as the rotation of
h(u), and the rotated angle is β. However, β = arctan 1

c is fixed because, for an input
signal, the chirp rate is certain. Accordingly, for a fixed ω, h(u) only depends on α

to make the shape of its rotation, the chirp-modulated window, match with the signal.
In order to illustrate the match relationship, the LFM signal f (t) = e j2π t

2
, which

has a constant chirp rate, is considered, and its WVD is a straight line in the time–
frequency plane, as shown in Fig. 3. In addition, the WVDs of h(u) with different
α are displayed in Fig. 3a–c. It is not hard to see that these WVDs are prolonged in
different lines. This leads to that the match relationship between the rotation of the
WVD of h(u), which is the WVD of the chirp-modulated window, and the WVD of
the signal is different, as shown in Fig. 3d–f. More specifically, the chirp-modulated
windowwith α = 8 (Fig. 3f) yields less blurring effect than α = 2 (Fig. 3d) and α = 6
(Fig. 3e). Furthermore, the blurring effect will be less when α takes a higher value. It
means that α should take a high value for any signal to obtain a concentrated energy
representation in the time–frequency plane. However, if α takes a too high value, the
TFR will overflow. Consequently, in this paper, 1 ≤ α ≤ 8 is used.

The above conclusion, however, is based on fixed ω. Under the condition that ω

changes, α2(c2+1)
ω2 in (19) should have a higher value than c according to the property

of the function h(u) [6]. It means

α2(c2 + 1)

ω2c
= γ > 1. (20)



Circuits, Systems, and Signal Processing (2021) 40:5654–5681 5663

0 2 4 6
Time (s)

-2

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y 
(H

z)

0.05

0.1

0.15

0.2

0.25

(a)

0 2 4 6
Time (s)

-2

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y 
(H

z)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b)

0 2 4 6
Time (s)

-2

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y 
(H

z)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

(c)

0 2 4 6
Time (s)

-2

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y 
(H

z)

0.05

0.1

0.15

0.2

0.25

(d)

0 2 4 6
Time (s)

-2

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y 
(H

z)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(e)

0 2 4 6
Time (s)

-2

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y 
(H

z)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

(f)

Fig. 3 WVDs of h(u) with c = 2 and ω = 6 and the chirp-modulated window at (t, ω) = (3, 6). a h(u)

with α = 2, b h(u) with α = 6, c h(u) with α = 8, d the chirp-modulated window with α = 2, e the
chirp-modulated window with α = 6, f the chirp-modulated window with α = 8

There is the same problem as above. If γ takes a higher value, the chirp-modulated
window will match well with the signal, whereas if α takes a too high value to make
γ >> 1, the TFR will overflow. Consequently, α should take a proper value for given
c andω, and 1 ≤ α ≤ 8 is suggested. However, for a given signal, the optimal selection
of the frequency parameter for the ASTCMW depends on the signal. In this regard,
one can select the frequency parameter from 1 ≤ α ≤ 8 or prior estimation.

It should be noticed that the above discussion is based on a signal with a constant
chirp rate, an LFM signal. For a signal with a variable chirp rate, α also can be
determined by the above discussion. That is because a signal with a variable chirp rate
can be approximated by a series of LFM signals. In fact, the IF is the main feature for
the input signal in the time–frequency plane. The IF of the input signal with a variable
chirp rate can be locally approximated by its tangent line, and the tangent lines can
be viewed as the IF of the LFM signal which has the chirp rate the same as the input



5664 Circuits, Systems, and Signal Processing (2021) 40:5654–5681

at the tangent point. In other words, the input signal can locally be regarded as an
approximately LFM signal, as shown in formula (8).

2.4 Pseudocode for the ASTCMW

To state clearly the ASTCMW, the detailed procedure of the ASTCMW is summarized
in Algorithm 1.

Algorithm 1 ASTCMW algorithm

1: Input signal f (t), Nθ (i.e., the number of discrete θ ) and the frequency parameter α;
2: Calculate θn , n = 1, 2, . . . , Nθ , from (12);
3: For each θn
4: Calculate the ASTCMW S(t, ω, θn) from (13);
5: for each time–frequency point (t, ω)

6: Define c̃(t, ω) = argmaxθn |S(t, ω, θn)|;
7: Calculate S(t, ω, c̃(t, ω));
8: end for
9: Output S(t, ω, c̃(t, ω)).

The computational cost of the ASTCMW is obtained by the following procedure
under the assumption of a signal with N samples. The ASTCMW with fixed θn has
to be computed Nθ times, as shown at steps 3, 4 of Algorithm 1, and the compu-
tation is O(Nθ N 2 log2 N ). Then, an Nθ × N/2 × N matrix is obtained. From this
matrix, the maximum detection (i.e., steps 6, 7 in Algorithm 1) requires O(Nθ N 2)

operations. Therefore, the computational complexity of the ASTCMW should be
O(Nθ N 2 log2 N ).

3 Synchroextracting Transform Based Upon the ASTCMW

The SET is a recently developed high-resolution TFA method, which extracts the IF
information and removes smeared energy in the time–frequency plane. In this section,
on the basis of the SET and the proposed ASTCMW, a new TFA method is proposed
and called SET-ASTCMW.

The IF equation based on the ASTCMW, the key step of the SET-ASTCMW, is
stated in the following Theorem.

Theorem 1 Consider a mono-component signal (6). For a small constant ε > 0, if
the instantaneous amplitude A(t) and instantaneous phase φ(t) satisfy the following
strongly modulated conditions

|A′′(t)| < ε, |φ′′′(t)| < ε, t ∈ R, (21)
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then the IF ω = φ′(t) of the signal satisfies the following IF equation

ω2

2πα2φ′′(t)



{
∂
∂t S(t, ω, c(t, ω))

S(t, ω, c(t, ω))

}
− �

{
∂
∂t S(t, ω, c(t, ω))

S(t, ω, c(t, ω))

}
= 0, (22)

where S(t, ω, c(t, ω)) is the ASTCMW of the signal (6), |S(t, ω, c(t, ω))| > r , r > 0
is a constant and �{·} and 
{·} are the real part and imaginary part of a complex
number, respectively.

Proof According to (21), signal (6) around the point t can be expressed as

f (t + τ) = (A(t) + A′(t)τ )e j2π(φ(t)+φ′(t)τ+ φ′′(t)
2 τ 2). (23)

Strictly, the expression above should be approximate equality, but for convenience
purposes, exact equality is employed. Inserting (23) to (7), the ASTCMW can be
represented as

S(t, ω, c(t, ω)) = |ω|√
2πα

e j2π(φ(t)−ωt)(A(t)Γ0 + A′(t)Γ1), (24)

where Γk = ∫ +∞
−∞

τ k

k! e
− ω2τ2

2α2 e− j2π c(t,ω)−φ′′(t)
2 τ 2e− j2π(ω−φ′(t))τdτ , k = 0, 1.

Because c(t, ω) = φ′′(t) in the ASTCMW of a mono-component signal, Γk can be
simplified to

Γk =
∫ +∞

−∞
τ k

k! e
− ω2τ2

2α2 e− j2π(ω−φ′(t))τdτ

= α

ω

∫ +∞

−∞
τ kαk

k!ωk
e− τ2

2 e− j2π(α− φ′(t)α
ω

)τdτ

= j kαk+1

k!(2π)kωk+1
̂̃g(k)

(α − φ′(t)α
ω

),

(25)

where ̂̃g(ω) = √
2πe−2π2ω2

is the Fourier transform of g̃(t) = e− t2
2 and ̂̃g(k)

(ω) is
the k-order derivative of ̂̃g(ω). Accordingly, (24) can be rewritten as

S(t, ω, c(t, ω))

= e j2π(φ(t)−ωt)e
−2π2 α2

ω2
(ω−φ′(t))2 [A(t) − j2π A′(t) α2

ω2 (ω − φ′(t))].
(26)

It is followed that
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�
{

∂
∂t S(t, ω, c(t, ω))

S(t, ω, c(t, ω))

}
= 4π2φ′′α2

ω2 (ω − φ′) + 1

Δ

[
AA′ − 4π2(A′)2 α4φ′′

ω4 (ω − φ′)
]

,



{

∂
∂t S(t, ω, c(t, ω))

S(t, ω, c(t, ω))

}
= 2π(φ′ − ω) + 2π

Δ

[
AA′ φ′′α2

ω2 + (A′)2 α2

ω2 (ω − φ′)
]

,

(27)

where Δ = A2 + 4π2(A′)2( α
ω
)4(ω − φ′)2 and the argument t is omitted from A(t),

A′(t), φ′(t) and φ′′(t) for expression simplification.
According to (27), it is obvious that the IF ω = φ′(t) satisfies equation (22).

ω2

2πα2φ′′(t)



{
∂
∂t S(t, ω, c(t, ω))

S(t, ω, c(t, ω))

}
− �

{
∂
∂t S(t, ω, c(t, ω))

S(t, ω, c(t, ω))

}
= 0.

The proof is completed. �
Utilizing IF equation (22), the synchroextracting transform based upon the

ASTCMW (SET-ASTCMW) can be defined as

T (t, ω) = S(t, ω, c(t, ω))ζ(ω − ω̂(t, ω)), (28)

where S(t, ω, c(t, ω)) and ω̂(t, ω) are the ASTCMW and the solution of equation
(22) around the IF, respectively, and ζ(ω − ω̂(t, ω)) is a synchroextracting operator
defined as

ζ(ω − ω̂(t, ω)) =
{
1 ω = ω̂(t, ω)

0 otherwise
. (29)

It is worth mentioning that if the IF of each component is separable, the proposed
SET-ASTCMW is suitable for a multi-component signal.

To sum up, the detailed procedure of the SET-ASTCMW is displayed in Algorithm
2. The computational cost of the SET-ASTCMW mainly focuses on the ASTCMW
and synchroextracting operator. For a signal with N samples, the ASTCMW requires
O(Nθ N 2 log2 N ) operations. The computation of the synchroextracting operator is
less than O(N 2). Hence, the total computing complexity of the SET-ASTCMW is no
more than O(Nθ N 2 log2 N ).

4 Experimental Validation

4.1 Performance of the ProposedMethods

In this subsection, the performance of the ASTCMW and SET-ASTCMW is exam-
ined using one real and three synthetic test signals. The energy concentration of the
ASTCMW is compared with other advanced TFA methods, including the STFT, the
ST [34], the CSK-ST [49], the Bi-Gaussian ST [26], and Moukadem’s ST [20], which
is a generalization of the modifications in [2,19,27,31,41] and has a better result than
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Algorithm 2 SET-ASTCMW algorithm

1: Input signal f (t), Nθ (i.e., the number of discrete θ ), the frequency parameter α and positive constants
r and ξ ;

2: Calculate θn , n = 1, 2, . . . , Nθ , from (12);
3: For each θn
4: Calculate the ASTCMW S(t, ω, θn) from (13) and ∂

∂t S(t, ω, θn);
5: for each time–frequency point (t, ω)

6: if maxθn |S(t, ω, θn)| > r
7: Define c̃(t, ω) = argmaxθn |S(t, ω, θn)|;
8: Calculate S(t, ω, c̃(t, ω)) and ∂

∂t S(t, ω, c̃(t, ω));

9: if | ω2

2πα2 c̃(t,ω)

{

∂
∂t S(t,ω,̃c(t,ω))

S(t,ω,̃c(t,ω))
} − �{

∂
∂t S(t,ω,̃c(t,ω))

S(t,ω,̃c(t,ω))
}| < ξ

10: Define Q(t, ω) = 1;
11: end if
12: end if
13: end for
14: for each time–frequency point (t, ω)

15: Calculate T (t, ω) = S(t, ω, c̃(t, ω))Q(t, ω);
16: Output T (t, ω).

these modifications. Subsequently, the performance of the SET-ASTCMW is com-
pared with the other five post-processing methods, i.e., the SST [10], the SSST [14],
the SSGST [42], the Second-SST [22] and the SET [43].

4.1.1 Performance of the ASTCMW

A synthetic signal and a bat signal are used to demonstrate the performance of the
ASTCMW. The synthetic signal consists of two LFM signals that have the same chirp
rate, and the bat signal recorded byRiceUniversity is widely used to test TFAmethods.

The synthetic signal can be given as

f11(t) = e j80π t
2
,

f12(t) = e j80π t
2+ j18π t ,

f1(t) = f11(t) + f12(t), 0 ≤ t < 1.

(30)

Its TFRs are shown in Fig. 4, and the ideal TFR is displayed in Fig. 4a. In Fig. 4, it is
obvious that the result obtained by the ASTCMW taking proper parameters (α = 8,
c(t, ω) = 80) has more concentrated energy representation and accurate TFR in the
IF than other TFA methods, i.e., the ST (Fig. 4b), the STFT (Fig. 4c), Moukadem’s
ST (Fig. 4d), the CSK-ST (Fig. 4e) and the Bi-Gaussian ST (Fig. 4f). In Fig. 4g,
the ASTCMW with α = 1 and c(t, ω) = 80, which can be considered as the ST
with a complex-valued window [28], gives that the energy at low frequencies is more
concentrated than at high frequencies. This is in accord with the analysis of α taken a
low value in Sect. 2. Consequently, for LFM signals that have an invariable chirp rate,
the ASTCMW has a more concentrated result in the time–frequency plane.

The bat signal is the echolocation signal emitted by a large brown bat, Eptesicus
Fusus. By producing the frequency-modulated and sweeping-downward signal, and
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Fig. 4 TFRs of the signal (30). a The ideal TFR, b ST, c STFT, dMoukadem’s ST, eCSK-ST, f Bi-Gaussian
ST, g ASTCMW with α = 1 and c(t, ω) = 80, h ASTCMW with α = 8 and c(t, ω) = 80
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Fig. 5 The bat signal
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collecting the echo-delay signal, the bats can identify the object in the environment.
This signal is sampled at 400 points, and its sampling frequency is 140kHz [43]. The
waveformof this signal and its TFRs are shown inFigs. 5 and 6, respectively. Figure 6a,
d shows that the ST and the Bi-Gaussian ST provide poor energy concentration and
worse resolution, especially at high frequencies. In Fig. 6c, the CSK-ST provides a
poor frequency resolution than Moukadem’s ST (Fig. 6e) and a poor time resolution
than the ST. In Fig. 6e, Moukadem’s ST provides the TFR similar to the STFT result
(Fig. 6b). Compared with them, the ASTCMW gives a more concentrated TFR in the
IF, as illustrated in Fig. 6f. This contrast of Moukadem’s ST result and the ASTCMW
result is explained in further detail, as shown in Fig. 6g, h. The ASTCMW result
in Fig. 6h shows a narrower band around the IF track than Moukadem’s ST result
in Fig. 6g. A concentrated TFR in the IF will produce a better result in the further
processing of signals. Accordingly, the proposed ASTCMW generates a satisfactory
result.

4.1.2 Performance of the SET-ASTCMW

Two synthetic signals are used in the subsection to illustrate the performance of the
SET-ASTCMW. They are a bi-component cross-signal and a strongly frequency-
modulated signal whose first-order derivative of the amplitude with respect to t is
equal to 0.

Firstly, the strongly frequency-modulated signal is given by

f (t) =
{
e− j10π ln(−25t+1) −0.5 ≤ t ≤ 0

e j10π ln(25t+1) 0 < t < 0.5
. (31)

For this signal, Fig. 7 presents the TFRs generated by six post-processing methods
containing the SSTbased on theGausswavelet, the SSST, the Second-SST, the SSGST,
the SET and the SET-ASTCMW.As shown in Fig. 7a, the SST result fails to give useful
information at high frequencies. Compared with the SST, the SSST can generate a
better result at high frequencies, as illustrated in Fig. 7b. However, the result obtained
by the SSST is blurrier than the results generated by the Second-SST (Fig. 7c) and the
SSGST (Fig. 7d). Compared with the Second-SST and the SSGST, the SET (Fig. 7e)
and the SET-ASTCMW (Fig. 7f) give higher performance. Although the SET result



5670 Circuits, Systems, and Signal Processing (2021) 40:5654–5681

0.5 1 1.5 2 2.5
Time (ms)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
(k

H
z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.5 1 1.5 2 2.5
Time (ms)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
(k

H
z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 0.5 1 1.5 2 2.5
Time (ms)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
(k

H
z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0.5 1 1.5 2 2.5
Time (ms)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
(k

H
z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

0.5 1 1.5 2 2.5
Time (ms)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
(k

H
z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

0.5 1 1.5 2 2.5
Time (ms)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
(k

H
z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)

0 10 20 30 40 50 60 70
Frequency (kHz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

pl
itu

de

(g)

0 10 20 30 40 50 60 70
Frequency (kHz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

pl
itu

de

(h)

Fig. 6 TFRs of the bat signal. a ST, b STFT, c CSK-ST, d Bi-Gaussian ST, eMoukadem’s ST, f ASTCMW
with α = 4 and Nθ = 12. Time slices at 0.6ms from g Moukadem’s ST result and h ASTCMW result

and the SET-ASTCMW result have a small difference, Fig. 7g, h shows that the TFR
generated by the SET-ASTCMW has a more concentrated energy representation than
the SET at 20Hz.
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Fig. 7 TFRs of the strongly frequency-modulated signal. a SST, b SSST, c Second-SST, d SSGST, e SET,
f SET-ASTCMW with α = 1, Nθ = 20 and ξ = 0.18. Frequency slices at 20Hz from g SET result and h
SET-ASTCMW result
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Fig. 8 Ideal TFR of the
bi-component cross-signal
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Secondly, another synthetic signal, the bi-component cross-signal, is expressed as

f21(t) = sin(2π(25t − 10 sin t)),

f22(t) = sin(2π(25t + 10 sin t)),

f2(t) = f21(t) + f22(t), 2 ≤ t ≤ 10.

(32)

The ideal TFR of this signal is displayed in Fig. 8, and its TFRs generated by six
post-processingmethods, i.e., the SST, the SSST, the Second-SST, the SSGST, the SET
and the SET-ASTCMW, are shown in Fig. 9. The SST and the SSST generate blurry
results, as illustrated in Fig. 9a, b. Figure 9c, d shows that the Second-SST and the
SSGST cannot provide effective information near the crossover point. Compared with
the four methods mentioned above, the SET (Fig. 9e) and the SET-ASTCMW (Fig. 9f)
have better results. The difference between the two, however, lies in the accuracy of
the IF near the crossover point, as illustrated in Fig. 9g, h. More specifically, for the
bi-component cross-signal, the SET-ASTCMWgives a more resolution result than the
SET near the crossover point.

4.2 Effect of AdditiveWhite Noise

To test the robustness of the proposed methods, white noise is added in the signal
(30), the bat signal, the strongly frequency-modulated signal and the bi-component
cross-signal, and their TFRs are shown in Figs. 10, 11, 12, and 13, respectively. For
the influence of the general random noise and modeling errors [11,35,37,46], it will
be studied in future work.

White noise with SNR=2dB is added to the signal (30), and its TFRs are illustrated
in Fig. 10. The ASTCMW (Fig. 10f) still provides a better concentration than other
TFA methods, i.e., the ST (Fig. 10a), the STFT (Fig. 10b), the CSK-ST (Fig. 10c), the
Bi-Gaussian ST (Fig. 10d) and Moukadem’s ST (Fig. 10e). For the noisy bat signal
with SNR=10dB, the ST (Fig. 11a) and the Bi-Gaussian ST (Fig. 11d) still suffer from
poorer energy concentration than the other four methods. The ASTCMW (Fig. 11f)
provides a more concentrated energy representation in the IF than the STFT (Fig. 11b)
and the CSK-ST (Fig. 11c). The difference between Moukadem’s ST (Fig. 11e) and
the ASTCMW is the energy concentration in the IF, as displayed in Fig. 11g, h. The
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Fig. 9 TFRs of the bi-component cross-signal. a SST, b SSST, c Second-SST, d SSGST, e SET, f SET-
ASTCMW with α = 2.32, Nθ = 8 and ξ = 2. g Result within the white rectangle of e. h Result within
the white rectangle of f
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Fig. 10 TFRs of noisy signal (30) with SNR=2dB. a ST, b STFT, c CSK-ST, d Bi-Gaussian ST, e Mouka-
dem’s ST, f ASTCMW with α = 8 and c(t, ω) = 80

ASTCMW, therefore, gives amore concentrated energy representation in the IF among
the six TFA methods.

The TFRs of the strongly frequency-modulated signal with SNR=1dB and the bi-
component cross-signalwithSNR=15dBare illustrated inFigs. 12 and13, respectively.
For the former, the SSST (Fig. 12b), the Second-SST (Fig. 12c), the SSGST (Fig. 12d),
the SET (Fig. 12e) and the SET-ASTCMW (Fig. 12f) are more robust to noise than
the SST (Fig. 12a). Moreover, the SET-ASTCMW gives a more resolution energy
representation at low frequencies than the SET and higher energy in the IF than the
Second-SST and the SSGST. Additionally, it provides a more concentrated energy
representation all over the time–frequency plane than the SSST. For the noisy bi-
component cross-signal with SNR=15dB, the noise cannot affect the advantage of the
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Fig. 11 TFRs of noisy bat signal with SNR=10dB. a ST, b STFT, c CSK-ST, d Bi-Gaussian ST, eMouka-
dem’s ST, f ASTCMW with α = 4 and Nθ = 12. Time slices at 0.6ms from g Moukadem’s ST result and
h ASTCMW result
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Fig. 12 TFRs of noisy strongly frequency-modulated signal with SNR=1dB. a SST, b SSST, c Second-SST,
d SSGST, e SET, f SET-ASTCMW with α = 1, Nθ = 20 and ξ = 0.18

SET-ASTCMWnear the crossover point comparingwith the other five post-processing
methods, as shown in Fig. 13. Furthermore, Fig. 14 shows the detected IF trajectories
of noisy bi-component cross-signal from six post-processing methods, and that the
noises have affected the detection of the IF. Although the Error1 (mean relative error
[48] of mode f21(t)) of detected IF by the SET-ASTCMW is greater than the SSGST
and SET, the Error2 (mean relative error of mode f22(t)) of detected IF by the SET-
ASTCMW is the smallest among the six post-processing methods. On the whole, the
comparative results again prove that the SET-ASTCMW has more satisfactory noise
robustness than others.
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Fig. 13 TFRs of noisy bi-component cross-signal with SNR=15dB. a SST, b SSST, c Second-SST, d
SSGST, e SET, f SET-ASTCMW with α = 2.32, Nθ = 8 and ξ = 2

5 Conclusion

In this paper, a new time–frequency analysis method, an adaptive S-transform with
chirp-modulated window (ASTCMW), is proposed to enhance the energy concen-
tration of the ST in the instantaneous frequency in the time–frequency plane. The
chirp-modulated window contains two parameters, the chirp rate parameter and the
frequency parameter. The former is estimated by optimizing the amplitude of the
ASTCMW, and the optimizing method can be used to approximate the chirp rate of
the input signal. The reference range of the latter is given by considering the chirp-
modulated window as the fractional Fourier transform of a function. Nonetheless, in
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Fig. 14 IF estimation where the true IF is black—and the detected IF is red. Error1/Error2 denotes the mean
relative error of mode f21(t)/ f22(t). a SST, b SSST, c Second-SST, d SSGST, e SET, f SET-ASTCMW
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practical applications, the optimal frequency parameter should be selected based on
the signal to be analyzed. Compared with common time–frequency analysis meth-
ods, the ASTCMWwith appropriate frequency parameters has a better representation
for linear frequency-modulated signals. To further improve the energy concentration
of the ASTCMW of strongly modulated signals, the equation the instantaneous fre-
quency satisfies based upon ASTCMW is found. On the basis of the equation, the
synchroextracting transform based upon the ASTCMW (SET-ASTCMW) is devel-
oped. For the bi-component cross-signal, the SET-ASTCMWprovides amore accurate
instantaneous frequency feature near the crossover point by comparison with existing
post-processing methods, and it is a more effective method dealing with a strongly
modulated signal. Besides, there is a new idea embedded in this paper. That is using
the rotation of the analysis window to improve the energy concentration in the time–
frequency plane. The methods used in the paper may attract also other researchers
in similar reduction approaches with applications in signal processing like second-
order optimization methods for total variation, power system dynamic analysis [7–9].
In addition, it is worthwhile to provide a theoretical analysis of the ASTCMW and
SET-ASTCMW in the future.

Acknowledgements This work was supported by National Natural Science Foundation of China under
Grant U20B2075. The authors wish to thank the editor and the anonymous reviewers for their constructive
comments and suggestions in improving the quality of the manuscript.

Data availability statement The datasets analyzed during the current study are available from the corre-
sponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. L.B.Almeida, The fractional Fourier transformand time-frequency representations. IEEETrans. Signal
Process. 42(11), 3084–3091 (1994)

2. S. Assous, B. Boashash, Evaluation of themodified S-transform for time-frequency synchrony analysis
and source localisation. EURASIP J. Adv. Signal Process. (2012). https://doi.org/10.1186/1687-6180-
2012-49

3. B. Biswal, P.K. Dash, M. Biswal, Time frequency analysis and FPGA implementation of modified S-
transform for de-noising. Int. J. Signal Process. Image Process. Pattern Recogn. 4(2), 119–136 (2011)

4. R.A. Brown, M.L. Lauzon, R. Frayne, A general description of linear time-frequency transforms
and formulation of a fast, invertible transform that samples the continuous S-transform spectrum
nonredundantly. IEEE Trans. Signal Process. 58(1), 281–290 (2010)

5. A. Bultheel, H. Sulbaran, Computation of the fractional Fourier transform. Appl. Comput. Harmon.
Anal. 16(3), 182–202 (2004)

6. L. Cohen,Time-Frequency Analysis: Theory andApplication (PrenticeHall, Upper Saddle River, 1995)
7. I. Dassios, K. Fountoulakis, J. Gondzio, A preconditioner for a primal-dual Newton Conjugate Gradi-

ents method for Compressed Sensing problems. SIAM J. Sci. Comput. 37(6), A2783–A2812 (2015)
8. I. Dassios, G. Tzounas, F. Milano, Generalized fractional controller for singular systems of differential

equations. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.112919

https://doi.org/10.1186/1687-6180-2012-49
https://doi.org/10.1186/1687-6180-2012-49
https://doi.org/10.1016/j.cam.2020.112919


5680 Circuits, Systems, and Signal Processing (2021) 40:5654–5681

9. I. Dassios, G. Tzounas, F. Milano, Participation factors for singular systems of differential equations.
Circuits Syst. Signal Process. 39(1), 83–110 (2020)

10. I. Daubechies, J. Lu, H. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-
like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)
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