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Abstract
Kernel leastmean square (KLMS) algorithm is a popularmethod for time series online
prediction. It has the advantages of good robustness, low computational complexity,
model simplicity and online learning ability. Unfortunately, as input data grows, the
dictionary size increases and the computational complexity raises significantly. In addi-
tion, how to improve the adaptability in time-varying environments with noise is also
one of themain challenges. Therefore, we propose an improvedKLMS algorithm from
sparse perspective in response to the above problems, called adaptive sparse quantiza-
tion kernel least mean square (ASQ-KLMS) algorithm. In the new model, sequential
outlier criterion for sparsification and weights adaptive adjustment are combined with
coherence criterion and quantization to form ASQ-KLMS algorithm. Firstly, it makes
full use of effective information and ignores the interference of abnormal information
to obtain a more accurate and compact dictionary. Then, a good balance between algo-
rithm efficiency and accuracy can be achieved by controlling the choice of parameters.
In addition, it can adaptively adjust weights in time-varying environment. At last, the
Lorenz chaotic time series, the ENSOchaotic time series and theBeijing PM2.5 chaotic
time series are used to prove the reliability of the ASQ-KLMS algorithm.
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1 Introduction

Online prediction of chaotic time series has been widely applied to various fields,
including medicine systems, biomedicine, environment, engineering [4,11,13,26,32],
etc. In practical prediction applications, most time series are nonlinear and require
online processing, such as stock trend forecasting, real-time traffic flowprediction, and
real-time monitoring of air quality. This real data generally contains noise. Therefore,
it is highly desirable to have an anti-noise online prediction algorithm that has fast and
accurate computing ability.

In the time series online prediction field, some methods based on nonlinear mod-
els, for example, dynamic neural networks [29,39], online support vector regression
(Online SVR) [14] and kernel adaptive filter (KAF) algorithms [2,18,34] have been
proposed. Among these methods, dynamic neural network can improve the offline
model network structure, and achieve dynamic update, but it is computationally inten-
sive and easy to fall into local optimum. Online SVR and KAF algorithms are the
classical kernel methods, which has the advantages of the kernel method and can han-
dle time series prediction problems with nonlinear characteristics. The kernel method
is an effective method to solve the nonlinear time series prediction problem. The Mer-
cer core in reproducing kernelHilbert space (RKHS) [1] is continuous, positive definite
and reproducible which are desirable properties. Based on these properties, we cannot
update the weight vector (it is also uncalculated in high-dimensional space), and use
theMercer kernel to expand the kernel functionmapped to the high-dimensional space
into the form of eigenvalues and eigenvectors. The output after mapping to the RKHS
space is obtained, thereby realizing the combination of the kernel method and the SVR
or the adaptive filter. However, it is necessary to continuously add new samples and
update the model in online prediction of chaotic time series. The ever-increasing sam-
ple size and the amount of computation required for model updates pose significant
challenges to the computational efficiency of online kernel methods.

As we know, Liu et al. [18] make a comprehensive introduction to the KAF algo-
rithms. The KAF algorithms use a linear adaptive filtering algorithm in RKHS to
implement nonlinear signal processing [12]. The KAF algorithms can adaptively
update the model and are applied to many areas [40]. When new samples are acquired,
it can be updated in recursive increments for online prediction. In addition, it solves
nonlinear problems by using kernel mapping [6], which reduces computational com-
plexity and can effectively solve time series online prediction problem with nonlinear
characteristics. The KAF algorithms generally include KLMS [16] algorithm, kernel
affine projection algorithm (KAPA) [17], kernel recursive least squares (KRLS) [5],
and so on. The KAF algorithms are suitable for small samples, nonlinear modeling,
and online recursive updating. However, it is necessary to continuously add new sam-
ples and update the model in online prediction of chaotic time series. The amount of
calculation raises significantly when the sample size and the nuclear matrix dimension
increase.

Among them, the KLMS algorithm is a typical kernel adaptive filter algorithm that
Liu et al. proposed [16]. The KLMS algorithm has the advantages of good computa-
tional robustness and model simplicity. It has a good application prospect for online
prediction of chaotic time series. But one of its main challenges is that the size of
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dictionary and the computational complexity increases dramatically with input data
increasing [10]. If the real data contains outliers as training data, thiswill greatly reduce
the accuracy of the prediction [21,23]. Therefore, the ability to track the time-varying
characteristics of the time series and the anti-noise ability in the dynamic environment
needs to be improved.

Based on the above discussions, we improve the KLMS algorithm from the sparse
perspective. In this paper, first, the outlier is eliminated using sequential outlier cri-
terion to prevent it from being accepted as a new center, and then, the coherence
criterion is added to the quantized kernel least mean square (QKLMS) [3] algorithm.
The quantization method establishes a standard that distinguishes whether the data is
informative or redundant. Redundant data is quantified to its nearest center. It can be
said that we have fully explored the informative nature of the data. It also reduces the
size of the dictionary, which decreases the complexities of computation. Moreover, a
good trade-off between algorithm efficiency and accuracy is achieved by controlling
the choice of parameters. In addition, we consider adding weight adaptive adjustment
to the algorithm to improve the noise immunity of KLMS in the time-varying environ-
ment. In this process, the weight coefficients is adaptively adjusted, which obviously
improves the dynamic tracking ability. Finally, the validity of the algorithm is verified
in the Lorenz, ENSO and Beijing PM2.5 chaotic time series for online prediction.

The remainder of this paper is structured as follows. Section 2 presents the relevant
research progress of KLMS and sparse methods, and points out the current problems.
Section 3 briefly introduces the KLMS algorithm and quantization method. Section 4
gives the detailed introduction and explanation of the relevant parts of the algorithm
and the ASQ-KLMS algorithm. Section 5 presents the simulation results for online
prediction of chaotic time series to demonstrate the effectiveness of ASQ-KLMS
algorithm. Section 6 provides a conclusion and points out the prospects for further
research.

2 Background and RelatedWorks

2.1 Chaotic Time Series and Applications

Chaos refers to the uncertain signal generated in the deterministic system, which is
similar to the random signal to a certain extent. Chaos is not simply disorder, but has no
obvious periodicity and symmetry, but it is anordered structurewith rich internal levels,
and is a new form of existence in nonlinear systems. The discrete situation of chaos is
often expressed as chaotic time series. In chaotic time series modeling research, phase
space reconstruction is a key step in system modeling [9]. According to the Takens
embedding theorem [22], the chaotic dynamic system can be reconstructed from the
time series and reproduce the evolution information of the chaotic system, providing
strong support for accurate prediction.

Modeling and forecasting chaotic time serieswithmultiple variables, noise and non-
stationary is a current research hotspot. For chaotic time series containingmultivariate,
Zhang et al. [35] used principal component analysis (PCA) to perform dimensionality
reduction and feature extraction on 13 local physical factors, and used the reduced
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fusion features as the input of a multi-layer perceptron to achieve a wide range of
short-term rainfall predictions. For noisy chaotic time series, Lu et al. [20] constructed
a new robust loss function by considering the mean and variance of the sample, which
increases the noise immunity of the model to a certain extent. For non-stationary
signals, Sharma et al. [27] proposed a Hank matrix-based eigenvalue decomposition,
which can decompose the positive and negative frequency components of complex
signals separately, and its performance is better than the comparison method.

2.2 Online Sparse Methods

In the past ten years,many scholars have proposed several improvedKLMSalgorithms
and applied them to the field of time series online prediction. In 2008, C. Richard et
al. [25] first added the normalization criterion into the KLMS algorithm, effectively
reducing the size of the learning dictionary. And since then, Chen et al. [3] used the
quantization method to reduce the input space dimension, and proposed the QKLMS
algorithm in 2012. In the same year, M. Yukawa et al. [34] studied the multi-core
algorithm and added a weighted norm penalty to the original. A sparse multi-nuclear
normalized least mean square algorithm based on coherent criteria was proposed.
Chen et al. [37] proposed the QKLMS algorithm based on fixed memory budget (FB-
QKLMS) in 2013. It adds a rejection mechanism that limits the size of the dictionary
and enables tracking time-varying features. In 2014, Gao et al. [8] proposed a kernel
least mean square algorithm with the norm regularization FOBOS-KLMS algorithm.
Then, Van Vaerenbergh et al. [7] proposed the probability least mean square (Prob-
LMS), which adds Bayesian machine learning to adaptive filtering. Zhao et al. [38]
simplified the normalized variable step size and proposed a decorrelated kernel least
mean square (DKLMS) algorithm in 2017. Zhang et al. [36] proposed a sequential
outlier criterion to limit the interference of outliers in 2018. This method gives two
conditions for judging whether the information is an abnormal value, and improves the
anti-noise ability of the system. In 2018, Liu et al. [19] proposed the reduced Gaussian
kernel least mean square (RGKLMS) algorithm, which avoids the continuous growth
of weighted networks in non-stationary environments through implicit feature maps.
In 2019, the kernel least mean square based on the Nystrom method (NysKLMS)
proposed by Wang et al. [33] can significantly reduce the computational complexity.

In addition, some online sparse methods have been proposed to suppress the dictio-
nary growth in the learning process, for example, an algorithm with a fixed dictionary
size is studied in [28,30]. The novelty criterion (NC) proposed in [24] proposes two
constraints to suppress the growth of the dictionary. An approximate linear depen-
dency (ALD) is proposed in [5] to verify the linear dependency between the new data
and the elements in the dictionary, and if the approximation is irrelevant, the input
is added to the dictionary. The coherence criterion (CC), which limits the size of the
dictionary based on the similarity of the input, has been described in [25]. In the online
sparse method based on the surprising standard (SC) [15] of Gaussian process, the
information content of samples is quantified as a surprise, which can prevent outliers
from being used as new centers, thereby a more reliable network will be obtained.
Chen et al. [3] used quantization conditions to determine and quantify redundant data
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Table 1 The explanation of the
parameters

Parameter Explanations

μ0 Threshold for coherence criterion

ε Quantization threshold

η The step size

ζ The parameters dynamic adjustment

λd The distance region coefficient

λv The vector region coefficient

for network coefficient updates, thus taking advantage of more efficient information.
Sequential outlier criterion (SOC) established the measurement of sample informa-
tion based on the historical data sequence information, and then, the learning system
processes the information measurement samples according to the sample information,
redundancy or exception.

However, the form of the above sparse methods is very simple, only one aspect
is considered, and the characteristics of the nonlinear system cannot be described
comprehensively. Therefore, there is still room for improvement in these algorithms. In
addition, KLMS and the extended algorithm based on sparse method are very sensitive
to time-varying environments with noise, so it needs to improve the anti-noise ability
of the model.

In the above-mentioned sparsemethods,wefind that the SOCcriterion showedgood
ability to exclude outliers. KLMS-CC [25] and QKLMS show excellent predictive
power, efficiency and nonlinear fitting ability. Combining the advantages of the above
sparsemethods, theASQ-KLMSalgorithm is proposed for online prediction of chaotic
time series.

Table 1 shows an explanation of the parameters used in the ASQ-KLMS algorithm.

3 Preliminary

3.1 Kernel Least Mean Square

The KLMS algorithm is suitable for online learning. It is a generalized and evolved
form of the traditional least-mean-square (LMS) method in kernel space. The KLMS
algorithmmaps the input into a high-dimensional feature space by introducing a kernel
function based on this linear method, retains the nonlinear characteristics of the data,
and then uses a simple linear LMS method for online prediction in the kernel space.

X is the input data, then there is a nonlinear mapping � : X → F, the original
data is mapped to the feature space and then the LMS algorithm linearly filters the
converted data �(x), x ∈ X. When the time step is n, the system output is expressed
as

y (n) = αn−1
T�(x (n)) (1)
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where x(n) ∈ RM is the input vector, y(n) ∈ R is the output of the system, αn is the
weight vector.

In the LMS method, the update of the weight vector can be calculated by

αn = αn−1 + η · e (n) � (x (n)) (2)

where e means the prediction error at the n-th iteration, η represents the step size, and
�(x(n)) represents the conversion of the input X to the feature space F. The weight
vector αn can be represented by the following equation:

αn = η

n∑

i=1

e (i)� (x (i)) (3)

Nonlinear mapping can be implemented by means of kernel functions.

κ (x (i) , x ( j)) = �(x (i))T�(x ( j)) (4)

Therefore, the filter output of KLMS is given by

y (n) = η

n−1∑

i=1

e (i) κ (x (i) , x (n)) (5)

Kernel functions [31] provide a convenient way to solve complex nonlinear regres-
sion problems. We choose the Gaussian kernel as the kernel function to complete the
output calculation. It is expressed as

κ (x (i) , x ( j)) = exp

(
−‖x (i) − x ( j)‖2

2σ 2

)
(6)

where σ denotes the kernel width.

3.2 Quantization

The quantizationmethod represents the original input data using a smaller body. It does
not directly discard the judged redundant input by the sparse correlation condition, but
uses the quantization condition to judge, and quantizes the redundant variable for the
network coefficient update, thereby utilizing more valid information. The objective
function of QKLMS is defined as

min
n∑

i=1

∣∣∣y (i) − κT (B (i − 1) , x (i)) · αi

∣∣∣ (7)

where B (·) is the model dictionary. At the n-th iteration,B (n) = O [x (n)],O [·] is a
quantization operator.
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Chen et al. [3] proposed a simple online vector quantizationmethod that satisfies the
requirements of online prediction. They calculate the distance between x (n) and the
dictionary B (n − 1):dis (x (n) ,B (n − 1)) = min

1≤ j≤si ze(B(n−1))

∥∥x (n) − B j (n − 1)
∥∥,

where j means the j-th member of the dictionaryB (n − 1), ‖·‖ denotes the Euclidean
norm. If the calculated Euclidean distance is less than the set quantization parameter,
the dictionary is not updated, B (n) = B (n − 1), and the input data will be quantized
to theB j (n − 1). Otherwise, wewill update the dictionary:B (n) = B (n − 1)∪x (n),
and it will become a new center in the existing dictionary.

Finally, the operation process of the QKLMS algorithm is described in detail in
Algorithm 1.

Algorithm 1: QKLMS
while n = 1, 2, · · · do

{x (n) , y (n)} is available,
calculate the distance between x and the dictionary B (n − 1): dis (x (n) ,B (n − 1));
if dis (x (n) ,B (n − 1)) > ε then

x (n) becomes a new center:
B (n) = B (n − 1) ∪ x (n),
and the coefficient will be updated as: αn = [

αn−1, η · e (n)
]
.

else
dictionary does not change:
B (n) = B (n − 1),
and quantize x (n) to the j-th center: B j (n) = O [x (n)],

and the coefficient will be updated as: j = j + η
(
y (n) − ˇTn−1n−1

)
.

end
Output: y (n + 1)

end

4 Adaptive Sparse Quantization Kernel Least Mean Square Algorithm

In this section, wewill introduce the reserve knowledge about our improved algorithm,
and the ASQ-KLMS algorithm from the sparse perspective will be described in detail
at the end.

4.1 Sequential Outlier Criterion for Sparsification

Generally, there are often some outliers in the actual data.When these outliers are used
to update the network coefficients, the prediction accuracy will be seriously affected.

Therefore, Zhang et al. [36] proposed an online sparsification approachwith sequen-
tial outlier criterion. Its major contribution is to propose conditions for checking
whether new arriving data is an outlier. Based on historical data, there will be a range
of expectations for new arriving datum. If this range is exceeded, we think the data is
outlier.
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The expected neighbor distance (END) and the expected neighbor direction vector
(ENDV) are measures, which are used for determining whether data is an outlier or
not. Given the information of all existing data, the END infers the reasonable distance
of the neighbor data, and the ENDV infers the possible direction of the oriented data.

In the course of sequential learning, the END infers the expected distance from
adjacent data.When an outlier occurs, the distance between the outlier and the previous
data must be very large. Therefore, we use the END as one of the criteria to judge
whether the data is an outlier or not. It is defined as

NDe(n) =
n−2∑

i=1

2i

(n − 2)(n − 1)
· d〈x(i + 1), x(i)〉 (8)

where d〈x (i + 1) , x (i)〉 = ‖x (i + 1) − x (i)‖, and the main function of the coeffi-
cient 2i/(n − 2)(n − 1) is to give greater discourse power to the distance closer to the
new data. The upper and lower bounds of the END for the n-th iteration are represented
as

{
B−Dupper(n) = NDe(n) + λdσd(n)

B−Dlower(n) = NDe(n) − λdσd(n)
(9)

where λd has different sizes according to different data sets. Its size determines the
severity of the outlier determination conditions. σd(n) is the standard deviation of
{d〈x(i + 1), x(i)〉, i = 1, 2, ..., i − 2}.

The ENDV establishes a historical vector trend based on the already existing data.
When an outlier occurs, the difference between adjacent data vectors must be large.
It is another criteria for judging whether the data is an outlier or not. The ENDV is
described as

NVe(n) =
n−2∑

i=1

2i

(n − 2)(n − 1)
· [x(i + 1) − x(i)]
d〈x(i + 1), x(i)〉 (10)

where the coefficient 2i/(n−2)(n−1) is to give greater discourse power to the vector
closer to the new data. The upper and lower bounds of the ENDV for the n-th iteration
are represented as

{
B_Vupper = NVe (n) + λvσ v (n)

B_Vlower = NVe (n) − λvσ v (n)
(11)

where λv has different sizes according to different data sets. Its size determines the
severity of the outlier determination conditions. σ v(n) is the standard deviation of{
[x (i + 1) − x (i)]

/
d 〈x (i + 1) , x (i)〉 , i = 1, 2, ..., n − 2

}
.

If the n-th data exceeds the specified range of END and ENDV, it will be considered
as an outlier.
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4.2 Coherence-sparsification Criterion

Correlation is a fundamental and effective indicator for detecting linear sparse approx-
imations. In the past research, the dimensionality reduction of the kernel matrix by
ALD conditions will be misjudged due to the inappropriate selection of thresholds,
thus affecting the prediction effect. After that, the coherence coefficient was proposed
as a standard by Richard et al. [25] in 2008. The coherence coefficient is written as

μ= max
i=1,2,...,n

|κ (x (n) , x (i))| ≤ μ0 (12)

where μ0 determines the size and sparseness of the sample dictionary, μ0 ∈ [0, 1].
The calculation cost of the coherent criterion is not affected by the sample data, only
depends on the size of the final dictionary. The calculation cost is small, and it can
better measure the relationship between the input sample and the original sample
dictionary; thus, the judgment of the input sample is more accurate.

4.3 Weight Adaptive Adjustment

If the input contains noise or sudden changes, or other factors that cause κn−1 to be
very small, after updatingαn , the effect will be amplified, even catastrophic. Therefore,
we use the normalization strategy of Euclidean norm to improve the system adaptive
ability. The weight can be updated:

αn = αn−1 + η · (
y (n) − κT

n−1αn−1
) · κn−1

ζ + ∥∥κT
n−1

∥∥2
(13)

where κn−1 = κ (B (n − 1) , x (n)) and ζ is a user-defined parameter whose purpose
is to avoid the denominator being zero. This approach can significantly improve the
ability of sequential learning systems to adapt to different data sets, especially those
that contain noise and mutations.

4.4 ASQ-KLMS Algorithm

In order to achieve good performance, we combine the sequential outlier criterion,
coherence-sparsification criterion and dynamic adjustment of weights with the quan-
tization to form the ASQ-KLMS algorithm.

First, we use the sequential outlier criterion to determine whether the input is an
outlier or not. If the current input data does not meet our given expected range, it
will be discarded. Next, we combine quantization method with coherence criterion
to determine whether input data is cached or not. The input data is cached when
the current correlation coefficient does not exceed the threshold and the quantization
condition is met. This greatly reduces the size of the dictionary, which helps to reduce
the amount of calculations and speed up the calculation.
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As we know, redundant data is fully utilized with quantization method, so that it
still participates in the update of the weight coefficient. In addition, weight adaptive
adjustment can improve the ability of KLMS to track time-varying features. This
method can adaptively adjust coefficients according to input data, and improve the
prediction accuracy in chaotic time online prediction.

The ASQ-KLMS algorithm is obtained from the sparse perspective, which can
reduce computational complexity by limiting matrix dimensions and make full use
of redundant information, so it can improve the calculation efficiency and prediction
accuracy.

The specific steps of the ASQ-KLMS algorithm are described as follows:
First, calculate Eqs. (9) and (11). Then, we will make the following judgment.

Case 1: If the neighbor distance and direction vector are outside the corresponding
range, we will assume that the data is an outlier, then it will be discarded
and we will continue to detect the next data.

Case 2: If dis (x (n) ,B) > ε and the coherence coefficient is less than thresholdμ0,
then it will become a member of the dictionary and become a new center.
And update weight coefficient αn using Eq. (14).

Case 3: If dis (x (n) ,B) is no more than ε, we suppose that this data is redundant,
then the dictionary will not change: B (n) = B (n − 1). And x (n) will be
quantized to the j-th center: B j (n) = O [x (n)]. And αn is updated as (15).

Case 4: If none of the above three conditions are met, it means that the input data is
linearly related to the data in the current dictionary. So, it is considered as
redundant data and discarded, and keep the existing dictionary unchanged.
In this case, the weight coefficient will be dynamically adjusted and it will
be calculated as shown in (16).

Finally, the output is calculated using Eq. (17).
In summary, the operation process of the ASQ-KLMS algorithm is described in

detail in Algorithm 2.

4.5 Computational Complexity

Table 2 summarizes the computational complexity analysis of KLMS, QKLMS,
KLMS-CSL1, KLMS-SOC and ASQ-KLMS algorithms, including the time com-
plexity of updating αn during training and computing e (n) during testing. For KLMS,
QKLMS and KLMS-CSL1, the time complexity of updating αn during training data
is O (n) , and the time complexity of calculating e (n) during testing is O (n), O (m),
O (l), respectively, where n is the size of the dictionary when the model is not sparsi-
fied.m and l are close, but both are smaller than n. For KLMS-SOC and ASQ-KLMS,
the time complexity of updating αn during training data is O

(
n2

)
, and the time com-

plexity of calculating B during testing is O (k) and O (k), respectively, where k is
close to m and l, but k is much smaller than n.
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Algorithm 2: ASQ-KLMS
parameters: η, ε, μ0, λd , λv ,
initialize: α1 = η · y (1);
while n = 1, 2, · · · do

{x (n) , y (n)} is available
Compute the standard deviation of d 〈x (i) , x (i + 1)〉 and
[x (i + 1) − x (i)],i ∈ {1, 2, ..., n − 2}, σd (n) and œv (n)

Compute the expected neighbor distance NDe (n) using (8)and the expected neighbor direction
vector NVe (n) using (10) and their corresponding ranges:[
NDe (n) − λdσd (n) , NDe (n) + λdσd (n)

]

[NVe (n) − λvσ v (n) ,NVe (n) + λvσ v (n)]
Compute the neighbor distance d 〈x (n) , x (n − 1)〉 and the neighbor direction vector
[x (n + 1) − x (n)] /d 〈x (n + 1) , x (n)〉 for the new arriving datum.
if d 〈x (n) , x (n − 1)〉 /∈ [

NDe (n) − λdσd (n) , NDe (n) + λdσd (n)
]
and

[x (n + 1) − x (n)] /d 〈x (n + 1) , x (n)〉 /∈ [NVe (n) − λvσ v (n) ,NVe (n) + λvσ v (n)] then
B (n) = B (n − 1), x (n) is discarded.

else if
max

i=1,2,...,n
|κ (x (n) , x (i))| ≤ μ0

and dis (x (n) ,B) > ε then
B (n) = B (n − 1) ∪ x (n),

αn =
[

αn−1

η ·
(
y (n) − κTn−1αn−1

)
]

(14)

else if dis (x (n) ,B) ≤ ε then
B (n) = B (n − 1),

α j = α j + η
(
y (n) − κTn−1αn−1

)
(15)

else
B (n) = B (n − 1),

αn = αn−1 +
η ·

(
y (n) − κTn−1αn−1

)
· κn−1

ζ +
∥∥∥κTn−1

∥∥∥
2 (16)

calculate

y (n + 1) = κTn · αn (17)

Output: y (n + 1)
end

5 Experimental Results

In this section, experiments will be used to illustrate the good performance of our pro-
posed algorithm regarding chaotic time series prediction. Three time serieswill be used
for the simulation experiment. The first group is the Lorenz time series, which is a set
of benchmark data. The second group and the third group are actual time series, which
are the ENSO chaotic time series and the Beijing PM2.5 chaotic time series, respec-
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Table 2 Comparing the computational complexity of each iteration

Algorithm Update αn during training Calculate e (n) during testing

KLMS O (n) O (n)

QKLMS O (n) O (m)

KLMS-CSL1 O (n) O (l)

KLMS-SOC O
(
n2

)
O (k)

ASQ-KLMS O
(
n2

)
O ( j)

tively. At the same time, our proposed algorithm is compared with KLMS, QKLMS,
KLMS-CSL1, KLMS-SOC algorithms. In order to prevent accidental situations, we
performed ten simulation experiments on the three sets of data, and calculated the
average value as the final result.

We will use the root mean square error (RMSE) and R2 as the prediction accuracy
evaluation indicators. The RMSE can be defined as

RMSE =

√√√√√
N∑

n=1

(∧
y (n) − y (n)

)2

N
(18)

where n means the time step, and N is the number of samples calculated. If a method
performs time series prediction, the smaller the RMSE of the calculated result, the
higher the prediction accuracy of the method in time series prediction.

The R2 can be calculated as

R2 = 1 −

N∑
n=1

(∧
y (n) − y (n)

)2

N∑
n=1

(
y (n) − −

y
)2 (19)

where
−
y denotes average number of predicted targets, and N is the number of samples

calculated. The larger the R2 of the calculated result, the higher the prediction accuracy
of the method in time series prediction.

In order to better describe the prediction results, training time and testing time are
used as indicators for calculating time.

Parameter optimization methods mainly include cross-validation and grid search
methods. The algorithm parameter tuning in this paper uses grid search method. The
main idea is to use the current parameters that have the greatest impact on the model
until the optimization; tune the parameters, and so on, until all the parameters are
adjusted. The steps of our proposed algorithm tuning are to first adjust the step size
η and kernel bandwidthσ ; then adjust the parameters λd andλv of the SOC method,
discarding about 1%-5% outliers; finally adjust the μ0 ,ε and ζ .
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Table 3 Parameters setting of 5-step prediction of Lorenz-x chaotic time series

Algorithms μ0 ε η ζ λd λv Kernel Type Kernel bandwidth

KLMS – – 0.06 – – – Gauss 7

QKLMS – 3.5 0.06 – – – Gauss 7

KLMS-CSL1 0.5 3.5 0.06 – – – Gauss 7

KLMS-SOC – 3.5 0.06 – 2 3 Gauss 7

ASQ-KLMS 0.5 3.5 0.06 0.01 2 3 Gauss 7

5.1 Lorenz Chaotic Time Series

The Lorenz data set is a set of classical time series with chaotic characteristics. In this
part, the validity of the proposed algorithm is verified. The simulation results of 2501
Lorenz three-dimensional data are used:

⎧
⎨

⎩

dx
dt = e(−x + y)
dy
dt = f x − y − xz
dz
dt = xy − gz

(20)

where e = 10, f = 28, g = 8/3, and this time series is deteriorated by adding white
Gaussian noise.

In the experiment, we use the C-C method to calculate and select the appropriate
phase space reconstruction parameters. The delay time of the three-dimensional vari-
ables x, y, and z is selected as 8, 7, 8, and the embedding dimension is 6, 6, 6. After
that, the first 80% of the samples are used for training, and the last 20% are used for
testing. Table 3 shows the parameter settings for the 5-step prediction of the Lorenz-x
time series.

Figure 1 shows the trainingMSEofASQ-KLMSalgorithm inLorenz-x chaotic time
series. Figure 2 shows the 5-step prediction curve of Lorenz-x chaotic time series using
ASQ-KLMS algorithm, and Table 4 shows 5-step prediction results of Lorenz-x time
series by KLMS, QKLMS, KLMS-CSL1, KLMS-SOC and ASQ-KLMS algorithm.

The RMSE and R2 are important evaluation indicators, and the training time and
testing time are efficiency assessment indicators. From Fig. 1, we can see that the
model is well trained and has good convergence. From Table 4, we can see that the
ASQ-KLMS algorithm simulation results are satisfactory on these four indicators.
The shortest testing time means that the algorithm constitutes the most accurate and
compact dictionary, which greatly reduces the computational complexity. Therefore,
ASQ-KLMS algorithm has high efficiency online prediction capability. Because the
SOC criterion is adopted, the training time is sacrificed, but the model has good
anti-noise ability. From prediction accuracy, the ASQ-KLMS algorithm performs bet-
ter than the KLMS-SOC algorithm, which means that the ASQ-KLMS algorithm
improves the KLMS-SOC algorithm. At the same time, in Fig. 2, the blue line repre-
sents the original data curve and the orange line represents the predicted value curve
from the upper subgraph, and the prediction curve can follow the original curve well.
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Fig. 1 The training MSE of ASQ-KLMS algorithm in Lorenz-x chaotic time series

In the next subgraph, we can see that the error curve has less fluctuation. Therefore, the
ASQ-KLMS algorithm is considered to have good performance for online prediction.

5.2 ENSO Chaotic Time Series

The ENSO is the abbreviation of El Nino-Southern Oscillation. ENSO is a climatic
phenomenon that exists in the equatorial sea. Among them, the Southern Oscillation
refers to the reversed-pressure vibration occurring between the Southeast Pacific and
the Indian Ocean and Indonesia. It is one of the most prominent and important phe-
nomena in the interannual variation of the tropical circulation. El Nino is an abnormal
phenomenon in which the sea surface temperature in the equatorial Pacific Ocean in
theMiddle East continues to rise abnormally. The SouthernOscillation andElNino are
interrelated. When the El Nino phenomenon occurs, the sea surface temperature rises,
the Pacific water temperature rises, and the global atmospheric circulation changes,
while the Southern Oscillation is the most direct change. The ENSO occurs approx-
imately every two to seven years and lasts for several months. It is one of the main
culprits for natural weather disasters such as floods. The catastrophic climate prob-
lems such as the Yangtze River floods and the southern blizzards that have occurred
in China are inextricably linked to ENSO. Therefore, timely and accurate prediction
of ENSO related index has important significance and practical application value. The
Pacific Decadal Oscillation (PDO) phenomenon occurs every 10 years. Many scholars
believe that PDO and ENSO have strong correlations. Therefore, this paper combines
the PDO and ENSO indices into a set of time series prediction data for simulation
experiments.
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Fig. 2 Lorenz-x chaotic time series 5-step prediction curve and error curve using ASQ-KLMS algorithm

By above knowable, we use the National Oceanic and Atmospheric Administra-
tion (NOAA)website (http://www.psl.noaa.gov/gcos_wgsp/Timeseries/) to obtain the
monthly Nino 1.2, Nino 3, Nino 4, Nino3.4, SOI index and PDO index from 1949 to
June 2018, including 834 samples. The acquired data is in standard PSL format. The
Lyapunov exponent indicates that the ENSO time series is chaotic. At the same time,
we use the C-C method to calculate and select the appropriate phase space reconstruc-

http://www.psl.noaa.gov/gcos_wgsp/Timeseries/
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Table 4 Five-step online prediction test results of Lorenz-x chaotic time series

Algorithms Training time Testing time Testing RMSE Testing R2

KLMS 0.3684 0.0602 0.9028 0.9890

QKLMS 0.2647 0.0293 0.7562 0.9923

KLMS-CSL1 0.1611 0.0110 0.9492 0.9879

KLMS-SOC 2.9795 0.0546 1.0828 0.9842

ASQ-KLMS 0.9625 0.0130 0.7094 0.9932

Table 5 Parameter setting of five-step prediction for NINO 3.4 index

Algorithms μ0 ε η ζ λd λv Kernel Type Kernel bandwidth

KLMS – – 0.2 – – – Gauss 3

QKLMS – 2 0.2 - – – Gauss 3

KLMS-CSL1 0.5 – 0.2 – – – Gauss 3

KLMS-SOC – 2 0.2 - 2 3 Gauss 3

ASQ-KLMS 0.5 2 0.2 0.01 2 3 Gauss 3
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Fig. 3 The training MSE of ASQ-KLMS algorithm in Nino 3.4 chaotic time series

tion parameters. The embedding dimension is selected as 3, 3, 4, 3, 4, and 4. The delay
time of the six-dimensional variables is selected as 2, 2, 3, 3, 2, and 2.

Table 5 shows parameter setting of five-step prediction for NINO 3.4 index. After
that, the first 80% of the samples are used for training and the last 20% are used for
testing.
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Table 6 Five-step online prediction test results of NINO 3.4 chaotic time series

Algorithms Training time Testing time Testing RMSE Testing R2

KLMS 0.2893 0.0218 0.2156 0.9346

QKLMS 0.2476 0.0036 0.1797 0.9574

KLMS-CSL1 0.4446 0.0178 0.3528 0.8357

KLMS-SOC 0.3554 0.0062 0.2009 0.9467

ASQ-KLMS 0.3242 0.0027 0.1657 0.9665

Figure 3 shows the trainingMSE ofASQ-KLMS algorithm inNino 3.4 chaotic time
series. Figure 5 showsNino 3.4 chaotic time series 5-step prediction curve using ASQ-
KLMS algorithm. Table 6 shows 5-step prediction results of Nino 3.4 chaotic time
series by KLMS, QKLMS, KLMS-CSL1, KLMS-SOC and ASQ-KLMS algorithm.

From Fig. 3, we can see that the model is well trained and has good convergence.
It can be seen from the simulation results in Table 6 that the ASQ-KLMS algorithm
shows excellent performance. ENSO is the actual data that contains noise, so there
will be outliers in the sequence. The ASQ-KLMS algorithm has SOC criterion and
weight adaptive adjustment, so it has good anti-noise ability, and the simulation results
also illustrate this point. Specifically, we can see that the ASQ-KLMS algorithm has
the shortest test time, which means that it constitutes the most accurate and compact

Fig. 4 Nino 3.4 chaotic time series 5-step prediction curve using KLMS, QKLMS, KLMS-CSL1, KLMS-
SOC algorithm
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Fig. 5 Nino 3.4 chaotic time series 5-step prediction curve and error curve using ASQ-KLMS algorithm
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Table 7 Parameters setting of five-step prediction of Beijing PM2.5 chaotic time series

Algorithms μ0 ε η ζ λd λv Kernel Type Kernel bandwidth

KLMS – – 0.2 – – – Gauss 2

QKLMS – 0.1 0.2 – – – Gauss 2

KLMS-CSL1 0.5 - 0.2 – – – Gauss 2

KLMS-SOC – 0.1 0.2 – 8 9 Gauss 2

ASQ-KLMS 0.9 0.1 0.2 0.01 8 9 Gauss 2
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Fig. 6 The training MSE of ASQ-KLMS algorithm in Beijing PM2.5 chaotic time series

dictionary, which greatly reduces the test time and has higher prediction efficiency. In
addition, the accuracy index predicted by the ASQ-KLMS algorithm is also superior
to other algorithms in Fig. 4. Therefore, the ASQ-KLMS algorithm has been proven
to have a good predictive effect on the ENSO chaotic time series. Simultaneously, the
blue line represents the original data curve, and the orange line represents the predicted
value curve from the upper subgraph in Fig. 5, the prediction curve can follow the
original curve well. In the next subgraph, error curve fluctuations are small. So we can
get a conclusion that the ASQ-KLMS algorithm has excellent effectiveness for online
prediction of ENSO chaotic time series.

5.3 Beijing PM2.5 Chaotic Time Series

As we all know, continuous smog weather has occurred in many places, seriously
affecting the health of residents. Therefore, it is urgent to increase air quality research,
especially tomonitor and predict air pollution. PM2.5 is one of the important indicators
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Table 8 Five-step online prediction test results of Beijing PM2.5 chaotic time series

Algorithms Training time Testing time Testing RMSE Testing R2

KLMS 2.3283 0.1776 0.0394 0.9683

QKLMS 0.3372 0.0223 0.0373 0.9658

KLMS-CSL1 0.3900 0.0195 0.0632 0.9018

KLMS-SOC 3.0808 0.1628 0.0339 0.9717

ASQ-KLMS 2.5361 0.0127 0.0315 0.9774

(a) (b)

(c) (d)

Fig. 7 Beijing PM2.5 chaotic time series 5-step prediction curve using KLMS, QKLMS, KLMS-CSL1,
KLMS-SOC algorithm

used to measure air quality. Therefore, predicting the value of PM2.5 has important
practical significance. The Lyapunov exponent indicates that the Beijing PM2.5 time
series data is chaotic.

In this section, we conduct simulations on Beijing PM2.5 chaotic time series which
consists of hourly PM2.5, PM10, CO, NO2, O3, SO2 in Beijing in 2019. The original
data set is confirmed by the test station. This data set comes from the website of
Beijing Environmental Protection Inspection Center (http://www.bjmemc.com.cn/).
After preprocessing the data, a total of 8300 samples will be used for simulation
experiments, the first 90% will be used to train the model, and the remaining 10% will
be used for testing. The C-C method is used to calculate and select the appropriate
phase space reconstruction parameters. And the embedding dimensions are 3, 3, 4, 3,

http://www.bjmemc.com.cn/
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Fig. 8 Beijing PM2.5 chaotic time series five-step prediction curve and error curve using ASQ-KLMS
algorithm

4, and 3, and the delay times are 10, 10, 10, 10, 8, and 10. Table 7 shows the parameters
setting of five-step prediction of Beijing PM2.5 chaotic time series.

Figure 6 shows the training MSE of ASQ-KLMS algorithm in Lorenz-x chaotic
time series. Figure 8 showsBeijing PM2.5 chaotic time series five-step prediction curve
using ASQ-KLMS algorithm. Table 8 shows five-step prediction results of Beijing
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PM2.5 chaotic time series by KLMS, QKLMS, KLMS-CSL1, KLMS-SOC and ASQ-
KLMS algorithm.

From Fig. 6, we can see that the model is well trained and has good convergence.
The simulation results in Table 8 show that the ASQ-KLMS algorithm performs well
in both prediction accuracy and efficiency. The Beijing PM2.5 chaotic time series is
the actual data containing noise, so there will be abnormal values in the sequence. The
ASQ-KLMS algorithm has SOC criterion and weight adaptive adjustment, so it has
good anti-noise ability, and the simulation results also illustrate this point. Although
we added a SOC criterion, we sacrificed a little training time. Fortunately, we have
formed an accurate and compact dictionary, which greatly reduces the test time and has
higher prediction efficiency. Therefore, the ASQ-KLMS algorithm has been proven
to have a good predictive effect on the Beijing PM2.5 chaotic time series in Fig. 7. In
Fig. 8, the blue line represents the original data curve and the orange line represents the
predicted value curve; the prediction curve can follow the original curve well. In the
next subgraph, the prediction error curve has a small fluctuation range. Therefore, the
ASQ-KLMS algorithm is proved to be effective in completing the online prediction
of Beijing PM2.5 chaotic time series.

6 Conclusion

In this paper, the coherence criterion and the weight adaptive adjustment integrated
with the quantization method form our proposed ASQ-KLMS algorithm. Compared
with the other four algorithms, the ASQ-KLMS algorithm forms a more accurate and
compact dictionary, and the prediction efficiency and prediction accuracy are very
good. In addition, it also has good tracking time-varying characteristics and has certain
adaptive ability to noise. The experiments of the Lorenz, the ENSO and the Beijing
PM2.5 chaotic time series prove the effectiveness of the ASQ-KLMS algorithm.

In order to improve the ability to track time-varying characteristics, we consider
combining KAF and recurrent neural networks, drawing on the advantages of each
other, and adding appropriate sparse methods to improve prediction accuracy in the
future.
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