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Abstract
This paper is concerned with the distributed fusion Kalman filtering problem for net-
worked systems with communication constraints. A dimensionality reduction strategy
and a uniform quantization strategy are introduced to reduce communication traffic.
To overcome the unboundedness of estimates/measurements in unstable systems, it is
proposed to quantize the innovations that are sent to the fusion center through limited
bandwidth channels. Then, a recursively distributed dimensionality reduction fusion
Kalman filtering algorithm is developed by using a model uncertainty method to pro-
cess quantization noises. Finally, a target tracking system is employed to demonstrate
the effectiveness of the proposed methods.
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1 Introduction

Multi-sensor fusion estimation is how tomake the best use of the information contained
in local sensors to obtain an optimal estimation of an event or a parameter [17]. Some
local and fusion estimation methods have been studied (see [1,9,11,13–15,18,21,23,
24], and the references therein). Due to the rapid development of communication
technology, communication network is widely used to connect individual sensors,
because it can effectively improve the scalability and reduce wiring complexity. In
this case, some networked multi-sensor fusion systems (NMFSs) are put forward for
solving fusion problems, and they have found applications in a wide range, such as
cyber-physical systems [5], Internet of Things [3] and SINR estimation [25]. Then, a
great number of fusion estimation algorithms have been developed based on NMFSs
(see [4,6,28,29], and the references therein). However, along with the introduction of
networks, some inevitable problems which will directly degrade the fusion estimation
performance arise [2,7,22], such as bandwidth constraints, packet losses and time
delays. Under this context, this paper will focus on the distributed fusion estimation
for a class of NMFSs with limited communication capacity.

In general, there are two strategies to solve the problem of limited bandwidth:
quantization [12,16] and dimensionality reduction [10,19]. The core idea of the dimen-
sionality reduction is to convert a high-dimensional signal into a low-dimensional
signal, while the idea of the quantization is to reduce the number of coding bits, but
the dimension of the quantized signal is the same as that of the original signal. In
this regard, to more greatly reduce communication traffic, the dual data compression
strategy (DDCS) which includes both quantization and dimensionality reduction was
proposed [8]. However, most of the above methods are based on stable systems, where
the state estimates can be effectively quantized, while that of unstable systems cannot.
Therefore, instead of directly quantizing the local estimates/measurements, the inno-
vation quantization strategy was utilized to design the distributed fusion estimator in
[26], but the dimensionality reduction scheme which can largely reduce the traffic was
not considered.

Motivated by the aforementioned analysis, we shall study the distributed dimen-
sionality reduction fusion estimation problem under quantized innovations, where the
addressed dynamical systems are unstable. The main contributions of this paper can
be summarized as follows: (1) The DDCS based on innovation is adopted to reduce
the communication traffic for unstable NMFSs. (2) An uncertain approach is given
to process the uncertainty of quantization, and a robust distributed dimensionality
reduction fusion Kalman filter is derived under quantized innovations.

Notations The superscript “T” stands for the transpose, and “I” stands for the
identity matrix. The notation diag{ · } represents a block diagonal matrix, and
col{a1, . . . , an} represents a column vector whose elements are a1, . . . , an . E{·}
denotes the mathematical expectation, while Tr{·} represents the trace of matrix. The
notation rank{·} denotes the rank of matrix. X > (<)0 means a positive-definite
(negative-definite) matrix, while X ≥ (≤)0 means a non-negative definite (non-
positive definite) matrix.
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2 Problem Statement

Consider the following discrete-time state-space model:

x(t + 1) = Ax(t) + Bw(t) (1)

yi (t) = Ci x(t) + vi (t)(i = 1, 2, . . . , L). (2)

x(t) ∈ R
n is the system state, and yi (t) ∈ R

mi is the measurement of the i th sensor
at time t . The addressed system is not necessarily stable, i.e., limt→∞ x(t) → ∞ and
limt→∞ yi (t) → ∞. Moreover, let L denote the number of sensors. A, B and Ci are
constant matrices with appropriate dimensions. w(t) and vi (t) are uncorrelated white
Gaussian noises satisfying

E{[wT(t) vTi (t)]T[wT(t1) vTj (t1)]} = δt t1diag{Q, δi j Ri } (3)

where δi j = 0 and δt t1 = 0 if i �= j and t �= t1; otherwise, δi j = 1 and δt t1 = 1.
Assume that (A, B) is controllable and (A,Ci ) is observable, that is

{
rank{[B AB · · · An−1B]} = n
rank{col{Ci ,Ci A, . . . ,Ci An−1}} = n

. (4)

In the sequel, the local estimate x̂i (t) at the i th sensor is given by the Kalman structure:

x̂i (t + 1) = Ax̂i (t) + Ki (t + 1)εi (t + 1) (5)

where εi (t) represents the innovation sequence, and it canbedescribedby the following
form:

εi (t) = yi (t) − Ci Ax̂i (t − 1) . (6)

2.1 DDCS Based on Innovation

Before each sensor message is transmitted to the FC via constrained communication
channels, the following DDCS is proposed to satisfy the finite bandwidth.

According to the idea of dimensionality reduction in [10], it is similarly proposed
in this paper that ri (1 ≤ ri < mi ) components of the i th innovation εi (t) are selected
to be transmitted at a particular time. In this case, the allowed sending components
have θi possible cases, where θi is taken as

θi = mi !
ri !(mi−ri )! . (7)

Hence, the reorganized innovation (RI) εri (t) can only take one signal from the fol-
lowing finite set:

χi (t) = {Θ i
1(t)εi (t), . . . , Θ

i
hi

(t)εi (t), . . . , Θ i
θi
(t)εi (t)} (8)
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where Θ i
hi

denotes a diagonal matrix which contains ri diagonal elements “1” and
mi − ri diagonal elements “0.”

To describe the RI in a simple way, suppose that θi elements of set χi are indexed
from 1 to θi . Then, the following indicator function is introduced:

σ i
hi

(t) =
{
1 if εri (t) = Θ i

hi
(t)εi (t)

0 if εri (t) �= Θ i
hi

(t)εi (t)
(9)

It can be realized from (9) that if the hi th element of set χi (t) is chosen as εri (t),
σ i
hi

(t) = 1; otherwise, σ i
hi

(t) = 0. Meanwhile, the binary variables σ i
hi

(t)(hi =
1, 2, . . . , θi ) satisfy

σ i
hi

(t)σ i
hi0

(t) = 0(hi �= hi0),
θi∑

hi=1
σ i
hi

(t) = 1 . (10)

It can be guaranteed from (10) that the RI only takes one signal from the set χi (t) at
each time. Then, the RI εri (t) can be calculated by the following form:

εri (t) = Θi (t)εi (t) (11)

where Θi (t) is described by:

Θi (t) =
θi∑

hi=1
σ i
hi

(t)Θ i
hi

(t) . (12)

Since Θi (t) is diagonal, it can be simplified as follows:

Θi (t) = diag{ξ hii1 (t), ξ hii2 (t), . . . , ξ hiimi
(t)} (13)

where ξ
hi
i j (t)( j = 1, 2, . . . ,mi ) are the binary variables satisfying

ξ
hi
i j (t) ∈ {0, 1},

mi∑
j=1

ξ
hi
i j (t) = ri . (14)

Subsequently, the RI will be quantized after dimensionality reduction, and Fig. 1
shows the relationship between the input and the output of uniform quantizer. Here,
the uniform quantizer can be described by [20]:

Q(x) = x̄ + sgn(x − x̄) · δ · � ‖x−x̄‖
δ

+ 1
2
 (15)

where sgn{·} is the sign function. x denotes the input, while x̄ denotes the mid-value
of certain interval. The parameter δ = l

2 is the maximum error, where l is the length
of the quantization interval. Thus, the quantization error Δ is bounded, that is

‖Δ‖ = ‖x − Q(x)‖ < δ = l
2 . (16)
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Fig. 1 The relationship between the input and output of the uniform quantizer

Accordingly, Q(x) can be expressed as (I + Δ)x for certain Δ which satisfies (16).
Under the above analysis, the RI after quantization becomes the quantized innova-

tion (QI) ε
q
i (t), i.e., the innovation based on the DDCS, and the QI can be expressed

by the following form:

ε
q
i (t) = Q(εri (t)) = (I + Δi (t))Θi (t)εi (t) = (I + Hi (t)Fi (t)Ei (t))Θi (t)εi (t)

(17)
where Hi (t), Fi (t), Ei (t) are known matrices with appropriate dimensions.

Remark 1 Generally, local estimates were quantized for satisfying the limited band-
width [10]. But in this paper, the innovations were proposed to be quantized through
finite communication channels. In fact, the inputs of quantizer should be bounded at
each time. This means that the quantization density and the upper bound should be
determined in advance, and then the quantizer can correctly judge which interval the
output is in.However, for unstable systems, the estimates/measurementswill diverge as
time goes to∞. As an alternative, innovation sequences can be bounded due to the sta-
bility of Kalman filtering when the system is controllable and observable. In this case,
the innovation quantization strategy was adopted in [26] such that the quantization
method can be applicable for unstable NMFSs. Although the fusion estimation prob-
lem was also discussed in [26], the dimensionality reduction strategy which greatly
reduces the traffic more than the quantization strategy was not considered. Therefore,
the DDCS based on innovation is proposed in this paper.

Remark 2 Obviously, with the dimension reduced by dimensionality reduction strat-
egy, the amount of useful information will be simultaneously lost and the estimation
performance in FC will be compromised. To overcome this shortage, the one-step pre-
diction compensation strategy is commonly proposed to reduce the loss [24]. However,
different from the above-mentioned view, there is no need to compensate the reorga-
nized information caused by dimensionality reduction in this paper, because it is the
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innovations instead of the estimates that are going to be transmitted. In this case,
whether the FC receives the innovations or not, the one-step prediction will be com-
putedwhen recursingKalmanfilter, i.e., the local estimates,will be potentially replaced
by the one-step predictions. Moreover, the stability and the accuracy are influenced by
the dimension ri . Hence, the dimension ri needs to be carefully determined to balance
the communication traffic and the accuracy.

2.2 Problem of Interests

Consider the following local filter with quantized innovation [26]:

x̂i (t + 1) = Ax̂i (t) + Ki (t + 1)εqi (t + 1) (18)

where x̂i (t + 1) is the local state estimate and Ki (t + 1) is the optimal Kalman filter
gain. Notice that the Kalman gain in the linear minimum variance sense can be solved
in two steps. First, a filter with quantized innovation needs to be designed to eliminate
the multiplicative uncertainties such that for all admissible uncertainties, there exists
a positive-definite matrix P̃ii (t) satisfying

P̄ii (t) = E{(xi (t) − x̂i (t))(xi (t) − x̂i (t))T} ≤ P̃ii (t) (19)

because
Tr{P̄ii (t)} = E{(xi (t) − x̂i (t))T(xi (t) − x̂i (t)} ≤ Tr{P̃ii (t)} (20)

where P̄ii (t) represents the state estimation error covariance matrix of i th sensor, and
P̃ii (t) is the corresponding finite upper bound. Second, we shall minimize Tr(P̃ii (t))
to calculate the optimal gain Ki (t) and Pii (t), the minimum of upper bound, and then
construct the optimal recursive Kalman filter.

After QI has been sent to the FC through constrained communication channel, the
local estimate recursively calculated in FC, denoted as x̂ f i (t + 1), will be described
by the following form:

x̂ f i (t + 1) = Ax̂ f i (t) + K f i (t + 1)εqi (t + 1) . (21)

When x̂ f i (0) = x̂i (0), there must be x̂ f i (t+1) = x̂i (t+1) at each time. In the sequel,
the weighting fusion estimate in FC can be calculated by:

x̂m(t) =
L∑

i=1
Wi (t)x̂ f i (t) (22)

where Wi (t)(i = 1, . . . , L) are weight matrices meet
∑L

i=1 Wi (t) = I , and they
need to be designed by the linear unbiased minimum variance criterion. Then, the
distributed dimensionality reduction fusion structure with quantized innovations is
shown in Fig. 2.

Consequently, the problems to be solved in this paper are summarized as follows:
(1) Design a dimensionality reduction Kalman filter with quantized innovation based
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Fig. 2 The distributed dimensionality reduction fusion structure with quantized innovations

on the model uncertainty processing method in each sensor. (2) Design a distributed
dimensionality reduction fusion Kalman filtering with quantized innovations based on
the local estimates and the fusion criterion.

Remark 3 In most cases, the stable local estimator with standard form of Kalman filter
is designed by x̂ si (t + 1) = Ax̂i (t)+ Ks

i (t + 1)εi (t + 1). However, the stability of the
local estimator x̂ f i (t + 1) as (21) in FC cannot be guaranteed due to the introduction
of DDCS. Suppose that the Kalman gain in FC is also computed as Ks

i (t). Then, to
prove the instability between the standard Kalman filter and filter (21), their relative
error δi (t + 1) is described as follows:

δi (t + 1) = x̂ si (t + 1) − x̂ f i (t + 1)
= Aδi (t) + Ks

i (t + 1)εi (t + 1)(I − (I + Δi (t + 1))Θi (t + 1))

= At+1δi (0) +
t∑

n=0
At−nK s

i (n + 1)εi (n + 1)Δi (n + 1)Θi (n + 1).
(23)

When δi (0) = 0, δi (t) cannot be 0 due to the existence of quantization noise Δi (t)
and dimensionality reduction matrixΘi (t). Nevertheless, if the standard local Kalman
filter is replaced by the proposed filter with quantized innovation as (18), δi (t + 1)
will become

δi (t + 1) = x̂i (t + 1) − x̂ f i (t + 1)
= Aδi (t)
= At+1δi (0).

(24)

It is obvious that when δi (0) = 0, δi (t) = 0. In other words, the local filters recur-
sively calculated in FC will be consistent with that in corresponding sensors. Thus, in
this paper, recursive form (18) is considered for local state estimation instead of the
standard Kalman filter.
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3 Main Results

In this section, the distributed dimensionality reduction fusion Kalman filter with
quantized innovations is designed for unstable NMFSs. Define the estimation error
ei (t) = x(t)− x̂i (t). Then, the optimal weight matricesWi (t) in (22) can be obtained
by resorting to the results in [21]:

W (t) = (ITa P−1(t)Ia)−1 ITa P−1(t) (25)

where

Ia = [ITn · · · ITn︸ ︷︷ ︸
L times

]
(26)

W (t) = [
W1(t) . . .Wi (t) · · ·WL(t)

]
(27)

P(t) = E{[eT1 (t) . . . eTL(t)][eT1 (t) . . . eTL(t)]T}. (28)

Before deriving the main results, the following lemma is introduced.

Lemma 1 [27] Given matrices A, H and E with compatible dimensions such that
FFT ≤ I . Let X be a symmetric positive-definite matrix and α > 0 be an arbitrary
positive constant such that α−1 I − EXET > 0, then the following inequality holds:

(A + HFE)X(A + HFE)T

≤ AX AT + AXET(α−1 I − EXET)−1EX AT + α−1HHT. (29)

Theorem 1 Given positive parameters αi i , βi i and γi i which satisfy

⎧⎨
⎩

α−1
i i I − Ẽi1(t)Pii (t)ẼT

i1(t) > 0
β−1
i i I − Ẽi2(t)QẼT

i2(t) > 0
γ −1
i i I − Ẽi3(t)Ri ẼT

i3(t) > 0
. (30)

Then, the optimal estimator gain Ki (t + 1) in (18) is calculated by:

Ki (t + 1) = [ASii1(t)ATCT
i Θi (t + 1)T

+ BSii2(t)B
TCT

i Θi (t + 1)T][Ci ASii1(t)A
TCT

i

+Ci BSii2(t)B
TCT

i + Sii3(t) + (α−1
i i + β−1

i i + γ −1
i i )Hi (t)Hi (t)

T]−1 (31)

Pii (t + 1) = Ãi1(t)Sii1(t) Ã
T
i1(t) + Ãi2(t)Sii2(t) Ã

T
i2(t)

+ Ãi3(t)Sii3(t) Ã
T
i3(t)

+α−1
i i H̃i (t)H̃

T
i (t) + β−1

i i H̃i (t)H̃
T
i (t)

+ γ −1
i i H̃i (t)H̃

T
i (t) (32)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ãi1(t) = A − Ki (t + 1)Θi (t + 1)Ci A
Ãi2(t) = B − Ki (t + 1)Θi (t + 1)Ci B
Ãi3(t) = −Ki (t + 1)Θi (t + 1)
H̃i (t) = −Ki (t + 1)Hi (t + 1)
Ẽi1(t) = Ei (t + 1)Θi (t + 1)Ci A
Ẽi2(t) = Ei (t + 1)Θi (t + 1)Ci B
Ẽi3(t) = Ei (t + 1)Θi (t + 1)

(33)

and

⎧⎨
⎩
Sii1(t) = Pii (t) + Pii (t)ẼT

i1(t)[α−1
i i I − Ẽi1(t)Pii (t)ẼT

i1(t)]−1 Ẽi1(t)Pii (t)
Sii2(t) = Q + QẼT

i2(t)[β−1
i i I − Ẽi2(t)QẼT

i2(t)]−1 Ẽi2(t)Q
Sii3(t) = Ri + Ri ẼT

i3(t)[γ −1
i i I − Ẽi3(t)Ri ẼT

i3(t)]−1 Ẽi3(t)Ri

.

(34)
Meanwhile, after similarly giving αi j , βi j and γi j , the cross-covariance matrix is
computed by:

Pi j (t + 1) = Ãi1(t)Si j1(t) Ã
T
j1(t) + Ãi2(t)Si j2(t) Ã

T
j2(t)

+ Ãi3(t)Si j3(t) Ã
T
j3(t)

+α−1
i j H̃i (t)H̃

T
j (t) + β−1

i j H̃i (t)H̃
T
j (t)

+ γ −1
i j H̃i (t)H̃

T
j (t) (35)

where

⎧⎪⎨
⎪⎩
Si j1(t) = Pi j (t) + Pi j (t)ẼT

j1(t)[α−1
i j I − Ẽi1(t)Pii (t)ẼT

j1(t)]−1 Ẽi1(t)Pi j (t)

Si j2(t) = Q + QẼT
j2(t)[β−1

i j I − Ẽi2(t)QẼT
j2(t)]−1 Ẽi2(t)Q

Si j3(t) = 0

.

(36)

Proof Under the distributed fusion structure, the fusion algorithm is based on the local
estimates and weighting criterion. To start, let us define the original local Kalman filter
before minimization:

x̄i (t + 1) = Ax̂i (t) + K̄i (t + 1)εqi (t + 1) (37)

where x̄i (t + 1) and K̄i (t + 1), respectively, represent the estimate and gain before
minimization. The corresponding state estimation error is denoted by ēi (t + 1) �
xi (t + 1) − x̄i (t + 1). After expanding uncertain term as (17), ēi (t + 1) will become:

ēi (t + 1) = ( Ãi1(t) + H̃i (t)Fi (t + 1)Ẽi1(t))ei (t)
+ ( Ãi2(t) + H̃i (t)Fi (t + 1)Ẽi2(t))w(t)
+ ( Ãi3(t) + H̃i (t)Fi (t + 1)Ẽi3(t))vi (t + 1)

(38)



Circuits, Systems, and Signal Processing (2021) 40:5234–5247 5243

where Ãi1(t), Ãi2(t), Ãi3(t), H̃i (t), Ẽi1(t), Ẽi2(t) and Ẽi3(t) have been defined in
(33). As analyzed in (17), Hi (t + 1)Fi (t + 1)Ei (t + 1) = Δi (t + 1) represents
the quantization noise. More concretely, Fi (t + 1) = Δi (t+1)

δ
meets the constraint

Fi (t + 1)FT
i (t + 1) ≤ I , and Hi (t + 1) = δ, Ei (t + 1) = I . Then, after giving

positive parameters αi i , βi i and γi i which satisfy (30), the upper bound P̃ii (t + 1) of
P̄ii (t + 1) � E{ēi (t + 1)ēTi (t + 1)}, the original estimation error covariance matrix,
can be derived by utilizing Lemma 1:

P̄ii (t + 1) ≤ Ãi1(t)Sii1(t) ÃT
i1(t) + Ãi2(t)Sii2(t) ÃT

i2(t) + Ãi3(t)Sii3(t) ÃT
i3(t)

+α−1
i i H̃i (t)H̃T

i (t) + β−1
i i H̃i (t)H̃T

i (t) + γ −1
i i H̃i (t)H̃T

i (t)

= P̃ii (t + 1)
(39)

where Sii1(t), Sii2(t) and Sii3(t) have been defined in (34). To obtain the minimum
covariance Pii (t), the first-order partial derivative about K̄i (t + 1) of Tr{P̃ii (t + 1)}
is given as follows:

∂Tr{P̃ii (t + 1)}
∂ K̄i (t + 1)

= 2K̄i (t + 1)Θi (t + 1)Ci ASii1(t)A
TCT

i Θi (t + 1)T

−2ASii1(t)A
TCT

i Θi (t + 1)T + 2α−1
i i H̃i (t)H̃i (t)

T

+2K̄i (t + 1)Θi (t + 1)Ci BSii2(t)B
TCT

i Θi (t + 1)T

−2BSii2(t)B
TCT

i Θi (t + 1)T + 2β−1
i i H̃i (t)H̃i (t)

T

+2K̄i (t + 1)Θi (t + 1)Sii3(t)Θi (t + 1)T + 2γ −1
i i H̃i (t)H̃i (t)

T

(40)

When (40) equals zero, the optimal Kalman gain Ki (t +1) can be derived in the linear
minimum variance sense as (31), and the minimum upper bound Pii (t + 1) can be
obtained by substituting the optimal Kalman gain Ki (t + 1) into (39).

On the other hand, when the FC receives the quantized innovations, (21) is exploited
to calculate the local estimate x̂ f i (t + 1). According to Remark 3, the local estimates
are relatively invariant during the transmission process. Thus, Pi j (t+1), the minimum
upper bound of cross-covariance and the composite covariance matrix P(t+1) can be
calculated by (35) and (28). Finally, the optimal weight matrix W (t + 1) in the linear
unbiased minimum variance sense is derived by (25), and the optimal fusion estimate
is calculated by (22). This completes the proof. ��

Based on Theorem 1, the computation procedures for distributed dimensionality
reduction fusionKalman filteringwith quantized innovations are summarized asAlgo-
rithm 1.
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Algorithm 1 Distributed dimensionality reduction fusion Kalman filtering algorithm
1: For given αi j , βi j , γi j (i = 1, 2, 3; j = 1, 2, 3), Pii (0), x̂i (0), P(0), x̂(0).

2: Calculate Ãi1(t), Ãi2(t), Ãi3(t), Sii1, Sii2 and Sii3 by (33) and (34).
3: Calculate Ki (t + 1), Pii (t + 1) and x̂i (t + 1) by (31), (32) and (18).
4: Calculate x̂ f i (t + 1) and Pi j (t + 1) by (21) and (35).
5: Calculate P(t + 1), W (t + 1) and x̂m (t + 1) by (25) to (28) and (22).
6: Return to Step 2 and implement Step 2-5 for calculating x̂m (t + 2).

4 Simulation Examples

Consider a target tracking system with two sensors, and the system parameters in (1)
and (2) are given by [1]:

A =
⎡
⎢⎣1 T0

T 2
0
2

0 1 T0
0 0 1

⎤
⎥⎦ , B =

⎡
⎢⎣

T 2
0
2
T0
1

⎤
⎥⎦ ,C1 =

[
1 1 0
0 1 1

]
,C2 =

[
0 1 1
1 1 0

]
(41)

where T0 = 0.8s is the sampling period. Denote the state vector x(t) =
col{X(t), Ẋ(t), Ẍ(t)}, where X(t), Ẋ(t), Ẍ(t) are the position, velocity and accel-
eration of moving target at time t , respectively. w(t), v1(t) and v2(t) are respective
uncorrelated white Gaussian noises with covariances

Q = 1, R1 =
[
0.9 0
0 0.7

]
, R2 =

[
0.5 0
0 0.3

]
. (42)

These random variables can be generated by the function “rand()” of MATLAB.
Suppose that each sensor has enough processing capabilities to compute local

Kalman filter. It is considered for DDCS that only r1 = 1 components of ε1(t) are
allowed to be transmitted to the FC at time t , and the quantization parameter is given by
l = 0.01. For example, the original innovation ε1(t) is col{−0.6412,−0.7150} which
can be represented by twelve decimal bits. After dimensionality reduction strategy
with (Θ1(t) = diag{1, 0}) , the RI εr1(t) becomes col{−0.6412, 0}. Then, after quan-
tization, the QI ε

q
1 (t) becomes col{−0.64, 0} which can only be represented by four

decimal bits. Therefore, the transmission amount is greatly reduced.
To demonstrate Remark 1, the following figures are presented. Figure 3a shows

the local estimates and innovations in sensor 1. It can be seen from this figure that
in unstable systems, the state estimates diverge, while the innovations are bounded.
Meanwhile, it is the same in Fig. 3bwhich shows the quantized value of local estimates
and innovations. Accordingly, this result proves the reasonwhy quantizing innovations
instead of states in unstable NMFSs.

To demonstrate the effectiveness of the designed fusion estimation algorithm, the
following figures are presented. Figure 4a shows the trajectories of target x(t) and
fusion tracking x̂m(t), and it illustrates the designed fusion estimate can catch up with
the target well under bandwidth constraints. Due to the existence of stochastic noises,
the performance is assessed by its mean square errors (MSEs) over an average of
100 runs Monte Carlo method. It is obviously seen in Fig. 4b that the MSE of fusion
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Fig. 3 a The position and innovation in unstable systems. b The quantization of position and innovation in
unstable systems
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Fig. 4 a The trajectories of target and fusion tracking. b The MSEs of local and fusion estimates. c The
relationship between the MSE and the dimension of innovation

estimator is lower than that of any local estimator, and this means the fusion estimate
performance better than any local estimate. Moreover, Fig. 4c shows that the MSE
decreases with the increase in the dimension of innovation. According to the accuracy
variation shown in this figure, the dimension ri can be determined suitably.

5 Conclusions

In this paper, the distributed fusion Kalman filtering problem has been studied for a
class of unstable NMFSswith communication constraints, where the DDCSwas intro-
duced to deal with the innovations. By using the uncertainty processing method, the
optimal local recursive form ofminimum upper bound of covariance and Kalman filter
gain were obtained. Then, the distributed dimensionality reduction fusion Kalman fil-
ter with quantized innovations was designed by utilizing the optimal weighted matrix
fusion criterion. Finally, it was illustrated from the simulation examples that the pro-
posed fusion estimation algorithm can efficiently solve the estimator design problem
for unstable NMFSs.

Data Availability All data included in this study are available upon request by contacting the corresponding
author.
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