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Abstract
Sinusoidal model and chirp model are the two fundamental models in digital signal
processing. Recently, a chirp-like model was introduced by Grover et al. (International
conference on computing, power and communication technologies, IEEE, pp. 1095–
1100, 2018). A chirp-like model is a generalization of a sinusoidal model and provides
an alternative to a chirp model. We derive, in this paper, the asymptotic properties of
least squares estimators and sequential least squares estimators of the parameters of
a chirp-like signal model. It is observed theoretically as well as through extensive
numerical computations that the sequential least squares estimators perform at par
with the usual least squares estimators. The computational complexity involved in
the sequential algorithm is significantly lower than that involved in calculating the
least squares estimators. This is achieved by exploiting the orthogonality structure
of the different components of the underlying model. The performances of both the
estimators for finite sample sizes are illustrated by simulation results. In the specific
real-life data analyses of signals, we show that a chirp-like signal model is capable
of modeling phenomena that can be otherwise modeled by a chirp signal model, in a
computationally more efficient manner.
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1 Introduction

Underlying a great deal of signal processing applications such as speech and music
processing [28], electrocardiography [30], seismology [32], astronomy [40] and eco-
nomics [13] are sinusoidal signals embedded in noise. In a general form, a sinusoidal
signal can be written as:

y(t) =
p∑

j=1

{
A0
j cos

(
α0
j t
)

+ B0
j sin

(
α0
j t
)}

+ X(t), t = 1, . . . , n. (1)

Here, A0
j s, B

0
j s are the amplitudes, α0

j s are the frequencies and X(t) is the random
error component of the observed signal y(t). Due to the widespread applicability of
this model, many methods have been proposed for its parameter estimation. In this
respect, one may look into the monograph of Kundu and Nandi [19]. We also invoke
readers to the interesting articles by Kay andMarple [16], Prasad et al. [34] and Stoica
[39] for more contributions in this area.

Another important model in digital signal processing is a chirp signal model,
encountered in many natural as well as man-made phenomena such as navigational
chirps emitted by bats [7,8], bird sounds [15], human voice [5], radar and sonar sys-
tems [25,41] and communications [11]. Mathematically, a chirp signal is expressed as
follows:

y(t) =
p∑

j=1

{
A0
j cos(α

0
j t + β0

j t
2) + B0

j sin(α
0
j t + β0

j t
2)

}
+ X(t), t = 1, . . . , n. (2)

Here, β0
j s are the frequency rates and again, A

0
j s, B

0
j s are the amplitudes, α0

j s are the
frequencies and X(t) is the random error component of the observed signal y(t). In
the last few decades, numerous algorithms have been developed for estimating the
unknown parameters of this model. For some of the earliest references on the joint
estimation of frequency and frequency rate, see Bello [2], Kelly [17] and Abatzoglou
[1]. Thereafter, several other estimation methods have been proposed as well, such
as methods based on phase unwrapping [6], suboptimal FFT [33], quadratic phase
transform [14], maximum likelihood [37], nonlinear least squares [31], least absolute
deviation [21],MCMC-basedBayesian sampling [26], linear prediction approach [10],
sigmoid transform [23],modified discrete chirp Fourier transform [38] andmanymore.

Of particular interest to us here is themethod of least squares principle. It is themost
commonly used method and is one of the first methods in classical estimation theory
[24]. For the chirp model in the presence of stationary noise, the least squares estima-
tors (LSEs) are strongly consistent and asymptotically normally distributed. In fact, if
the errors are assumed to beGaussian, LSEs achieve the Cramer Rao lower bound [18].
However, despite these optimal statistical properties, finding them in practice is com-
putationally challenging. The reason behind this is the highly nonlinear nature of the
least squares surface. Recently, Lahiri et al. [22] proposed the sequential LSEs which
have the same statistical properties as the usual LSEs but they reduce the complexity
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involved in finding the LSEs to a great extent. This is obtained by breaking the multi-
dimensional search into multiple two-dimensional searches, using the orthogonality
structure of different chirp components present in themodel. Nevertheless, there is still
a huge computational cost involved in finding the sequential LSEs, and there is a need
to develop computationally more efficient algorithms for practical implementation.

The subject of the present paper is a novel model, a chirp-likemodel first introduced
in [12], mathematically expressed as follows:

y(t) =
p∑

j=1

{
A0
j cos

(
α0
j t
)

+ B0
j sin

(
α0
j t
)}

+
q∑

k=1

{
C0
k cos

(
β0
k t

2
)

+ D0
k sin

(
β0
k t

2
)}

+ X(t), t = 1, . . . , n, (3)

where A0
j s, B

0
j s, C

0
k s and D0

k s are the amplitudes, α0
j s are the frequencies and β0

k s are
the frequency rates. X(t) accounts for the noise present in the signal. This new model
is a linear combination of a sinusoidal model (1) and an elementary chirp model1.
This choice is made mainly because of the following three reasons:

– First, it is observed that this model exhibits same type of behavior as the chirp
model (2) and is capable of modeling similar physical phenomena. To demon-
strate, we analyze a speech signal data set “UUU” using both a chirp model and
a chirp-like model. The corresponding “best” fittings are plotted together in the
following figure:

It is evident from the above figure that the two signals are well-matched.
– Second, thismodel not only provides an alternative to a chirpmodel but can be seen
as a generalization of a sinusoidalmodel also. For the special case ofC0

k = D0
k = 0

for all k = 1, . . . , q, the proposed model (3) reduces to the sinusoidal model (1).
– Lastly, parameter estimation of this model using a sequential algorithm is compu-
tationally simpler and faster compared to the sequential LSEs of a chirp model.

Parameter estimation of a chirp-like model is first formulated as a multidimensional
nonlinear least squares estimation problem in this paper. We theoretically develop the
statistical properties of the LSEs such as strong consistency and asymptotic normal-
ity. For a practical solution with computational simplicity, we propose a sequential
algorithm. The proposed method turns the multidimensional optimization search into
a string of one-dimensional optimization problems. We derive the large-sample prop-
erties of the sequential LSEs as well and observe that they have the same properties

1 A simple elementary chirp model has the following mathematical expression:

y(t) = C0 cos
(
β0t2

)
+ D0 sin

(
β0t2

)
+ X(t); t = 1, . . . , n. (4)

Here, C0, D0 are the amplitudes, β0 is the chirp rate , and X(t) is the noise. Although in recent years a
lot of work has been done on a chirp model (2), not much attention has been paid on an elementary chirp
model. For the reference on model (4), one may refer to Casazza and Fickus [4] and Mboup and Adali [27].
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Fig. 1 Fitted chirp signal (red solid line) and fitted chirp-like signal (pink dashed line) to the “UUU” sound
data (Color figure online)

as the usual LSEs. The theoretical results are then corroborated through extensive
simulation studies and a few data analyses (Fig. 1).

The rest of the paper is organized as follows. In the next section, we define a one-
component chirp-like model and study the asymptotic properties of the LSEs and the
sequential LSEs of the parameters of this model. In Sect. 3, we study the asymptotic
properties of a more generalized model, a multiple-component chirp-like model (3).
In Sect. 4, we perform simulations to validate the asymptotic results and in Sect. 5, we
analyze four speech signal data sets and a simulated dataset to see how the proposed
model performs in practice. We conclude the paper in Sect. 6.

2 One Component Chirp-like Model

In this section, we consider a one-component chirp-like model, expressed mathemat-
ically as follows:

y(t) = A0 cos
(
α0t

)
+ B0 sin

(
α0t

)
+ C0 cos

(
β0t2

)
+ D0 sin

(
β0t2

)
+ X(t).

(5)

Our problem is to estimate the unknown parameters of the model, namely A0, B0,C0,
D0, α0 and β0 under the following assumption on the noise component:

Assumption 1 Let Z be the set of integers. {X(t)} is a stationary linear process of the
form:

X(t) =
∞∑

j=−∞
a( j)e(t − j), (6)
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where {e(t); t ∈ Z} is a sequence of independently and identically distributed (i.i.d.)
random variables with E(e(t)) = 0, V (e(t)) = σ 2, and a( j)s are real constants such
that ∞∑

j=−∞
|a( j)| < ∞. (7)

For a stationary linear process, this is a standard assumption. This assumption covers
a large class of stationary processes. For instance, any finite-dimensional stationary
MA, AR, or ARMA process can be formulated in the above-stated representation.
We will use the following notations for further development: θ = (A, B, α,C, D, β),
the parameter vector, θ0 = (A0, B0, α0,C0, D0, β0), the true parameter vector, θ̂

= ( Â, B̂, α̂, Ĉ, D̂, β̂), the LSE of θ0 and Θ = [−M, M] × [−M, M] × [0, π ] ×
[−M, M]× [−M, M]× [0, π ], where M is a positive real number. Also we make the
following assumption on the unknown parameters:

Assumption 2 The true parameter vector θ0 is an interior point of the parametric space
Θ , and A02 + B02 + C02 + D02 > 0.

Under these assumptions, we discuss two estimation procedures: the least squares
estimation method and the sequential least squares estimation method. We then study
the asymptotic properties of the estimators obtained using these methods.

2.1 Least Squares Estimators

TheusualLSEsof the unknownparameters ofmodel (5) canbeobtainedbyminimizing
the error sum of squares:

Q(θ) =
n∑

t=1

(y(t) − A cos(αt)

−B sin(αt) − C cos(βt2) − D sin
(
βt2

))2
,

with respect to A, B, α, C , D and β simultaneously. In matrix notation,

Q(θ) = (Y − Z(α, β)μ)�(Y − Z(α, β)μ). (8)

Here, Yn×1 = (
y(1) · · · y(n)

)�
, μ4×1 = (

A B C D
)� and

Z(α, β)n×4 =
⎛

⎜⎝
cos(α) sin(α) cos(β) sin(β)

...
...

...
...

cos(nα) sin(nα) cos(n2β) sin(n2β)

⎞

⎟⎠ .

Since μ is a vector of conditionally linear parameters, by separable linear regression
technique of Richards [36], we have:

μ̂(α, β) =
[
Z(α, β)�Z(α, β)

]−1
Z(α, β)�Y. (9)
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Using (9) in (8), we obtain:

R(α, β) = Q( Â(α, β), B̂(α, β), α, Ĉ(α, β), D̂(α, β), β)

= Y�(I − Z(α, β)[Z(α, β)�Z(α, β)]−1Z(α, β)�)Y.

To obtain α̂ and β̂, the LSEs of α0 and β0 respectively, we minimize R(α, β) with
respect to α and β simultaneously. Once we obtain α̂ and β̂, by substituting them in
(9), we obtain the LSEs of the linear parameters.
The following results provide the consistency and asymptotic normality properties of
the LSEs.

Theorem 1 Under Assumptions 1 and 2, θ̂ is a strongly consistent estimator of θ0,
that is,

θ̂
a.s.−−→ θ0 as n → ∞.

Proof See Sect. B.1. ��
Theorem 2 Under Assumptions 1 and 2,

(
θ̂ − θ0

)
D−1 d−→ N

(
0, cσ 2Σ−1

(
θ0

))
as n → ∞,

where D = diag( 1√
n
, 1√

n
, 1
n
√
n
, 1√

n
, 1√

n
, 1
n2

√
n
), c =

∞∑
j=−∞

a( j)2 and

Σ−1
(
θ0

)
=

(
Σ (1)−1 (

θ0
)

0

0 Σ (2)−1 (
θ0

)

)
,

with

Σ (1)−1
(
θ0

)
=

⎛

⎜⎜⎜⎜⎝

2
(
A02+4B02

)

A02+B02
−6A0B0

A02+B02
−12B0

A02+B02

−6A0B0

A02+B02

2
(
4A02+B02

)

A02+B02
12A0

A02+B02

−12B0

A02+B02
12A0

A02+B02
24

A02+B02

⎞

⎟⎟⎟⎟⎠

and

Σ (2)−1
(
θ0

)
=

⎛

⎜⎜⎜⎜⎜⎜⎝

4C02+9D02

2
(
C02+D02

) −5C0D0

2
(
C02+D02

) −15D0

2
(
C02+D02

)

−5C0D0

2
(
C02+D02

) 9C02+4D02

2
(
C02+D02

) 15C0

2
(
C02+D02

)

−15D0

2
(
C02+D02

) 15C0

2
(
C02+D02

) 45

2
(
C02+D02

)

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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Proof See Sect. B.1. ��
Note that to estimate the frequency and frequency rate parameters, we need to solve
a 2D nonlinear optimization problem. Even for a special case of this model, when
C0 = D0 = 0, it has been observed that the least squares surface is highly nonlinear
and has several local minima near the true parameter value (for details, see Rice and
Rosenblatt [35]). Therefore, it is evident that computation of the LSEs is a numerically
challenging problem for the proposed model as well.
It is important to note that under stronger assumptions of i.i.d. Gaussian distribution
on the error random variables X(t), the asymptotic variances of the LSEs coincide
with the corresponding CRLBs.

2.2 Sequential Least Squares Estimators

To overcome the computational difficulty of finding the LSEs without compromising
on the efficiency of the estimates, we propose a sequential procedure to find the
estimates of the unknown parameters of model (5). In this section, we present the
algorithm to obtain the sequential estimators and study the asymptotic properties of
these estimators.
Note that the matrix Z(α, β) can be partitioned into two n × 2 blocks as follows:

Z(α, β) = (
Z(1)(α) Z(2)(β)

)
.

Here,

Z(1)(α)n×2 =
⎛

⎜⎝
cos(α) sin(α)

...
...

cos(nα) sin(nα)

⎞

⎟⎠ and Z(2)(β)n×2 =
⎛

⎜⎝
cos(β) sin(β)

...
...

cos(n2β) sin(n2β)

⎞

⎟⎠ .

Similarly, the linear parameter vector can be written as:

μ =
(

μ(1)� μ(2)�
)�

,

where μ
(1)
2×1 = (

A, B
)� and μ

(2)
2×1 = (

C, D
)�

. Also, the parameter vector,

θ = (
θ (1) θ (2)

)
,

with θ (1) = (
A, B, α

)
and θ (2) = (

C, D, β
)
. The parameter space can be

written as Θ (1) × Θ (2) so that θ (1) ∈ Θ(1) and θ (2) ∈ Θ (2), with Θ(1) = Θ(2) =
[−M, M] × [−M, M] × [0, π ].

Following is the algorithm to find the sequential estimators:

Step 1: First minimize the following error sum of squares:

Q1

(
θ (1)

)
=

(
Y − Z(1)(α)μ(1)

)� (
Y − Z(1)(α)μ(1)

)
(10)
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with respect to A, B and α. Using separable linear regression technique, for
fixed α, we have:

μ̃(1)(α) = [Z(1)(α)�Z(1)(α)]−1Z(1)(α)�Y . (11)

Now, replacing μ(1) by μ̃(1)(α) in (10), we have:

R1(α) = Y�
(
I − Z(1)(α)

[
Z(1)(α)�Z(1)(α)

]−1
Z(1)(α)�

)
Y .

Minimizing R1(α), we obtain α̃ and replacing α by α̃ in (11), we get the
linear parameter estimates Ã and B̃.

Step 2: At this step, we eliminate the effect of the sinusoidal component from the
original data, and obtain a new data vector:

Y1 = Y − Z(1)(̃α)μ̃(1).

Now we minimize the error sum of squares:

Q2

(
θ (2)

)
=

(
Y1 − Z(2)(β)μ(2)

)� (
Y1 − Z(2)(β)μ(2)

)
, (12)

with respect to C , D and β. Again by separable linear regression technique,
we have:

μ̃(2)(β) = [Z(2)(β)�Z(2)(β)]−1Z(2)(β)�Y1 (13)

for a fixed β. Now replacing μ(2) by μ̃(2) in (12), we obtain:

R2(β) = Y�
1

(
I − Z(2)(β)

[
Z(2)(β)�Z(2)(β)

]−1
Z(2)(β)�

)
Y1.

Minimizing R2(β), with respect to β, we obtain β̃, and using β̃ in (13), we
obtain C̃ and D̃, the linear parameter estimates.

We use the following notations: θ (1)0 = (A0, B0, α0) and θ (2)0 = (C0, D0, β0)

are the true parameter vectors, θ̃
(1) = ( Ã, B̃, α̃) is the sequential LSE of θ (1)0 and

θ̃
(2) = (C̃, D̃, β̃) that of θ (2)0.

In the following theorems, we prove that the proposed sequential LSEs are strongly
consistent as the usual LSEs. Moreover, if Conjecture 1 (see Sect. A) holds true, the
sequential LSEs have the same asymptotic distribution as the corresponding LSEs.

Theorem 3 Under Assumptions 1 and 2, θ̃
(1)

and θ̃
(2)

are strongly consistent estima-

tors of θ (1)0 and θ (2)0, respectively, that is,
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(a)

θ̃
(1) a.s.−−→ θ (1)0 as n → ∞,

(b)

θ̃
(2) a.s.−−→ θ (2)0 as n → ∞.

Proof See Sect. B.2. ��
Theorem 4 Under Assumptions 1 and 2 and presuming Conjecture 1 (see Sect. A)
holds true,

(a)

(
θ̃

(1) − θ (1)0
)
D−1
1

d−→ N3

(
0, cσ 2Σ (1)−1

)
as n → ∞,

(b)

(
θ̃

(2) − θ (2)0
)
D−1
2

d−→ N3

(
0, cσ 2Σ (2)−1

)
as n → ∞,

where D1 and D2, are sub-matrices of order 3 × 3, of the diagonal matrix D such

that D =
(
D1 0
0 D2

)
. Note that, D, c and Σ−1

1 (θ0) and Σ−1
2 (θ0) are as defined in

Theorem 2.

Proof See Sect. B.2. ��

3 Multiple Component Chirp-like Model

To model real-life data, we require a more adaptable model. In this section, we
consider a multiple-component chirp-like model (3), a natural generalization of the
one-component model.

Under certain assumptions in addition to Assumption 1 on the noise component,
that we state below, we study the asymptotic properties of the LSEs and provide the
results in the following subsection.
Let us denote by ϑ the parameter vector for model (3),

ϑ = (
A1, B1, α1, . . . , Ap, Bp, αp,C1, D1, β1, . . . ,Cq , Dq , βq

)
.

Also, let ϑ0 denote the true parameter vector and ϑ̂ , the LSE of ϑ0.

Assumption 3 ϑ0 is an interior point of V = Θ1
(p+q), the parameter space and the

frequencies α0
j s are distinct for j = 1, . . . p and so are the frequency rates β0

k s for
k = 1, . . . q. Note that Θ1 = [−M, M] × [−M, M] × [0, π ].
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Assumption 4 The amplitudes, A0
j s and B0

j s, satisfy the following relationship:

2M2 > A0
1
2 + B0

1
2

> A0
2
2 + B0

2
2

> · · · > A0
p
2 + B0

p
2

> 0.

Similarly, C0
k s and D0

k s satisfy the following relationship:

2M2 > C0
1
2 + D0

1
2

> C0
2
2 + D0

2
2

> · · · > C0
q
2 + D0

q
2

> 0.

3.1 Least Squares Estimators

The LSEs of the unknown parameters of the proposed model, see (3), can be obtained
by minimizing the error sum of squares:

Q (ϑ) =
n∑

t=1

⎛

⎝y(t) −
p∑

j=1

{
A jcos

(
α j t

) + Bj sin
(
α j t

)}

−
q∑

k=1

{
Ckcos

(
βk t

2
)

+ Dksin
(
βk t

2
)})2

(14)

with respect to A1, B1, α1, . . ., Ap, Bp αp, C1, D1, β1, . . ., Cq , Dq and βq simultane-
ously. Similar to the one-component model, Q(ϑ) can be expressed in matrix notation
and then the LSE, ϑ̂ of ϑ0, can be obtained along the similar lines.

Next, we examine the consistency property of the LSE ϑ̂ along with its asymptotic
distribution.

Theorem 5 If Assumptions 1, 3 and 4, hold true, then:

ϑ̂
a.s.−−→ ϑ0 as n → ∞.

Proof The consistency of the LSE ϑ̂ can be proved along the similar lines as the
consistency of the LSE θ̂ , for the one-component model. ��

Theorem 6 If the above Assumptions 1, 3 and 4 , then:

(
ϑ̂ − ϑ0

)
D−1 d−→ N3(p+q)

(
0, cσ 2E−1

(
ϑ0

))
as n → ∞.
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Here, D = diag(D1, · · ·D1︸ ︷︷ ︸
p times

,D2, . . . ,D2︸ ︷︷ ︸
q times

), where D1 = diag( 1√
n
, 1√

n
, 1
n
√
n
) and D2 =

diag( 1√
n
, 1√

n
, 1
n2

√
n
).

E(ϑ0) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Σ
(1)
1 0 · · · · · · 0

0
. . . 0 · · · 0

...
... Σ

(1)
p 0 · · · 0

0 · · · 0 Σ
(2)
1 0 0

0 · · · · · · 0
. . . 0

0 · · · · · · 0 Σ
(2)
q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with Σ
(1)
j =

⎛

⎜⎜⎜⎝

1
2 0

B0
j
4

0 1
2

−A0
j

4
B0
j
4

−A0
j

4
A0
j
2+B0

j
2

6

⎞

⎟⎟⎟⎠ , j = 1, · · · , p and

Σ
(2)
k =

⎛

⎜⎜⎝

1
2 0

D0
k
6

0 1
2

−C0
k

6
D0
k
6

−C0
k

6
C0
k
2+D0

k
2

10

⎞

⎟⎟⎠ , k = 1, . . . , q.

Proof See Sect. C.1. ��

3.2 Sequential Least Squares Estimators

For the multiple-component chirp-like model, if the number of components, p and
q are very large, finding the LSEs becomes computationally challenging. To resolve
this issue, we propose a sequential procedure to estimate the unknown parameters
similar to the one-component model. Using the sequential procedure, the (p + q)-
dimensional optimization problem can be reduced to p+q, 1D optimization problems.
The algorithm for the sequential estimation is as follows:

Step 1: Perform Step 1 of the sequential algorithm for the one-component chirp-like

model as explained in Sect. 2.2 and obtain the estimate, θ̃
(1)
1 = ( Ã1, B̃1, α̃1).

Step 2: Eliminate the effect of the estimated sinusoidal component and obtain new
data vector:

y1(t) = y(t) − Ã1 cos (̃α1t) − B̃1 sin (̃α1t) .

Step 3: Minimize the following error sum of squares to obtain the estimates of the

next sinusoid, θ̃
(1)
2 = ( Ã2, B̃2, α̃2):

Q2(A, B, α) =
n∑

t=1

(y1(t) − A cos(αt) − B sin(αt))2 .
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Repeat these steps until all the p sinusoids are estimated.

Step p + 1: At (p + 1)-th step, we obtain the data:

yp(t) = yp−1(t) − Ã p cos
(
α̃pt

) − B̃p sin
(
α̃pt

)
.

Step p + 2: Using this data, we estimate the first chirp component parameters, and

obtain θ̃
(2)
1 = (C̃1, D̃1, β̃1): by minimizing:

Qp+1(C, D, β) =
n∑

t=1

(
yp(t) − C cos

(
βt2

)
− D sin

(
βt2

))2
.

Step p + 3: Now, eliminate the effect of this estimated chirp component and
obtain: yp+1(t) = yp(t) − C̃1 cos(β̃1t2) − D̃1 sin(β̃1t2) and minimize

Qp+2(C, D, β) to obtain θ̃
(2)
2 = (C̃2, D̃2, β̃2).

Continue to do so and estimate all the q chirp components.
We now investigate the consistency property of the proposed sequential estimators,

when p and q are unknown. Thus, we consider the following two cases: (a) when the
number of components of thefittedmodel is less than the actual number of components,
and (b) when the number of components of the fitted model is more than the actual
number of components.

Theorem 7 If Assumptions 1, 3 and 4 are satisfied, then the following are true:

(a)

θ̃
(1)
1

a.s.−−→ θ
(1)
1

0
as n → ∞,

(b)

θ̃
(2)
1

a.s.−−→ θ
(2)
1

0
as n → ∞.

Proof See Sect. C.2. ��
Theorem 8 If Assumptions 1, 3 and 4 are satisfied, the following are true:

(a)

θ̃
(1)
j

a.s.−−→ θ
(1)
j

0
as n → ∞, for all j = 2, . . . , p,

(b)

θ̃
(2)
k

a.s.−−→ θ
(2)
k

0
as n → ∞, for all k = 2, . . . , q.

Proof See Sect. C.2. ��
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Theorem 9 If Assumptions 1, 3 and 4 are true, then the following are true:

(a)

Ãp+k
a.s.−−→ 0, B̃p+k

a.s.−−→ 0 for k = 1, 2, . . . , as n → ∞,

(b)

C̃q+k
a.s.−−→ 0, D̃q+k

a.s.−−→ 0 for k = 1, 2, . . . , as n → ∞.

Proof See Sect. C.2. ��
Next, we determine the asymptotic distribution of the proposed estimators at each step
through the following theorems:

Theorem 10 If Assumptions 1, 3 and 4 are satisfied and presuming Conjecture 1 (see
Sect. A) hold true, then:

(a)

(
θ̃

(1)
1 − θ01

(1)
)
D−1
1

d−→ N3(0, cσ
2Σ

(1)
1

−1
) as n → ∞,

(b)

(
θ̃

(2)
1 − θ01

(2)
)
D−1
2

d−→ N3(0, cσ
2Σ

(2)
1

−1
) as n → ∞.

Here, c, the diagonal matrices D1 and D2 and the matrices Σ
(2)
1

−1
and Σ

(2)
1

−1
are as

defined in Theorem 6.

Proof See Sect. C.2. ��
This result can be extended for 2 ≤ j ≤ p and 2 ≤ k ≤ q as follows:

Theorem 11 If Assumptions 1, 3 and 4 are satisfied and presuming Conjecture 1 (see
Sect. A) hold true„ then for all j = 2, . . . , p and k = 2, . . . , q:

(a)

(
θ̃

(1)
j − θ0j

(1)
)
D−1
1

d−→ N3

(
0, cσ 2Σ

(1)
j

−1)
as n → ∞,

(b)

(
θ̃

(2)
k − θ0k

(2)
)
D−1
2

d−→ N3

(
0, cσ 2Σ

(2)
k

−1)
as n → ∞.

Σ
(1)
j and Σ

(2)
k are as defined in Theorem 6.

Proof This can be obtained along the same lines as the proof of Theorem 10. ��
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From the above results, it is evident that the sequential LSEs are strongly consistent
and have the same asymptotic distribution as the LSEs and at the same time can be
computed more efficiently. Thus for the simulation studies and to analyze the real
datasets as well, we compute the sequential LSEs instead of the LSEs.

4 Simulation Studies

In this section, we present the results obtained from some numerical experiments,
performed both for a one-component and a multiple-component model. These results
demonstrate the applicability of our model and the performance of the LSEs and the
sequential LSEs. Since we are primarily interested in the estimation of the nonlinear
parameters, here we report only these estimates. The linear parameter estimates can
be obtained by simple linear regression.

4.1 Results for a One-Component Chirp-like Model

In the first set of experiments, we consider a one-component chirp-like model (5) with
the following true parameter values:

A0 = 10, B0 = 10, α0 = 1.5,C0 = 10, D0 = 10 and β0 = 0.1.

The error structure used to generate the data is as follows:

X(t) = ε(t) + 0.5ε(t − 1).

Here, ε(t)s are i.i.d. normal random variables with mean zero and variance σ 2. We
consider different sample sizes: n = 100, 200, 300, 400 and 500 and different error
variances: σ 2: 0.1, 0.25, 0.5, 0.75 and 1. For each n and σ 2, we generate the data and
obtain the LSEs. Based on 1000 iterations, we compute the biases and MSEs of the
LSEs.We also compute the theoretical asymptotic variances of the proposed estimators
to compare with the corresponding computed MSEs. Figures 2 and 3 represent the
biases and MSEs of the LSEs of α and β compared to the asymptotic variances versus
different sample sizes. Similarly in Figs. 4 and 5, the biases and MSEs versus signal-
to-noise ratio (SNR) are shown.
Figures 2 and 4 show that the biases of the estimates are quite small, and therefore
the average estimates are close to the true values. Figure 3 depicts the consistent
behaviour of the LSEs. It can be seen that as n increases, theMSEs decrease. Similarly,
Fig. 5 represents the performance of the LSEs for different SNRs compared with the
asymptotic variances. The figure shows that MSEs decrease as the SNR increases, and
they match the corresponding asymptotic variances quite well.
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Fig. 2 In each sub-plot, the solid line represents the absolute value of the biases of the estimators of
parameters of the underlying simulated one-component model versus the sample size

Fig. 3 In each sub-plot, the dashed line represents theMSEs of the estimates and the solid line represents the
corresponding theoretical asymptotic variances of the estimators of parameters of the underlying simulated
one-component model versus the sample size

4.2 Results for a Multiple-component Chirp-like Model

Here, we present the simulation results for the multiple-component chirp-like model
(3) with p = q = 2. Following are the true parameter values used for data generation:

A0
1 = 10, B0

1 = 10, α0
1 = 1.5,C0

1 = 10, D0
1 = 10 and β0

1 = 0.1,

A0
2 = 8, B0

2 = 8, α0
2 = 2.5,C0

2 = 8, D0
2 = 8 and β0

2 = 0.2.
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Fig. 4 In each sub-plot, the solid line represents the absolute value of the biases of the estimators of
parameters of the underlying simulated one-component model versus SNR

Fig. 5 In each sub-plot, the dashed line represents theMSEs of the estimates and the solid line represents the
corresponding theoretical asymptotic variances of the estimators of parameters of the underlying simulated
one-component model versus SNR

The error structure used for data generation is again a moving average process, the
same as used for the one-component model simulations. We compute the sequential
LSEs of the parameters and report their biases, MSEs, and asymptotic variances.
Again, the different sample sizes and error variances used for the simulations are the
same as those for the one-component model. Figures 6 and 7 display the biases and
the MSEs of the obtained estimates versus the varying sample size. It is observed
that the estimates obtained have significantly small biases and thereby are close to the
true values. We also observe that as n increases the biases and the MSEs decrease,
thus depicting the desired consistency of the estimators. Moreover, the MSEs are
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Fig. 6 In each sub-plot, the solid line represents the absolute value of the biases of the estimators of
parameters of the underlying simulated two component model versus sample size

Fig. 7 In each sub-plot, the dashed line represents theMSEs of the estimates and the solid line represents the
corresponding theoretical asymptotic variances of the estimators of parameters of the underlying simulated
two component model versus sample size

on an equal footing with the corresponding asymptotic variances. The observations,
therefore, validate the derived theoretical properties of the sequential estimators.

In Figs. 8 and 9, the biases and the MSEs of the sequential estimates of the first
component parameters versus the SNRare shown, and in Figs. 10 and 11, the biases and
theMSEs of the sequential estimates of the second component parameters versus SNR
are displayed. The lines representing theMSEs and the asymptotic variances in Figs. 9
and 11 are visually indistinguishable, indicating high accuracy of the estimators.
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Fig. 8 In each sub-plot, the solid line represents the absolute value of the biases of the estimators of
parameters of the first component of the simulated two component model versus SNR

Fig. 9 In each sub-plot, the dashed line represents the MSEs of the estimates and the solid line represents
the corresponding theoretical asymptotic variances of the estimators of parameters of the first component
of the simulated two component model versus SNR

4.3 Fitting a Chirp Model Versus a Chirp-like Model to a Given Data

In this section, we make a comparison of computational complexities involved in
fitting a chirp-like model to a data set and that involved in modeling a data set using
a chirp model. The method of estimation that we will use to fit either of these models
is sequential LSEs as it significantly reduces the computational burden involved in
finding the traditional LSEs. This is discussed in more detail in the next section.

It must be noted that for fitting a nonlinear model finding the initial values is of
prime importance. Once we have found the initial values, we can employ any iterative
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Fig. 10 In each sub-plot, the solid line represents the absolute value of the biases of the estimators of
parameters of the second component of the simulated two component model versus SNR

Fig. 11 In each sub-plot, the dashed line represents the MSEs of the estimates and the solid line represents
the corresponding theoretical asymptotic variances of the estimators of parameters of the second component
of the simulated two-component model versus SNR

algorithm to find the sequential LSEs of the parameters. To find precise initial values,
we have to resort to a fine grid search throughout the parameter space, but performing
a grid search entails high computational load. We demonstrate in the following figures
how replacing a chirp model with a chirp-like model reduces this computational load
significantly. In Fig. 12, we plot the size of the grid required to find accurate initial
values of the parameters of one component of a chirp model and a chirp-like model.
It is visually evident that the difference in the computational complexity involved in
fitting a chirp model and a chirp-like model is huge. In Fig. 13, time taken to fit a
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Fig. 12 Comparison of computational complexity involved in fitting a component of chirp model and of a
chirp-like model

Fig. 13 Comparison of time consumption of fitting a component of chirp model and of a chirp-like model

component of a chirp model and a chirp-like model is shown and the picture gives
more insight into the computational difference.

4.4 Fitting a Chirp-like Model using LSEs Versus Sequential LSEs

In this section, we see how it is more expensive from a computational point of view to
find the LSEs. As discussed before, finding the initial values accounts for most of the
time consumption of finding the estimators of the nonlinear parameters. Therefore,
the computational complexity of finding the LSEs and the sequential LSEs heavily
depends on the grid search for initial values. In Fig. 14, we bring out this comparison
between the LSEs and the sequential LSEs. The number of grid points in the parameter
space required for precise initial values of the parameter estimates of a chirp-likemodel
with two sinusoids and two chirp components is reported. The figure reveals that the
sequential method reduces the computational burden involved in finding the LSEs
significantly.
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Fig. 14 Comparison of computational complexity involved in finding the LSEs and sequential LSEs of a
chirp-like model with two sinusoids and two chirp components

5 Data Analysis

5.1 Real Data Analysis

In this section, we analyze four different speech signal data sets: “AAA”, “AHH”,
“UUU” and “EEE” using the chirp model as well as the proposed chirp-like model.
These data sets have been obtained from a sound instrument at the Speech Signal
Processing laboratory of the Indian Institute ofTechnologyKanpur. The dataset “AAA”
has 477 data points, the set “AHH” has 469 data points and the rest of them have 512
points each.

We fit the chirp-like model to these data sets using the sequential LSEs following
the algorithm described in Sect. 3.2. As is evident from the description, we need to
solve a 1D optimization problem to find these estimators and since the problem is
nonlinear, we need to employ some iterative method to do so. Here we use Brent’s
method [3] to solve 1D optimization problems, using an inbuilt function in R, known
as ‘optim’. For this method to work, we require very good initial values in the sense
that they need to be close to the true values. Now one of the well-received methods
for finding initial values for the frequencies of the sinusoidal model is to maximize
the periodogram function:

I1(α) = 1

n

∣∣∣∣
n∑

t=1

y(t)e−iαt
∣∣∣∣
2

at the points:
π j

n
; j = 1, . . . , n − 1, called the Fourier frequencies. The estimators

obtained by this method, are called the Periodogram Estimators. After all the p sinu-
soidal components are fitted, we need to fit the q chirp components. Again, we need to
solve 1D optimization problem at each stage and for that we need good initial values.
Analogous to the periodogram function I1(α), we define a periodogram-type function
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as follows:

I2(β) = 1

n

∣∣∣∣
n∑

t=1

y(t)e−iβt2
∣∣∣∣
2

.

To obtain the starting points for the frequency rate parameter β, we maximize this

function at the points:
πk

n2
; k = 1, . . . , n2 − 1, similar to the Fourier frequencies.

Since in practice, the number of components of a model are unknown, we need to
estimate them. We use the following Bayesian information criterion (BIC), as a tool
to estimate p and q:

BIC( j, k) = n ln(SSres( j, k)) + 2 (3 j + 3k) ln(n); j = 1, . . . , J ; k = 1, . . . , K ,

(15)
for the present analysis of the datasets. For reference on the form of this criterion
function, one may refer to the monograph by Kundu and Nandi [19]. Here, SSres is
the residual sum of squares when j sinusoidal components and k chirp components
are fitted to the data. This is based on the assumption that the maximum number of
sinusoidal components is J and chirp components is K and in practice, we choose a
large values of J and K . We select the pair ( j, k) as an estimate of the pair (p, q)

corresponding to the minimum BIC.
For comparison of the chirp-like model with the chirp model, we re-analyze these

data sets by fitting a chirp model to each of them (for methodology, see Lahiri, Kundu
and Mitra [22]). In Table 1, we report the number of components required to fit the
chirp model and the chirp-like model to each of the data sets and in Figs. 15 and 16,
we plot the original data along with the estimated signals obtained by fitting a chirp
model and a chirp-like model to these data. In both scenarios, the model is fitted using
the sequential LSEs.
To validate the error assumption of stationarity, we test the residuals, for all the cases,
using the augmented Dickey-Fuller test (for more details see Fuller [9]). This tests the
following null hypothesis:
H0: There is a unit root present in the series,
against the following alternative:
H1 : No unit root present in the series, that is, the series is stationary.

We use an inbuilt function ‘adftest’ in MATLAB for this purpose. The test statistic
values result in rejection of the null hypothesis of the presence of a unit root indicating
that residuals, in all the cases, are stationary (Table 1).

It is evident from the figures above that visually both the models provide a good
fit for all the speech datasets. However, to fit a chirp-like model using the sequential
LSEs, we solve a 1D optimization problem at each step, while for the fitting of a chirp
model, at each step, we need to deal with a 2D optimization problem. Moreover, to
find the initial values, in both cases, a grid search is performed and for the chirp-like
model, this means evaluation of the periodogram functions I1(α) and I2(β) at n and
n2 grid points, respectively, as opposed to the n3 grid points for the chirp model. Note
that this is done at each step for the sequential estimators and hence becomes more
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Table 1 Number of components used to fit chirp and chirp-like model to the speech data sets

Number of components
Data set Chirp model Chirp-like model

p Number of parameters (p, q) Number of parameters

AAA 9 36 (10, 1) 33

AHH 8 32 (7, 1) 24

UUU 9 36 (8, 1) 27

EEE 11 44 (14, 1) 45

Fig. 15 Speech Signal data sets: “AAA” and “AHH”; Observed data (red solid line) and fitted signal (blue
dashed line). The sub-plots on the left represent chirpmodel fitting and those on the right represent chirp-like
model fitting (Color figure online)

Table 2 True parameters values of the synthetic data

A0k 951.12877 410.28077 − 205.56061 − 205.77076 160.16585

B0
k 942.76161 − 325.20751 − 412.32128 − 74.00592 − 67.47605

α0k 2.6838036 2.7794191 0.5512842 0.2698761 2.9871480

β0
k 3.141577 3.141573 1.531575e−05 1.814701e−05 3.140960

complex as the number of components increases. Thus, fitting a chirp-like model is
computationally much more efficient than fitting a chirp model (Fig. 15).

5.2 Simulated Data Analysis

We generate the data from a multiple-component chirp model. The number of com-
ponents is set to 5 and the parameters, amplitudes, frequencies, and frequency rates
are assigned prefixed values provided in Table 2.
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Fig. 16 Speech Signal data sets: “EEE” and “UUU”; Observed data (red solid line) and fitted signal (blue
dashed line). The sub-plots on the left represent chirpmodel fitting and those on the right represent chirp-like
model fitting

The data here are generated with the following error structure:

X(t) = 0.8897X(t − 1) − 0.4858X(t − 2) + e(t) − 0.2279e(t − 1) + 0.2488e(t − 2)

Here, e(t) are i.i.d. Gaussian random variables with mean 0 and variance 2. The
simulated signal consists of 512 sample points and is shown in Fig. 16.

The objective is to evaluate and compare the performance of the chirp model and
the chirp-like model to fit the simulated data. First, we fit a chirp model to the data
using the sequential least squares estimation method. For estimating the number of
chirp components, we use the following form of BIC:

BIC( j) = n ln (SSres( j)) + 2 ∗ 4 j ∗ ln(n); j = 1, . . . , J . (16)

Corresponding to the minimum value of BIC, p̃ = 5. Using these five chirp com-
ponents and sequential LSEs of the parameters, we compute the estimated signal. The
fitted chirp signal overlapping the synthesized signal is shown in Fig. 17.

Next, to illustrate the effectiveness of a chirp-likemodel to clone a chirp signal,wefit
a chirp-like model to the above synthesized data. We fit this model using the proposed
sequential LSEs. Since the number of sinusoids and chirp components needed to fit
this model to the simulated data is unknown, we again use BIC for the model selection
as defined in (15). Corresponding to the minimum value of BIC, we choose p̃ = 9 and
q̃ = 1, the estimates of the model order. In Fig. 18, the model fitting corresponding to
the selected model is shown along with the simulated data.

It can be seen that the estimated signals using the chirp model as well as the chirp-
like model envelop the simulated chirp data quite accurately. We also measure the
accuracy of these fittings by calculating the residual root-mean-square errors (RMSEs)
for the two model fittings. The residual RMSE for the chirp model fitting is 0.8750,
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Fig. 17 Simulated data

Fig. 18 Simulated data signal along with estimated signal using chirp model

while for the chirp-like model fitting, it is 4.0727. The difference in the RMSEs is also
reflected in Fig. 19 as a small gap can be observed at some time points. However, this
gap can be reduced with an increase in the number of components fitted to the model.
It is important to note that fitting five components of a chirp model to a dataset of size
512, needs 5123 ∗ 5 = 67, 10, 88, 640 function evaluations. On the other hand, fitting
nine sinusoid components and 1 chirp component of a chirp-like model to this dataset
requires (512 ∗ 9) + (512 ∗ 512 ∗ 1) = 2, 66, 752 function evaluations. Therefore,
a trade-off must be made between the computational complexity and accuracy of the
estimated fitting.

Another important point is that by increasing the number of components, we can
improve the performance of the chirp-like model and reduce the residual RMSE to
get at par with that in the case of the chirp model fitting. For example, if we use 48
sinusoids and 41 chirp components of a chirp-likemodel to explain this simulated data,
the residual RMSE of the new fitting turns out to be 0.8720, which is less than that
obtained by chirp model fitting. Moreover the computational expense ((512 ∗ 48) +
(512 ∗ 512 ∗ 41) = 1, 07, 47, 904 function evaluations which is approximately 63
times less expensive than the chirp model fitting) will still be lower than that involved
in fitting a five-component chirp model. Therefore, a chirp-like model can provide a
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Fig. 19 Simulated data signal along with estimated signal using chirp-like model

better fit at a lower expense. From here, we can also conclude that the BIC method
for model selection can under-estimate the model order and may not give the best
estimation performance. We believe that there is a need to develop more efficient
methods of model selection for better results. However, this is not explored here and
is an open problem.

6 Conclusion

Chirp signals are ubiquitous in many areas of science and engineering and hence their
parameter estimation is of great significance in signal processing. But it has been
observed that parameter estimation of this model, particularly using the method of
least squares is computationally complex. In this paper, we put forward an alternate
model, named the chirp-like model. We observe that the data that have been analyzed
using chirp models can also be analyzed using the chirp-like model and estimating its
parameters using sequential LSEs is simpler than that for the chirp model. We show
that the LSEs and the sequential LSEs of the parameters of this model are strongly
consistent and asymptotically normally distributed. The rates of convergence of the
parameter estimates of this model are the same as those for the chirp model. We
analyze four speech datasets, and it is observed that the proposed model can be used
quite effectively to analyze these data sets.
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A Some Preliminary Results

To provide the proofs of the asymptotic properties established in this manuscript, we
will require the following results:

Lemma 1 If φ ∈ (0, π), then the following hold true:

(a) lim
n→∞

1
n

n∑
t=1

cos(φt) = lim
n→∞

1
n

n∑
t=1

sin(φt) = 0.

(b) lim
n→∞

1
nk+1

n∑
t=1

tk cos2(φt) = lim
n→∞

1
nk+1

n∑
t=1

tk sin2(φt) = 1
2(k+1) ; k = 0, 1, 2, . . . .

(c) lim
n→∞

1
nk+1

n∑
t=1

tk sin(φt) cos(φt) = 0; k = 0, 1, 2, . . . .

Proof Refer to Kundu and Nandi [19]. ��
Lemma 2 If φ ∈ (0, π), then except for a countable number of points, the following
hold true:

(a) lim
n→∞

1
n

n∑
t=1

cos(φt2) = lim
n→∞

1
n

n∑
t=1

sin(φt2) = 0.

(b) lim
n→∞

1
nk+1

n∑
t=1

tk cos2(φt2) = lim
n→∞

1
nk+1

n∑
t=1

tk sin2(φt2) = 1
2(k+1) ; k = 0, 1, 2, . . . .

(c) lim
n→∞

1
nk+1

n∑
t=1

tk sin(φt2) cos(φt2) = 0; k = 0, 1, 2, . . . .

Proof Refer to Lahiri [20]. ��
Lemma 3 If (φ1, φ2) ∈ (0, π)× (0, π), then except for a countable number of points,
the following holds true:

(a) lim
n→∞

1
nk+1

n∑
t=1

tk cos(φ1t) cos(φ2t2) = 0

(b) lim
n→∞

1
nk+1

n∑
t=1

tk cos(φ1t) sin(φ2t2) = 0

(c) lim
n→∞

1
nk+1

n∑
t=1

tk sin(φ1t) cos(φ2t2) = 0

(d) lim
n→∞

1
nk+1

n∑
t=1

tk sin(φ1t) sin(φ2t2) = 0

k = 0, 1, 2, . . .

Proof This proof follows from the number theoretic result proved by Lahiri [20] (see
Lemma 2.2.1 of the reference). ��
Lemma 4 If X(t) satisfies Assumptions 1, 3 and 4 , then for k ≥ 0:

(a) sup
φ

∣∣∣∣
1

nk+1

n∑
t=1

tk X(t)ei(φt)
∣∣∣∣

a.s.−−→ 0
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(b) sup
φ

∣∣∣∣
1

nk+1

n∑
t=1

tk X(t)ei(φt
2)

∣∣∣∣
a.s.−−→ 0

Here, i = √−i .

Proof These can be obtained as particular cases of Lemma 2.2.2 of Lahiri [20]. ��
Following is the famous number theoretic conjecture of Montgomery [29].

Conjecture 1 If θ1, θ2, θ ′
1, θ

′
2 ∈ (0, π), then except for a countable number of points:

(a)

lim
n→∞

1

nk
√
n

n∑

t=1

tk cos
(
θ1t + θ2t

2
)
sin

(
θ ′
1t + θ ′

2t
2
)

= 0; k = 0, 1, 2, . . . ,

(b)

lim
n→∞

1

nk
√
n

n∑

t=1

tk cos
(
θ1t + θ2t

2
)
cos

(
θ ′
1t + θ ′

2t
2
)

= 0; k = 0, 1, 2, . . . ; if θ2 = θ ′
2,

lim
n→∞

1

nk
√
n

n∑

t=1

tk sin
(
θ1t + θ2t

2
)
sin

(
θ ′
1t + θ ′

2t
2
)

= 0; k = 0, 1, 2, . . . ; if θ2 = θ ′
2.

The following conjecture follows from Montgomery’s conjecture:

Conjecture 2 If (φ1, φ2) ∈ (0, π) × (0, π), then except for a countable number of
points, the following holds true:

(a) lim
n→∞

1
nk

√
n

n∑
t=1

tk cos(φ1t2) = 0

(b) lim
n→∞

1
nk

√
n

n∑
t=1

tk sin(φ1t2) = 0

(c) lim
n→∞

1
nk

√
n

n∑
t=1

tk cos(φ1t) cos(φ2t) = 0

(d) lim
n→∞

1
nk

√
n

n∑
t=1

tk cos(φ1t) sin(φ2t) = 0

(e) lim
n→∞

1
nk

√
n

n∑
t=1

tk sin(φ1t) sin(φ2t) = 0

(f) lim
n→∞

1
nk

√
n

n∑
t=1

tk cos(φ1t) cos(φ2t2) = 0

(g) lim
n→∞

1
nk

√
n

n∑
t=1

tk cos(φ1t) sin(φ2t2) = 0

(h) lim
n→∞

1
nk

√
n

n∑
t=1

tk sin(φ1t) cos(φ2t2) = 0

(i) lim
n→∞

1
nk

√
n

n∑
t=1

tk sin(φ1t) sin(φ2t2) = 0
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k = 0, 1, 2, . . ..

In the subsequent appendices, we show that if the above conjecture holds, then the
asymptotic distribution of the sequential LSEs coincides with that of the usual LSEs.

B One Component Chirp-like Model

B.1 Proofs of the Asymptotic Properties of the LSEs

We need the following lemmas to prove the consistency of the LSEs:

Lemma 5 Consider the set Sc = {θ : |θ − θ0| > c; θ ∈ Θ}. If the following holds
true,

lim inf inf
Sc

1

n

(
Q (θ) − Q(θ0)

)
> 0 a.s., (17)

then θ̂
a.s.−−→ θ0 as n → ∞

Proof Let us denote θ̂ by θ̂n , to highlight the fact that the estimates depend on the
sample size n. Now suppose, θ̂n � θ0, then there exists a subsequence {nk} of {n},
such that θ̂nk � θ0. In such a situation, one of two cases may arise:

1. | Ânk | + |B̂nk | + |Ĉnk | + |D̂nk | is not bounded, that is, at least one of the | Ânk | or
|B̂nk | or |Ĉnk | or |D̂nk | → ∞ ⇒ 1

nk
Qnk (θ̂nk ) → ∞

But, lim
nk→∞

1
nk
Qnk (θ

0) < ∞ which implies, 1
nk

(Qnk (θ̂nk ) − Qnk (θ
0)) → ∞. This

contradicts the fact that:
Qnk

(
θ̂nk

)
≤ Qnk (θ

0), (18)

which holds true as θ̂nk is the LSE of θ0.
2. | Ânk | + |B̂nk | + |Ĉnk | + |D̂nk | is bounded, then there exists a c > 0 such that

θ̂nk ∈ Sc, for all k = 1, 2, . . .. Now, since (17) is true, this contradicts (18).

Hence, the result. ��
Proof of Theorem 1: Consider the difference:

1

n

(
Q(θ) − Q

(
θ0

))

= 1

n

n∑

t=1

(
y(t) − A cos(αt) − B sin(αt) − C cos

(
βt2

)
− D sin

(
βt2

))2

− 1

n

n∑

t=1

(
y(t) − A0 cos

(
α0t

)
− B0 sin

(
α0t

)
− C0 cos

(
β0t2

)
− D0 sin

(
β0t2

))2

= 1

n

n∑

t=1

(
A0 cos

(
α0t

)
− A cos(αt) + B0 sin

(
α0t

)
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−B sin(αt) + C0 cos
(
β0t2

)
− C cos(βt2) + D0 sin

(
β0t2

)
− D sin

(
βt2

))2

+ 1

n

n∑

t=1

X(t)
(
A0 cos(α0t) − A cos(αt) + B0 sin

(
α0t

)
− B sin(αt) + C0 cos

(
β0t2

)

−C cos
(
βt2

)
+ D0 sin

(
β0t2

)
− D sin

(
βt2

))

= f (θ) + g(θ).

Now using Lemma 4, it can be easily seen that:

lim
n→∞ sup

θ∈Sc
g(θ) = 0 a.s. (19)

Thus, we have:

lim inf inf
θ∈Sc

1

n

(
Q(θ) − Q(θ0)

)
= lim inf inf

θ∈Sc
f (θ).

Note that the proof will follow if we show that lim inf infθ∈Sc f (θ) > 0. Consider the

set Sc = {θ : |θ − θ0| ≥ 6c; θ ∈ Θ} ⊂ S(1)
c ∪ S(2)

c ∪ S(3)
c ∪ S(4)

c ∪ S(5)
c ∪ S(6)

c , where

S(1)
c =

{
θ : |A − A0| ≥ c; θ ∈ Θ

}
S(2)
c =

{
θ : |B − B0| ≥ c; θ ∈ Θ

}

S(3)
c =

{
θ : |α − α0| ≥ c; θ ∈ Θ

}
S(4)
c =

{
θ : |C − C0| ≥ c; θ ∈ Θ

}

S(5)
c =

{
θ : |D − D0| ≥ c; θ ∈ Θ

}
S(6)
c =

{
θ : |β − β0| ≥ c; θ ∈ Θ

}

Now, we split the set S(1)
c as follows:

S(1)
c =

{
θ : |A − A0| ≥ c; θ ∈ Θ

}

⊂
{
θ : |A − A0| ≥ c; θ ∈ Θ;α = α0;β = β0

}

∪
{
θ : |A − A0| ≥ c; θ ∈ Θ;α = α0;β = β0

}

∪
{
θ : |A − A0| ≥ c; θ ∈ Θ;α = α0;β = β0

}

∪
{
θ : |A − A0| ≥ c; θ ∈ Θ;α = α0;β = β0

}

= S(1)1
c ∪ S(1)2

c ∪ S(1)3
c ∪ S(1)4

c

Now let us consider:

lim inf inf
θ∈S(1)1

c

f (θ)
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= lim inf inf
θ∈S(1)1

c

1

n

n∑

t=1

(
A0 cos

(
α0t

)
− A cos(αt) + B0 sin

(
α0t

)
− B sin(αt)

+ C0 cos
(
β0t2

)
− C cos

(
βt2

)

+D0 sin(β0t2) − D sin
(
βt2

))2

= lim inf inf
θ∈S(1)1

c

1

n

n∑

t=1

((
A0 − A

)
cos

(
α0t

)

+
(
B0 − B

)
sin

(
α0t

)
+

(
C0 − C

)
cos

(
β0t2

)
+

(
D0 − D

)
sin

(
β0t2

))2

=
(
A0 − A

)2

2
+

(
B0 − B

)2

2

+
(
C0 − C

)2

2
+

(
D0 − D

)2

2
> 0

lim inf inf
θ∈S(1)2

c

f (θ)

= lim inf inf
θ∈S(1)1

c

1

n

n∑

t=1

(
A0 cos

(
α0t

)

− A cos(αt) + B0 sin
(
α0t

)
− B sin(αt) +

(
C0 − C

)
cos

(
β0t2

)

+
(
D0 − D

)
sin(β0t2)

)2 = A02

2
+ A2

2
+ B02

2
+ B2

2
+

(
C0 − C

)2

2

+
(
D0 − D

)2

2
> 0

lim inf inf
θ∈S(1)3

c

f (θ)

= lim inf inf
θ∈S(1)3

c

1

n

n∑

t=1

((
A0 − A

)
cos

(
α0t

)

+
(
B0 − B

)
sin

(
α0t

)
+ C0 cos

(
β0t2

)
− C cos

(
βt2

)

+D0 sin
(
β0t2

)
− D sin

(
βt2

))2 =
(
A0 − A

)2

2

+
(
B0 − B

)2

2
+ C02

2
+ C2

2
+ D02

2
+ D2

2
> 0

Finally,

lim inf inf
θ∈S(1)4

c

f (θ)
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= lim inf inf
θ∈S(1)1

c

1

n

n∑

t=1

(
A0 cos

(
α0t

)
− A cos (αt)

+ B0 sin(α0t) − B sin(αt) + C0 cos
(
β0t2

)
− C cos

(
βt2

)

+D0 sin
(
β0t2

)
− D sin

(
βt2

))2 = A02

2
+ A2

2
+ B02

2

+ B2

2
+ C02

2
+ C2

2
+ D02

2
+ D2

2
> 0

Note that we used Lemmas 1 and 2 in all the above computations of the limits. On
combining all the above, we have lim inf inf

θ∈S(1)
c

f (θ) > 0. Similarly, it can be shown

that the result holds for the rest of the sets. Therefore, by Lemma 5, θ̂ is a strongly
consistent estimator of θ0. ��
Proof of Theorem 2: To obtain the asymptotic distribution of the LSEs, we express
Q′(θ̂) using multivariate Taylor series expansion arount the point θ0, as follows:

Q′ (θ̂
)

− Q′ (θ0
)

=
(
θ̂ − θ0

)
Q′′ (θ̄

)
. (20)

Here, θ̄ is a point between θ̂ and θ0. Since, θ̂ is the LSE of θ0, Q′(θ̂) = 0. Thus, we
have: (

θ̂ − θ0
)

= −Q′ (θ0
) [

Q′′ (θ̄
)]−1

. (21)

Multiplying both sides of (21)) by the 6 × 6 diagonal matrix D = diag
( 1√

n
, 1√

n
, 1
n
√
n
, 1√

n
, 1√

n
, 1
n2

√
n
), we get:

(
θ̂ − θ0

)
D−1 = −Q′ (θ0

)
D

[
DQ′′ (θ̄

)
D
]−1

. (22)

First, we will show that:

lim
n→∞Q′ (θ0

)
D

d−→ N
(
0, 4cσ 2Σ

)
. (23)

Here,

Σ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 B0

4 0 0 0

0 1
2

−A0

4 0 0 0
B0

4
−A0

4
A02+B02

6 0 0 0

0 0 0 1
2 0 D0

6

0 0 0 0 1
2

−C0

6

0 0 0 D0

6
−C0

6
C02+D02

10

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

To prove (23)), we compute the elements of the 6 × 1 vector
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Q′(θ0)D =
(

1√
n

∂Q(θ)
∂A

1√
n

∂Q(θ)
∂B

1
n
√
n

∂Q(θ)
∂α

1√
n

∂Q(θ)
∂C

1√
n

∂Q(θ)
∂D

1
n2

√
n

∂Q(θ)
∂β

)
as fol-

lows:

1√
n

∂Q (θ)

∂A
= −2√

n

n∑

t=1

(y(t) − A cos(αt)

−B sin(αt) − C cos(βt2) − D sin(βt2)
)
cos(αt)

⇒ 1√
n

∂Q(θ0)

∂A
= −2√

n

n∑

t=1

X(t) cos
(
α0t

)
.

Similarly, the rest of the elements can be computed and we get:

Q′(θ0)D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2√
n

n∑
t=1

X(t) cos
(
α0t

)

−2√
n

n∑
t=1

X(t) sin
(
α0t

)

−2
n
√
n

n∑
t=1

t X(t)
(−A0 sin

(
α0t

) + B0 cos
(
α0t

))

−2√
n

n∑
t=1

X(t) cos
(
β0t2

)

−2√
n

n∑
t=1

X(t) sin
(
β0t2

)

−2
n2

√
n

n∑
t=1

t2X(t)
(−C0 sin

(
β0t2

) + D0 cos
(
β0t2

))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now using the central limit theorem (CLT) of stochastic processes (see Fuller [9]),
the above vector tends to a six-variate Gaussian distribution with mean 0 and variance
4cσ 2Σ and hence (23) holds true. Now, we consider the second-derivative matrix
DQ′′(θ̄)D. Note that since θ̂

a.s.−−→ θ0 as n → ∞ and θ̄ is a point between θ̂ and θ0,

lim
n→∞DQ′′ (θ̄

)
D = lim

n→∞DQ′′ (θ0
)
D.

Using Lemmas 1, 2, 3 and 4 and after some calculations, it can be shown that:

DQ′′ (θ0
)
D = 2Σ, (25)

where Σ is as defined in (24). On combining, (22),(23) and (25), the desired result
follows. ��

B.2 Proofs of the Asymptotic Properties of the Sequential LSEs

Following lemmas are required to prove the consistency of the sequential LSEs:
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Lemma 6 Let us define the set Mc = {θ (1) : |θ (1) − θ0
(1)| ≥ 3c; θ (1) ∈ Θ(1)}. If the

following holds true,

lim inf inf
Mc

1

n

(
Q1

(
θ (1)

)
− Q1

(
θ0

(1)
))

> 0 a.s. (26)

then θ̃
(1) a.s.−−→ θ0

(1)
as n → ∞

Proof This can be proved by contradiction along the same lines as Lemma 5. ��
Lemma 7 Let us define the set Nc = {θ (2) : θ (2) ∈ Θ(2); |θ (2) − θ0

(2)| ≥ 3c}. If for
any c > 0,

lim inf inf
θ (2)∈Nc

1

n

(
Q2

(
θ (2)

)
− Q2

(
θ0

(2)
))

> 0 a.s. (27)

then θ̃
(2) a.s.−−→ θ0

(2)
as n → ∞.

Proof This can be proved by contradiction along the same lines as Lemma 5. ��
Proof of Theorem 3: First we prove the consistency of the parameter estimates of the

sinusoidal component, θ̃
(1)
. For this, consider the difference:

1

n

(
Q1

(
θ (1)

)
− Q1

(
θ0

(1)
))

= 1

n

[
n∑

t=1

(y(t) − A cos(αt) − B sin(αt))2

−
(
y(t) − A0 cos

(
α0t

)
− B0 sin

(
α0t

))2]

= 1

n

n∑

t=1

(
A0 cos

(
α0t

)
− A cos(αt) + B0 sin

(
α0t

)

−B sin(αt) + C0 cos
(
β0t2

)
+ D0 sin

(
β0t2

)
+ X(t)

)2

− 1

n

n∑

t=1

(
C0 cos

(
β0t2

)
+ D0 sin

(
β0t2

)
+ X(t)

)2

= 1

n

n∑

t=1

(
A0 cos

(
α0t

)
+ B0 sin

(
α0t

)
− A cos(αt) − B sin(αt)

)2

+ 2

n

n∑

t=1

(
C0 cos

(
β0t2

)
+ D0 sin

(
β0t2

)
+ X(t)

) (
A0 cos

(
α0t

)

+B0 sin
(
α0t

)
− A cos(αt) − B sin(αt)

)

= f1
(
θ (1)

)
+ g1

(
θ (1)

)
.
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Here,

f1
(
θ (1)

)
= 1

n

n∑

t=1

(
A0 cos

(
α0t

)
+ B0 sin

(
α0t

)
− A cos(αt) − B sin(αt)

)2
and,

g1
(
θ (1)

)
= 2

n

n∑

t=1

(
C0 cos

(
β0t2

)
+ D0 sin

(
β0t2

)
+ X(t)

) (
A0 cos

(
α0t

)

+B0 sin
(
α0t

)
− A cos(αt) − B sin(αt)

)

Now using Lemmas 3 and 4 , it is easy to see that:

sup
θ∈Mc

|g1
(
θ (1)

)
| a.s.−−→ 0.

Thus, if we prove that lim inf inf
Mc

f1(θ
(1)) > 0 a.s., it will follow that lim inf inf

Mc

1
n (Q1(θ

(1))−Q1(θ
0(1)

)) > 0 a.s. . First consider the set Mc = {θ (1) : |θ (1) −θ0
(1)| ≥

3c; θ (1) ∈ Θ (1)}. It is evident that:

Mc ⊂ M (1)
c ∪ M (2)

c ∪ M (3)
c ,

where M (1)
c = {θ (1) : |A − A0| ≥ c; θ (1) ∈ Θ(1)}, M (2)

c = {θ (1) : |B − B0| ≥
c; θ (1) ∈ Θ(1)} and M (3)

c = {θ (1) : |α − α0| ≥ c; θ (1) ∈ Θ(1)}. Now, we further split
the set M (1)

c which can be written as: M (1)1
c ∪ M (1)2

c , where

M (1)1
c =

{
θ (1) : |A − A0| ≥ c; θ (1) ∈ Θ (1);α = α0

}
and M (1)2

c

=
{
θ (1) : |A − A0| ≥ c; θ (1) ∈ Θ (1);α = α0

}

Consider,

lim inf inf
M

(1)1
c

f1
(
θ (1)

)
= lim inf inf

M
(1)1
c

1

n

n∑

t=1

(
A0 cos

(
α0t

)

+B0 sin
(
α0t

)
− A cos(αt) − B sin(αt)

)2

=
(
A0 − A

)2

2
+ (B0 − B)2

2
> 0 a.s. (using Lemma 1).

Again, using Lemma 1,

lim inf inf
M

(1)2
c

1

n

n∑

t=1

(
A0 cos

(
α0t

)
+ B0 sin

(
α0t

)
− A cos(αt) − B sin(αt)

)2
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= A02

2
+ B02

2
+ A2

2
+ B2

2
> 0 a.s..

Similarly, it can be shown that lim inf inf
M(2)

c

f1(θ
(1)) > 0 a.s. and lim inf inf

M(3)
c

f1(θ
(1)) >

0 a.s. Now using Lemma 6, Ã, B̃ and α̃ are strongly consistent estimators of A0, B0 and
α0, respectively. To prove the consistency of the chirp parameter sequential estimates,
C̃ , D̃ and β̃, we need the following lemma:

Lemma 8 If Assumptions 1, 2 and 3 are satisfied, then:

(
θ̃

(1) − θ0
(1)

) (√
nD1

)−1 a.s.−−→ 0.

Here, D1 = diag( 1√
n
, 1√

n
, 1
n
√
n
).

Proof Consider the error sum of squares: Q1(θ) = 1
n

n∑
t=1

(y(t) − A cos(αt) −
B sin(αt))2.

By Taylor series expansion of Q′
1(θ̃

(1)
) around the point θ0

(1)
, we get:

Q′
1

(
θ̃

(1)
)

− Q′
1

(
θ0

(1)
)

=
(
θ̃

(1) − θ0
(1)

)
Q′′

1

(
θ̄

(1)
)

(28)

where θ̄
(1)

is a point lying between θ̃
(1)

and θ0
(1)
. Since θ̃

(1)
minimizes Q1(θ), it

implies that Q′
1(θ̃

(1)
) = 0, and therefore, (28) can be written as:

(
θ̃

(1) − θ0
(1)

)
= −Q′

1

(
θ0

(1)
) [

Q′′
1

(
θ̄

(1)
)]−1

(29)

⇒
(
θ̃

(1) − θ0
(1)

)
(
√
nD1)

−1 =
[
− 1√

n
Q′

1

(
θ0

(1)
)
D1

] [
D1Q′′

1

(
θ̄

(1)
)
D1

]−1
(30)

Now let us calculate the right-hand side explicitly. First consider the first-derivative

vector 1√
n
Q′

1(θ
0(1)

)D1.

1√
n
Q′

1

(
θ0

(1)
)
D1 =

(
1
n

∂Q1

(
θ0

(1)
)

∂A
1
n

∂Q1

(
θ0

(1)
)

∂B
1
n2

∂Q1

(
θ0

(1)
)

∂α

)

By straightforward calculations and using Lemmas 3 and 4 (a), one can easily see that:

1√
n
Q′

1

(
θ0

(1)
)
D1 → 0 a.s. (31)
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Now let us consider the second-derivative matrixD1Q′′
1(θ̄

(1)
)D1. Since θ̃

(1) a.s.−−→ θ0
(1)

and θ̄
(1)

is a point between them, we have:

D1Q′′
1

(
θ̄

(1)
)
D1 = lim

n→∞D1Q′′
1

(
θ0

(1)
)
D1

Again by routine calculations and using Lemmas 1, 3 and 4 (a) , one can evaluate each
element of this 3 × 3 matrix, and get:

lim
n→∞D1Q′′

1

(
θ0

(1)
)
D1 = 2Σ1, (32)

where Σ1 =
⎛

⎜⎝

1
2 0 B0

4

0 1
2

−A0

4
B0

4
−A0

4
A02+B02

6

⎞

⎟⎠ > 0, a positive definite matrix. Hence, combining

(31) and (32), we get the desired result. ��

Using the above lemma, we get the following relationship between the sinusoidal
component of the model and its estimate:

Ã cos(α̃t) + B̃ sin(α̃t) = A0 cos(α0t) + B0 sin(α0t) + o(1) (33)

Now to prove the consistency of θ̃
(1) = (C̃, D̃, β̃), we consider the following differ-

ence:

1

n

(
Q2

(
θ (2)

)
− Q2

(
θ0

(2)
))

= 1

n

[
n∑

t=1

(
y1(t) − C cos

(
βt2

)
− D sin(βt2)

)2

−
(
y1(t) − C0 cos

(
β0t2

)
− D0 sin

(
β0t2

))2]

= 1

n

n∑

t=1

(
C0 cos

(
β0t2

)

+D0 sin
(
β0t2

)
− C cos

(
βt2

)
− D sin

(
βt2

))2

+ 2

n

n∑

t=1

(
A0 cos

(
α0t

)
+ B0 sin

(
α0t2

)
+ X(t)

) (
C0 cos

(
β0t2

)

+D0 sin
(
β0t2

)
− C cos

(
βt2

)
− D sin

(
βt2

))

= f2
(
θ (2)

)
+ g2

(
θ (2)

)
.
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Using Lemmas 3 and 4 , we have

sup
θ∈Nc

|g2
(
θ (2)

)
| a.s.−−→ 0,

and using straightforward, but lengthy calculations and splitting the set Nc, similar to
the splitting of set Mc, before, it can be shown that lim inf inf

ξ∈Nc

f2(θ
(2)) > 0.

Thus, θ̃
(2) a.s.−−→ θ0

(2)
as n → ∞ by Lemma 7. Hence, the result. ��

Proof of Theorem 4: We first examine the asymptotic distribution of the sequential

estimates of the sinusoidal component, that is, θ̃
(1)

from 29, we have:

(
θ̃

(1) − θ0
(1)

)
D−1
1 = −Q′

1

(
θ0

(1)
)
D1

[
D1Q′′

1

(
θ̄

(1)
)
D1

]−1
.

First, we show thatQ′
1(θ

0(1)
)D1 → N3(0, 4σ 2cΣ1). We compute the elements of the

derivative vector Q′
1(θ

0(1)
) and using Conjecture 2 (e), (f), (g) and (h) (see Sect. A),

we obtain:

Q′
1

(
θ0

(1)
)
D1

a.eq.= −2

⎛

⎜⎜⎜⎜⎜⎜⎝

1√
n

n∑
t=1

X(t) cos
(
α0t

)

1√
n

n∑
t=1

X(t) sin
(
α0t

)

1
n
√
n

n∑
t=1

t X(t)
(−A0

1 sin
(
α0t

) + B0 cos
(
α0t

))

⎞

⎟⎟⎟⎟⎟⎟⎠
. (34)

Here,
a.eq.= means asymptotically equivalent. Now again using CLT, the right-hand

side of (34) tends to three-variate Gaussian distribution with mean 0 and variance–
covariance matrix, 4σ 2cΣ1. Using this and (32), we have the desired result.

Next, we determine the asymptotic distribution of θ̃
(2)

. For this, we consider the
error sum of squares, Q2(θ

(2)) as defined in (12). Let Q′
2(θ

(2)) be the first-derivative
vector and Q′′

2(θ
(2)), the second-derivative matrix of Q2(θ

(2)). Using multivariate

Taylor series expansion, we expand Q′
2(θ̃

(2)
) around the point θ0

(2)
, and get:

(
θ̃

(2) − θ0
(2)

)
= −Q′

2

(
θ0

(2)
)

[Q′′
2(θ̄

(2)
)]−1.

Multiplying both sides by the matrix D−1
2 , where D2 = diag( 1√

n
, 1√

n
, 1
n2

√
n
), we get:

(
θ̃

(2) − θ0
(2)

)
D−1
2 = −Q′

2

(
θ0

(2)
)
D2

[
D2Q′′

2

(
θ̄

(2)
)
D2

]−1
.
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Now, when we evaluate the first-derivative vector Q′
2(θ

0(2)
)D2, using Conjecture 2

(a) (see Sect. A), we obtain:

Q′
2

(
θ0

(2)
)
D2

a.eq.= −2

⎛

⎜⎜⎜⎜⎜⎜⎝

1√
n

n∑
t=1

X(t) cos
(
β0t2

)

1√
n

n∑
t=1

X(t) sin
(
β0t2

)

1
n2

√
n

n∑
t=1

t X(t)
(−C0 sin

(
β0t2

) + D0 cos
(
β0t2

))

⎞

⎟⎟⎟⎟⎟⎟⎠
. (35)

Again using the CLT, the vector on the right-hand side of (35) tends to N3(0, 4σ 2cΣ2),

where Σ2 =
⎛

⎜⎝

1
2 0 D0

6

0 1
2

−C0

6
D0

6
−C0

6
C02+D02

10

⎞

⎟⎠ > 0.

Note that:

lim
n→∞D2 Q′′

2

(
θ̄

(2)
)
D2 = lim

n→∞D2 Q′′
2

(
θ0

(2)
)
D2.

On computing the second derivative 3 × 3 matrix D2Q′′
2(θ

0(2)
)D2 and using Lem-

mas 2, 3 and 4 (b), we get:

lim
n→∞D2 Q′′

2

(
θ0

(2)
)
D2 = 2Σ2. (36)

Combining results (35) and (36), we get the stated asymptotic distribution of θ̃
(2)

.

Hence, the result. ��

C Multiple Component Chirp-like Model

C.1 Proofs of the Asymptotic Properties of the LSEs

Proof of Theorm 6: Consider the error sum of squares, defined in (14). Let us denote
Q′(ϑ) as the 3(p+q)×1 first-derivative vector andQ′′(ϑ) as the 3(p+q)×3(p+q)

second-derivative matrix. Using multivariate Taylor series expansion, we have:

Q′ (ϑ̂
)

− Q′ (ϑ0
)

=
(
ϑ̂ − ϑ0

)
Q′′ (ϑ̄

)
.

Here, ϑ̄ is a point between ϑ̂ and ϑ0. Now, using the fact that Q′(ϑ̂) = 0 and multi-
plying both sides of the above equation by D−1, we have:

(
ϑ̂ − ϑ0

)
D−1 = −Q′ (ϑ̂

)
D

[
DQ′′ (ϑ̄

)
D

]−1
.

Also note that (ϑ̂ − ϑ0)D−1 =
(

(θ̂
(1)
1 − θ01

(1)
), . . . , (θ̂

(1)
p − θ0p

(1)
), (θ̂

(2)
1 −

θ01
(2)

), . . . , (θ̂
(2)
q − θ0q

(2)
)

)
D−1.
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Now, we evaluate the elements of the vector Q′(ϑ0) and the matrix Q′′(ϑ̄):

∂Q(ϑ)

∂A j

∣∣∣∣
ϑ0

= −2
n∑

t=1

X(t) cos
(
α0
j t
)

,
∂Q(ϑ)

∂Bj

∣∣∣∣
ϑ0

= −2
n∑

t=1

X(t) sin
(
α0
j t
)

, and

∂Q(ϑ)

∂α j

∣∣∣∣
ϑ0

= −2
n∑

t=1

t X(t)
(
−A0

j sin
(
α0
j t
)

+ B0
j cos

(
α0
j t
))

, for j = 1, . . . , p.

Similarly, for

k = 1, . . . , q,
∂Q(ϑ)

∂Ck

∣∣∣∣
ϑ0

= −2
n∑

t=1

X(t) cos
(
β0
k t

2
)

,
∂Q(ϑ)

∂Dk

∣∣∣∣
ϑ0

= −2
n∑

t=1

X(t) sin
(
β0
k t

2
)
and

∂Q(ϑ)

∂βk

∣∣∣∣
ϑ0

= −2
n∑

t=1

t2X(t)
(
−C0

k sin
(
β0
k t

2
)

+ D0
k cos

(
β0
k t

))
.

∂2Q(ϑ)

∂A2j

∣∣∣∣
ϑ0

= 2
n∑

t=1

cos2
(
α0
j t
)

,
∂2Q(ϑ)

∂B2
j

∣∣∣∣
ϑ0

= 2
n∑

t=1

sin2
(
α0
j t
)

, j = 1, . . . , p,

∂2Q(ϑ)

∂C2
k

∣∣∣∣
ϑ0

= 2
n∑

t=1

cos2
(
β0
k t

2
)
and

∂2Q(ϑ)

∂D2
k

∣∣∣∣
ϑ0

= 2
n∑

t=1

sin2
(
β0
k t

2
)

, k = 1, . . . , q.

∂2Q(ϑ)

∂A j ∂B j

∣∣∣∣
ϑ0

= 2
n∑

t=1

sin
(
α0
j t
)
cos

(
α0
j t
)

,

∂2Q(ϑ)

∂A j ∂α j

∣∣∣∣
ϑ0

= 2
n∑

t=1

t X(t) sin
(
α0
j t
)

− 2A0j

n∑

t=1

t cos
(
α0
j t
)
sin

(
α0
j t
)

+ 2B0
j

n∑

t=1

t cos2
(
α0
j t
)

,

∂2Q(ϑ)

∂A j ∂Ck

∣∣∣∣
ϑ0

= 2
n∑

t=1

cos
(
β0
k t

2
)
cos

(
α0
j t
)

,
∂2Q(ϑ)

∂A j ∂Dk

∣∣∣∣
ϑ0

= 2
n∑

t=1

sin
(
β0
k t

2
)
cos

(
α0
j t
)

,

∂2Q(ϑ)

∂A j ∂βk

∣∣∣∣
ϑ0

= −2C0
k

n∑

t=1

t2 cos
(
α0
j t
)
sin

(
β0
k t

2
)

+ 2D0
k

n∑

t=1

t2 cos
(
α0
j t
)
cos

(
β0
k t

2
)

.

Similarly the rest of the partial derivatives can be computed and using Lemmas 1, 2, 3
and 4 , it can be shown that:

DQ′′ (ϑ̄
)
D → 2E

(
ϑ0

)
.

Now, using CLT on the first-derivative vector, Q′(ϑ0)D, it can be shown that it con-
verges to a multivariate Gaussian distribution. Using routine calculations, and again
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using Lemmas 1, 2, 3 and 4, we compute the asymptotic variances for each of the
elements and their covariances and we get:

Q′ (ϑ0
)
D

d−→ N3(p+q)

(
0, 4cσ 2E

(
ϑ0

))
.

Hence, the result. ��

C.2 Proofs of the Asymptotic Properties of the LSEs

To prove Theorems 7 and 8 , we need the following lemmas:

Lemma 9 (a) Consider the set M ( j)
c = {θ (1)

j : |θ (1)
j − θ0j

(1)| ≥ 3c; θ
(1)
j ∈ Θ(1)}, j =

1, . . . , p. If the following holds true:

lim inf inf
M( j)

c

1

n

(
Q2 j−1

(
θ

(1)
j

)
− Q2 j−1

(
θ0j

(1)
))

> 0 a.s. (37)

then θ̃
(1)
j

a.s.−−→ θ0j
(1)

as n → ∞
(b) Let us define the set N (k)

c = {θ (2)
k : θ

(2)
k ∈ Θ(2); |θ (2)

k − θ0k
(2)| ≥ 3c}, k =

1, . . . , q. If for any c > 0,

lim inf inf
θ

(2)
k ∈N (k)

c

1

n

(
Q2k

(
θ

(2)
k

)
− Q2k

(
θ0k

(2)
))

> 0 a.s. (38)

then θ̃
(2)
k

a.s.−−→ θ0k
(2)

as n → ∞.

Proof This can be proved by contradiction along the same lines as Lemma 5. ��
Lemma 10 If the Assumptions 1, 3 and 4 are satisfied, then for j ≤ p and k ≤ q:

(a) (θ̃ j − θ0j )(
√
nD1)

−1 a.s.−−→ 0.

(b) (ξ̃ k − ξ0k)(
√
nD2)

−1 a.s.−−→ 0.

Here, D1 = diag( 1√
n
, 1√

n
, 1
n
√
n
) and D2 = diag( 1√

n
, 1√

n
, 1
n2

√
n
).

Proof This proof can be obtained along the same lines as Lemma 8. ��
Now the proofs of Theorems 7 and 8 can be obtained by using the above lemmas and
following the same argument as in Theorem 3.

Next, we examine the situation when the number of components is overestimated
(see Theorem 9). The proof of Theorem 9 will follow consequently from the below-
stated lemmas:

Lemma 11 If X(t), is the error component as defined before, and if Ã, B̃ and α̃ are
obtained by minimizing the following function:

Q p+q+1

(
θ (1)

)
= 1

n

N∑

t=1

(X(t) − A cos(αt) − B sin(αt))2 ,
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then Ã
a.s.−−→ 0 and B̃

a.s.−−→ 0.

Proof The sum of squares function Qp+q+1(θ
(1)) can be written as:

1

n

n∑

t=1

X2(t) − 2

n

n∑

t=1

X(t) (A cos(αt) + B sin(αt)) + A2 + B2

2
+ o(1)

= R
(
θ (1)

)
+ o(1).

Since the difference between Qp+q+1(θ
(1)) and R(θ (1)) is o(1), replacing former with

latter will have negligible effect on the estimators. Thus, we have

Ã = 2

n

n∑

t=1

X(t) cos(αt) + o(1) and B̃ = 2

n

n∑

t=1

X(t) sin(αt) + o(1).

Now using Lemma 4 (a), the result follows. ��
Lemma 12 If X(t), is the error component as defined before, and if C̃, D̃ and β̃ are
obtained by minimizing the following function:

1

n

N∑

t=1

(
X(t) − C cos

(
βt2

)
− D sin

(
βt2

))2
,

then C̃
a.s.−−→ 0 and D̃

a.s.−−→ 0.

Proof The proof of this lemma follows along the same lines as Lemma 11. ��
Now,weprovide the proof of the fact that the sequential LSEshave the sameasymptotic
distribution as the LSEs.

Proof of Theorem 10: (a) By Taylor series expansion of Q′
1(θ̃

(1)
1 ) around the point

θ01
(1)
, we have:

(
θ̃

(1)
1 − θ01

(1)
)

= −Q′
1

(
θ01

(1)
) [

Q′′
1

(
θ̄

(1)
1

)]−1

Multiplying both sides by the matrix D−1
1 , where D1 = diag( 1√

n
, 1√

n
, 1
n
√
n
), we get:

(
θ̃

(1)
1 − θ01

(1)
)
D−1
1 = −Q′

1

(
θ01

(1)
)
D1

[
D1Q′′

1

(
θ̄

(1)
1

)
D1

]−1

First, we show that Q′
1(θ

0
1
(1)

)D1 → N3(0, 4σ 2cΣ (1)
1 ).

To prove this, we compute the elements of the derivative vector Q′
1(θ

0
1
(1)

):
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∂Q1

(
θ01

(1)
)

∂A1

= −2
n∑

t=1

⎛

⎝
p∑

j=2

(
A0j cos

(
α0
j t
)

+ B0
j sin

(
α0
j t
))

+
q∑

k=1

(
C0
k cos

(
β0
k t

2
)

+ D0
k sin

(
β0
k t

2
))

+X(t)) cos
(
α0
1 t

)
,

∂Q1

(
θ01

(1)
)

∂B1
= −2

n∑

t=1

⎛

⎝
p∑

j=2

(
A0j cos

(
α0
j t
)

+ B0
j sin

(
α0
j t
))

+
q∑

k=1

(
C0
k cos

(
β0
k t

2
)

+D0
k sin

(
β0
k t

2
))

+ X(t)
)
sin

(
α0
1 t

)
,

∂Q1

(
θ01

(1)
)

∂α1

= −2
n∑

t=1

t

⎛

⎝
p∑

j=2

(
A0j cos

(
α0
j t
)

+ B0
j sin

(
α0
j t
))

+
q∑

k=1

(
C0
k cos

(
β0
k t

2
)

+ D0
k sin

(
β0
k t

2
))

+ X(t)

⎞

⎠

×
(
−A01 sin

(
α0
1 t

)
+ B0

1 cos
(
α0
1 t

))
.

Using Conjecture 2 (see Sect. A), it can be shown that:

Q′
1(θ

0
1
(1)

)D1
a.eq.= −2

⎛

⎜⎜⎜⎜⎜⎜⎝

1√
n

n∑
t=1

X(t) cos(α0
1 t)

1√
n

n∑
t=1

X(t) sin(α0
1 t)

1
n
√
n

n∑
t=1

t X(t)(−A0
1 sin(α

0
1 t) + B0

1 cos(α
0
1 t))

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Now using CLT, we have:

Q′
1

(
θ01

(1)
)
D1 → N3

(
0, 4σ 2cΣ (1)

1

)

Next, we compute the elements of the second-derivative matrix, D1Q′′
1(θ

0
1
(1)

)D1. By
straightforward calculations and using Lemmas 1, 2, 3 and 4 , it is easy to show that:

D1Q′′
1

(
θ01

(1)
)
D1 = 2Σ (1)

1 .

Thus, we have the desired result.
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(b) Consider the error sum of squares Q2(θ
(2)) =

n∑
t=1

(
y1(t) − C cos(βt2) −

D sin(βt2)

)2

. Here y1(t) = y(t)− Ã cos(α̃t)− B̃ sin(α̃t), t = 1, . . . , n. Let Q′
2(θ

(2))

be the first-derivative vector and Q′′
2(θ

(2)), the second-derivative matrix of Q2(θ
(2)).

By Taylor series expansion of Q′
2(θ̃

(2)
1 ) around the point θ01

(2)
, we have:

(
θ̃

(2)
1 − θ01

(2)
)

= −Q′
2

(
θ01

(2)
) [

Q′′
2

(
θ̄

(2)
1

)]−1

Multiplying both sides by the matrix D−1
2 , where D2 = diag( 1√

n
, 1√

n
, 1
n2

√
n
), we get:

(
θ̃

(2)
1 − θ01

(2)
)
D−1
2 = −Q′

2

(
θ01

(2)
)
D2

[
D2Q′′

2

(
θ̄

(2)
1

)
D2

]−1

Now using (33), and proceeding exactly as in part (a), we get:

(
θ̃

(2)
1 − θ01

(2)
)
D−1
2

d−→ N3

(
0, σ 2cΣ (2)

1
−1)

.

Hence, the result. ��
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